Analytical Methods exam question 2022 - SOLUTIONS
1. Consider the following partial differential equation for f(x,y):
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in the domain —oco < & < 0o, y > 0. If A > 1 and the boundary conditions
are given by
of

f(z,0) =0 and a—y(z,O)zZ,

determine the solution f(z,y) up to and including terms of order 1/A.
Solution:

A sample solution using the analytical and perturbation techniques in-
troduced in the course is presented below representing what a very good
student could do. Attempts to apply other suitable methods will also be
marked highly.

We take A large: for convenience set A = e~ 1. We are solving:
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Leading order

At leading order we have
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which is just the homogeneous wave equation. The general solution is
f@,y) =p2z +y) +q(2z — y)

and applying the boundary conditions gives
p(2z) + q(22) =0 P'(2z) —¢'(22) =2

p(t) = —q(t) =t f(z,y) =2y.



Order ¢

We now put
fley) =2y +efi(z,y)+---

and the governing equation for f; becomes
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The equation is the inhomogeneous wave equation so we can solve it by
a change of variables or using the standard formula. To use the standard
formula we first need to put it into standard form:

Ugy — gy = F(z,1)
We put y =t and take ¢ = 1/2:
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The general solution to this equation is
zt+e(y—y )
fi(@,y) =p(x +cy) + q(x — cy) +—/ / (z',y") dz’ dy’
c(y—y")

in which ¢ = 1/2 and F(z,y) = 2%y/4 — y/2 — 1/2. Substituting these in,
the integral becomes
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Thus the general solution is
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Our boundary conditions f(z,0) =0 and fy(z,0) = 0 give
0 =p(2z) + ¢(27) 0=p'(2z) - ¢'(2x)

so p = ¢ = 0 and the solution is
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as required.

The full solution is
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Carrying out the second calculation via the change of variables n = 2z +v,
& = 2z — y gives the same result after rather more algebra.



2. Use the mapping

w0=4(153).

to find the (exact) solution to Laplace’s equation, ¢y, + ¢y, = 0, on the
unit disc such that ¢ = A on the upper half (y > 0) of the unit circle
22 +y? =1, and ¢ = B on the lower half of the unit circle (where A and
B are different constant values). Numerically create a surface plot of your
solution in the unit circle for the case A =1 and B = —1.

Solution:

w(z) maps the unit disc to the upper half plane. Writing w = u + iv we
have
2y 1(z* +y°)
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In particular, if 22 + y? = 1, we have u = y/(1 + z) and v = 0 and so the
image of the unit circle is the real line. The image of the upper half unit
circle is the right part of the real line © > 0 and the image of the lower
half unit circle is v < 0. In the w-plane, we need to solve ¢y + Py = 0
in the upper half plane subject to the boundary condition on the real line
that ¢ = A for u > 0 and ¢ = B for u < 0 and the solution must be
bounded at infinity. The unique solution to this problem is
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p=A—-(A-DB)
where 6 is the angular coordinate in the w-plane. This yields
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as the solution on the unit disc.




