Analytical Methods exam question 2022 - SOLUTIONS

1. Consider the following partial differential equation for $f(x, y)$:

$$
2 \frac{(y+1)}{x} \frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}-f+\lambda\left(\frac{\partial^{2} f}{\partial x^{2}}-4 \frac{\partial^{2} f}{\partial y^{2}}\right)=-x^{2} y
$$

in the domain $-\infty<x<\infty, y \geq 0$. If $\lambda \gg 1$ and the boundary conditions are given by

$$
f(x, 0)=0 \quad \text { and } \quad \frac{\partial f}{\partial y}(x, 0)=2
$$

determine the solution $f(x, y)$ up to and including terms of order $1 / \lambda$.

Solution:

A sample solution using the analytical and perturbation techniques introduced in the course is presented below representing what a very good student could do. Attempts to apply other suitable methods will also be marked highly.
We take λ large: for convenience set $\lambda=\varepsilon^{-1}$. We are solving:

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial x^{2}}-4 \frac{\partial^{2} f}{\partial y^{2}}+\varepsilon\left(2 \frac{(y+1)}{x} \frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}-f\right)=-\varepsilon x^{2} y \\
f(x, 0)=0 \quad \frac{\partial f}{\partial y}(x, 0)=2
\end{gathered}
$$

Leading order

At leading order we have

$$
\frac{\partial^{2} f}{\partial x^{2}}-4 \frac{\partial^{2} f}{\partial y^{2}}=0
$$

which is just the homogeneous wave equation. The general solution is

$$
f(x, y)=p(2 x+y)+q(2 x-y)
$$

and applying the boundary conditions gives

$$
\begin{array}{cc}
p(2 x)+q(2 x)=0 & p^{\prime}(2 x)-q^{\prime}(2 x)=2 \\
p(t)=-q(t)=t & f(x, y)=2 y
\end{array}
$$

Order ε

We now put

$$
f(x, y)=2 y+\varepsilon f_{1}(x, y)+\cdots
$$

and the governing equation for f_{1} becomes

$$
\begin{aligned}
& \frac{\partial^{2} f_{1}}{\partial x^{2}}-4 \frac{\partial^{2} f_{1}}{\partial y^{2}}=2 y+2-x^{2} y \\
& f_{1}(x, 0)=0 \quad \frac{\partial f_{1}}{\partial y}(x, 0)=0
\end{aligned}
$$

The equation is the inhomogeneous wave equation so we can solve it by a change of variables or using the standard formula. To use the standard formula we first need to put it into standard form:

$$
u_{t t}-c^{2} u_{x x}=F(x, t)
$$

We put $y=t$ and take $c=1 / 2$:

$$
\frac{\partial^{2} f_{1}}{\partial y^{2}}-\frac{1}{4} \frac{\partial^{2} f_{1}}{\partial x^{2}}=\frac{x^{2} y}{4}-\frac{y}{2}-\frac{1}{2}
$$

The general solution to this equation is

$$
f_{1}(x, y)=p(x+c y)+q(x-c y)+\frac{1}{2 c} \int_{0}^{y} \int_{x-c\left(y-y^{\prime}\right)}^{x+c\left(y-y^{\prime}\right)} F\left(x^{\prime}, y^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} y^{\prime}
$$

in which $c=1 / 2$ and $F(x, y)=x^{2} y / 4-y / 2-1 / 2$. Substituting these in, the integral becomes

$$
\begin{aligned}
& \frac{1}{4} \int_{0}^{y} \int_{x-\left(y-y^{\prime}\right) / 2}^{x+\left(y-y^{\prime}\right) / 2}\left(x^{\prime}\right)^{2} y^{\prime}-2 y^{\prime}-2 \mathrm{~d} x^{\prime} \mathrm{d} y^{\prime} \\
= & \frac{1}{4} \int_{0}^{y}\left[\left(x^{\prime}\right)^{3} y^{\prime} / 3-2 x^{\prime} y^{\prime}-2 x^{\prime}\right]_{x^{\prime}=x-\left(y-y^{\prime}\right) / 2}^{x+\left(y-y^{\prime}\right) / 2} \mathrm{~d} y^{\prime} \\
= & \frac{1}{4} \int_{0}^{y} x^{2} y^{\prime}\left(y-y^{\prime}\right)+2\left(y^{\prime}-y\right)\left(y^{\prime}+1\right)+y^{\prime}\left(y-y^{\prime}\right)^{3} / 12 \mathrm{~d} y^{\prime} \\
= & \frac{1}{2} \int_{0}^{y}-y-y^{\prime}\left[y-1-\frac{x^{2} y}{2}-\frac{y^{3}}{24}\right]-\left(y^{\prime}\right)^{2}\left[\frac{y^{2}}{8}-1+\frac{x^{2}}{2}\right]+\frac{y\left(y^{\prime}\right)^{3}}{8}-\frac{\left(y^{\prime}\right)^{4}}{24} \mathrm{~d} y^{\prime} \\
= & \frac{1}{2}\left[-y y^{\prime}-\frac{\left(y^{\prime}\right)^{2}}{2}\left(y-1-\frac{x^{2} y}{2}-\frac{y^{3}}{24}\right)-\frac{\left(y^{\prime}\right)^{3}}{3}\left(\frac{y^{2}}{8}-1+\frac{x^{2}}{2}\right)+\frac{y\left(y^{\prime}\right)^{4}}{32}-\frac{\left(y^{\prime}\right)^{5}}{120}\right]_{y^{\prime}=0}^{y} \\
= & \frac{x^{2} y^{3}}{24}-\frac{y^{2}}{4}-\frac{y^{3}}{12}+\frac{y^{5}}{960}
\end{aligned}
$$

