Analytical Methods exam question 2022.

1. Consider the following partial differential equation for f(x, y):

$$2\frac{(y+1)}{x}\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} - f + \lambda \left(\frac{\partial^2 f}{\partial x^2} - 4\frac{\partial^2 f}{\partial y^2}\right) = -x^2 y$$

in the domain $-\infty < x < \infty$, $y \ge 0$. If $\lambda \gg 1$ and the boundary conditions are given by

$$f(x,0) = 0$$
 and $\frac{\partial f}{\partial y}(x,0) = 2$,

determine the solution f(x, y) up to and including terms of order $1/\lambda$.

2. Use the mapping

$$w(z) = i\left(\frac{1-z}{1+z}\right),\,$$

to find the (exact) solution to Laplace's equation, $\phi_{xx} + \phi_{yy} = 0$, on the unit disc such that $\phi = A$ on the upper half (y > 0) of the unit circle $x^2 + y^2 = 1$, and $\phi = B$ on the lower half of the unit circle (where A and B are different constant values). Numerically create a surface plot of your solution in the unit circle for the case A = 1 and B = -1.