1. Consider the linear regression with data

\[y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, \cdots, n, \]

with the assumptions that \(E(\epsilon) = 0 \) and \(\text{var}(\epsilon) = \sigma^2 I \), where \(\epsilon = (\epsilon_1, \cdots, \epsilon_n)^T \).

(a) Write down the model in matrix form, defining the design matrix \(X \), the response vector \(y \), and the parameter \(\beta \).

(b) Calculate \(X^T X \), and \((X^T X)^{-1} \). Hence using \(\hat{\beta} = (X^T X)^{-1} X^T y \), find \(\hat{\beta}_1 \).

(c) Now consider the previous model, but with the covariate \(x \) centered:

\[y_i = \beta_0 + \beta_1 (x_i - \bar{x}) + \epsilon_i, \quad i = 1, \cdots, n. \]

Redo (a) and (b). Find the variance of \(\hat{\beta}_0 \) and \(\hat{\beta}_1 \) in this model, and the covariance between them.

2. Consider the general multiple linear regression model \(y = X\beta + \epsilon \), with normality assumption on \(\epsilon \), i.e., we assume \(\epsilon \sim N(0, \sigma^2 I) \).

(a) Write down the likelihood for the data. Hence show that the log-likelihood \(\ell(\beta, \sigma^2) \) is as given in lecture 1.

(b) Show that

\[\frac{\partial \ell(\beta, \sigma^2)}{\partial \beta} = \frac{X^T y}{\sigma^2} - \frac{X^T X \beta}{\sigma^2}, \]

by first expanding \(\|y - X\beta\|^2 \) in linear and quadratic terms in \(\beta \).

(c) With \(\sigma^2 \) assumed known, the derivative in (b) is called the score vector for the parameter \(\beta \), denoted by \(U(\beta) \).

Write \(U(\beta) = (U_1(\beta), \cdots, U_p(\beta))^T \), the information matrix for \(\beta \) is defined as

\[I(\beta) = E\left(-\frac{\partial U(\beta)}{\partial \beta^T} \right), \]

with

\[\frac{\partial U(\beta)}{\partial \beta^T} = \begin{pmatrix} \left(\frac{\partial U_1(\beta)}{\partial \beta} \right)^T \\ \vdots \\ \left(\frac{\partial U_p(\beta)}{\partial \beta} \right)^T \end{pmatrix}. \]

Find \(I(\beta) \) for our multiple regression model given \(\sigma^2 \).

3. Consider the multiple linear regression model in question 2.

(a) Show that

\[\text{Total corrected SS} = \sum (y_i - \bar{y})^2 = \sum y_i^2 - n \bar{y}^2. \]
Hence, by writing $\bar{y} = n^{-1}1_n^T y$ where 1_n is a vector of ones of length n, show that

$$\text{Total corrected SS} = y^T y - n(n^{-1}1_n^T y)^2 = y^T (I - n^{-1}1_n1_n^T) y.$$

(b) Show that $HX = X$, where H is the hat matrix. Assuming our model has a constant term, so that X has a column of ones (i.e., 1_n is a column in X), show in particular that $H1_n = 1_n$.

(c) Using part (b), show that

$$\sum \hat{y}_i = n\bar{y}.$$

(Hint: Write $\sum \hat{y}_i = 1_n^T \hat{y}$.)

(d) Hence, show that

$$\text{SS(reg)} = \sum (\hat{y}_i - \bar{y})^2 = \sum \hat{y}_i^2 - n\bar{y}^2.$$

(e) By writing $\sum \hat{y}_i^2 = ||\hat{y}||^2$, using (d), show that

$$\text{SS(reg)} = y^T (H - n^{-1}1_n1_n^T)y.$$

(f) Show that $\text{RSS} = ||y - \hat{y}||^2 = y^T (I - H)y$. Hence show that

$$\text{Total corrected SS} = \text{SS(reg)} + \text{RSS}.$$

4. You have shown in 3(f) that

$$\text{RSS} = y^T (I - H)y.$$

(a) Show that $(I - H)X = 0$.

(b) By writing $y = X\beta + \epsilon$, show that

$$\text{RSS} = \epsilon^T (I - H)\epsilon.$$

(c) Hence show that

$$E(\text{RSS}) = \sigma^2 (n - p),$$

so that $S^2 = \text{RSS}/(n-p)$ is unbiased for σ^2. (Hint: Observe that $\epsilon^T (I - H)\epsilon$ is a scalar, so that $\epsilon^T (I - H)\epsilon = \text{tr}(\epsilon^T (I - H)\epsilon) = \text{tr}(\epsilon\epsilon^T (I - H))$. Now take expectation on both sides and swap the order of trace and expectation on the right hand side. What is $E(\epsilon\epsilon^T)$?)

