Analytical Methods exam question 2022.

1. Consider the following partial differential equation for $f(x, y)$:

$$
2 \frac{(y+1)}{x} \frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}-f+\lambda\left(\frac{\partial^{2} f}{\partial x^{2}}-4 \frac{\partial^{2} f}{\partial y^{2}}\right)=-x^{2} y
$$

in the domain $-\infty<x<\infty, y \geq 0$. If $\lambda \gg 1$ and the boundary conditions are given by

$$
f(x, 0)=0 \quad \text { and } \quad \frac{\partial f}{\partial y}(x, 0)=2
$$

determine the solution $f(x, y)$ up to and including terms of order $1 / \lambda$.
2. Use the mapping

$$
w(z)=i\left(\frac{1-z}{1+z}\right)
$$

to find the (exact) solution to Laplace's equation, $\phi_{x x}+\phi_{y y}=0$, on the unit disc such that $\phi=A$ on the upper half $(y>0)$ of the unit circle $x^{2}+y^{2}=1$, and $\phi=B$ on the lower half of the unit circle (where A and B are different constant values). Numerically create a surface plot of your solution in the unit circle for the case $A=1$ and $B=-1$.