Thus the general solution is

$$
f_{1}(x, y)=p(2 x+y)+q(2 x-y)+\frac{x^{2} y^{3}}{24}-\frac{y^{2}}{4}-\frac{y^{3}}{12}+\frac{y^{5}}{960}
$$

Our boundary conditions $f(x, 0)=0$ and $f_{y}(x, 0)=0$ give

$$
0=p(2 x)+q(2 x) \quad 0=p^{\prime}(2 x)-q^{\prime}(2 x)
$$

so $p=q=0$ and the solution is

$$
f_{1}(x, y)=\frac{x^{2} y^{3}}{24}-\frac{y^{2}}{4}-\frac{y^{3}}{12}+\frac{y^{5}}{960}
$$

Check:

$$
\begin{gathered}
f_{x}=\frac{x y^{3}}{12} \quad f_{x x}=\frac{y^{3}}{12} \\
f_{y}=\frac{x^{2} y^{2}}{8}-\frac{y}{2}-\frac{y^{2}}{4}+\frac{y^{4}}{192} \\
f_{y y}=\frac{x^{2} y}{4}-\frac{1}{2}-\frac{y}{2}+\frac{y^{3}}{48}
\end{gathered}
$$

Thus:

$$
f_{x x}-4 f_{y y}=\frac{y^{3}}{12}-4\left(\frac{x^{2} y}{4}-\frac{1}{2}-\frac{y}{2}+\frac{y^{3}}{48}\right)=-x^{2} y+2+2 y
$$

as required.
The full solution is

$$
f(x, y)=2 y+\frac{\varepsilon}{24}\left(x^{2} y^{3}-6 y^{2}-2 y^{3}+\frac{y^{5}}{40}\right)+O\left(\varepsilon^{2}\right)
$$

Carrying out the second calculation via the change of variables $\eta=2 x+y$, $\xi=2 x-y$ gives the same result after rather more algebra.
2. Use the mapping

$$
w(z)=i\left(\frac{1-z}{1+z}\right)
$$

to find the (exact) solution to Laplace's equation, $\phi_{x x}+\phi_{y y}=0$, on the unit disc such that $\phi=A$ on the upper half ($y>0$) of the unit circle $x^{2}+y^{2}=1$, and $\phi=B$ on the lower half of the unit circle (where A and B are different constant values). Numerically create a surface plot of your solution in the unit circle for the case $A=1$ and $B=-1$.

Solution:

$w(z)$ maps the unit disc to the upper half plane. Writing $w=u+i v$ we have

$$
u=\frac{2 y}{(1+x)^{2}+y^{2}} \quad \text { and } \quad v=\frac{1\left(x^{2}+y^{2}\right)}{(1+x)^{2}+y^{2}}
$$

In particular, if $x^{2}+y^{2}=1$, we have $u=y /(1+x)$ and $v=0$ and so the image of the unit circle is the real line. The image of the upper half unit circle is the right part of the real line $u>0$ and the image of the lower half unit circle is $u<0$. In the w-plane, we need to solve $\phi_{u u}+\phi_{v v}=0$ in the upper half plane subject to the boundary condition on the real line that $\phi=A$ for $u>0$ and $\phi=B$ for $u<0$ and the solution must be bounded at infinity. The unique solution to this problem is

$$
\phi=A-(A-B) \frac{\theta}{\pi}
$$

where θ is the angular coordinate in the w-plane. This yields

$$
\phi=A-\frac{(A-B)}{\pi} \arctan (v / u)=A-\frac{(A-B)}{\pi} \arctan \left(\frac{1-\left(x^{2}+y^{2}\right)}{2 y}\right)
$$

as the solution on the unit disc.