5. Consider the linear regression model

$$y = X\beta + \epsilon,$$

where $\epsilon \sim N(0, \sigma^2 I)$, y is the response vector of length n, β is the vector of parameters of length p.

(a) Show that $X(\hat{\beta} - \beta) = H\epsilon$, and hence

$$||X(\hat{\beta} - \beta)||^2 = \epsilon^T H\epsilon.$$
(b) Show that an idempotent matrix \(W \) has only 0 or 1 as its eigenvalues. (Hint: If \(\lambda \) is an eigenvalue for \(W \), then \(\lambda^2 \) is an eigenvalue for \(W^2 \).)

(c) For a real symmetric matrix \(W \), we can always decompose \(W \) as
\[
W = QDQ^T,
\]
where \(Q \) is an orthogonal matrix (i.e., \(Q^TQ = QQ^T = I \)), and \(D \) is a diagonal matrix containing all the eigenvalues of \(W \).

Apply this to \(H \), show that
\[
\epsilon^T He = z^T Dz,
\]
where \(D \) is a diagonal matrix containing all the eigenvalues of \(H \), and \(z = Q\epsilon \) with \(Q \) an orthogonal matrix.

What is the distribution of \(z \)?

(d) Find \(\text{tr}(H) \), the trace of \(H \) (Hint: Write \(H \) in terms of \(X \) first, then use \(\text{tr}(AB) = \text{tr}(BA) \)). Hence using (b), find the exact number of eigenvalues for \(H \) which are equal to 1.

(e) Using (c) and (d), show that
\[
\|X(\hat{\beta} - \beta)\|^2 = \frac{\epsilon^T H \epsilon}{\sigma^2} \sim \chi^2_p.
\]

(f) From question 3(e), we have the sum of squares due to regression
\[
SS(\text{reg}) = y^T (H - n^{-1}1_n1_n^T)y.
\]

Under the null hypothesis \(H_0 : \beta_1 = \cdots = \beta_k = 0 \), then \(y = \beta_0 1_n + \epsilon \).
Show that then
\[
SS(\text{reg}) = \epsilon^T (H - n^{-1}1_n1_n^T) \epsilon.
\]
(hint: \(H1_n = 1_n \) if \(1_n \) is a column in \(X \))

Show that the matrix \(H - n^{-1}1_n1_n^T \) is also symmetric idempotent, and hence using (c), (d) and (e), replacing \(H \) by \(H - n^{-1}1_n1_n^T \), show that under the null hypothesis \(H_0 : \beta_1 = \cdots = \beta_k = 0 \),
\[
\frac{SS(\text{reg})}{\sigma^2} \sim \chi^2_{p-1}.
\]

6. Using similar technique as in question 5, show that
\[
\frac{RSS}{\sigma^2} = \frac{\epsilon^T (I-H) \epsilon}{\sigma^2} \sim \chi^2_{n-p}.
\]

7. With same model as in question 1, Consider the two random vectors \(w_1 = He \) and \(w_2 = (I-H)e \).

(a) Find the mean and covariance matrix for each of them.
(b) Consider the joint random vector
\[
w = \left(\begin{array}{c} w_1 \\ w_2 \end{array} \right).
\]
Show that \(\mathbf{w} \) has a normal distribution, and find its mean and covariance matrix. (Hint: Write \(\mathbf{w} \) as \(\mathbf{A}\mathbf{\epsilon} \), and find \(\mathbf{A} \))

(c) Hence, using part (b), show that \(\mathbf{w}_1 \) is independent of \(\mathbf{w}_2 \), i.e., any elements in \(\mathbf{w}_1 \) is independent of all the elements in \(\mathbf{w}_2 \) and vice versa.

(d) Using (c), show that \(\|\mathbf{X}(\hat{\mathbf{\beta}} - \mathbf{\beta})\|^2 \) and RSS from questions 5 and 6 are independent. (You can use the same technique to prove that \(\hat{\mathbf{\beta}} \) and \(S^2 \) are independent, as well as the independence of SS(reg) and RSS under the null hypothesis \(H_0 : \mathbf{\beta} = 0 \).)