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1. basic definitions and examples

1 basic definitions and examples

1.1 What is a foliation?

Given smooth manifolds M and N, a smooth map f : N → M is an embedding
if it is a homeomorphism onto its image f (N). An immersion f : N → M is
a smooth map whose derivative Df : TMp → TNp is injective at every point
p ∈ N. In general the image of an immersion can intersect itself, like the
figure 8 in the plane which can be thought as an immersion f : S1 → R2.
An injectively immersed submanifold N of M is the image of an immersion
f : N → M such that f is injective. In this case N is allowed to accumulate on
itself, but is not allowed to intersect itself.

A two-dimensional foliation of a 3-dimensional manifold M is a decompo-
sition of M into injectively immersed surfaces such that locally they form a
product R2×R by surfaces R2×{point}. The connected components of surfaces
in this decomposition are called leaves. So, similar to manifolds, foliations are
mathematical objects whose local structure is easy to understand while their
global structure can be complicated. More formally, a k-dimensional foliation
of an n-manifold is given by an open covering {Uα} of M and homeomorphisms
φα : Uα → Rk × Rn−k such that the change of coordinate maps

φαβ := φα ◦ φ−1
β

are of the form

φαβ(x, y) = (f (x, y), g(y))

where x ∈ Rk and y ∈ Rn−k , and the cocycle condition

φαβ ◦ φβγ = φαγ

is satisfied. The Uα are called the foliation charts. Note that the second coordi-
nate, g(y), is only a function of y. In other words, if the y-coordinate of a point
(x, y) ∈ Uα is a fixed constant and x is variable, then the y-coordinate of that
point viewed from the perspective of an overlapping chart Uβ is also fixed (by
a possibly different constant); hence the sheets Rk × {point} patch together to
form k-dimensional submanifolds of M. The connected components of theses
submanifolds are the leaves of the foliation. The connected components of the
leaves in a foliated chart are called plaques; these are the sheets Rk × point. In
this note, we always assume the function f to be C∞. If the function g is Cr

for r = 0, 1, 2, · · · ,∞, then the foliation is considered to be of smooth class Cr .
In other words, the leaves are smoothly injectively immersed but the change
of coordinate maps can be only Cr in the transverse direction.

A foliation is orientable if there is a consistent choice of orientation for
its leaves. A foliation is transversely orientable (or co-orientable) if there is a
consistent choice of transverse orientation on its leaves. If the ambient mani-
fold is orientable, then a foliation is orientable if and only if it is transversely
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1.1. what is a foliation?

Figure 1: Orientation and transverse orientation of a foliation in a chart

orientable. See Figure 1.

1.1 example. Let f : S1 → S1 be a homeomorphism. Let Mf be the mapping
torus of f , that is Mf := S1 × [0, 1]/ ∼ where (x, 1) ∼ (f (x), 0) for every x ∈ S1.
Then Mf is homeomorphic to either a torus or a Klein bottle, according to
whether f is orientation-preserving or not. The product foliation on S1 × [0, 1]
by leaves {point} × [0, 1] induces a one-dimensional foliation on Mf . If f is a
rotation by angle θ, then we obtain a linear foliation of slope θ on the torus
T2. Note that if θ is irrational, then every leaf is dense; the global behaviour
of leaves can be complicated.

Given any equivalence relation ∼ on a topological space X, there is a
quotient topology on the set X/ ∼ of equivalence classes, where a set U ⊂ X/ ∼ is
open if and only if its preimage under the natural map π : X→ X/ ∼ is an open
subset of X. Given a group G acting on a topological space X, we can endow
the quotient space X/G with the quotient topology. Note that the points in X/G
correspond to the orbits of the action of G on X. The next proposition gives a
general way of obtaining foliations as quotients.

1.1 Proposition. Let M be a, possibly non-compact, manifold and F be a
foliation on M. Let G be a group acting on M by homeomorphisms such that
the action of G is a covering action and that locally G sends leaves to leaves;
i.e. for every x ∈ M there is a open neighbourhood U of x foliated as a product
Rk × Rn−k such that for every g ∈ G, gU is an open neighbourhood of gx
foliated as a product Rk × Rn−k with g : U→ gU sending leaves to leaves and
such that all the neighbourhoods gU for g ∈ G are pairwise disjoint. Then F
induces a foliation on the quotient manifold M/G.

Proof.

1.2 example (Reeb foliation). Consider the graph of the function f : (−1, 1)→
R defined as

f (x) = − log(1 − x2).

Note that limx→±1 f (x) = +∞ and the translates of the graph of y = f (x) in
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1. basic definitions and examples

Figure 2: Right: 2-dimensional Reeb component

Figure 3: Right: 3-dimensional Reeb component

the y-direction give a foliation of the open infinite cylinder (−1, 1) × R. This
can be extended to a foliation of the closed infinite cylinder M = [−1,1] × R
by adding the boundary leaves {−1, 1} × R. There is a free and discrete action
of the group Z on M, the vertical translation by 1 unit, that sends leaves to
leaves. The induced foliation on the quotient manifold M/G = [−1,1] × S1 is
by definition the Reeb foliation in dimension two. See Figure 2. By using the
graph of the function f : int(Dn)→ R defined as f (x) = − log(1 − r2) instead
(r = radial distance to the origin in int(Dn)), we can similarly define the Reeb
foliation of Dn × S1 in dimension n. See Figure 3 for n = 3. Note that every leaf
of the Reeb foliation in the interior of the manifold Dn × S1 is topologically an
n-dimensional plane, and limits to the boundary leaf ∂Dn × S1.

The 3-sphere S3 = R3 ∪ {∞} can be written as a union of two solid tori
glued together along their common boundary. See Figure 4. By putting a Reeb
foliation on each solid torus, Reeb gave the first example of a two-dimensional
foliation of S3.

1.3 example (Poincaré–Hopf index formula). The only closed surfaces that ad-
mit a codimension-one foliation are those with Euler characteristic 0, namely
the torus and the Klein bottle. This follows from the Poincaré–Hopf index
formula: given a smooth vector field F with isolated zeros (also called singular-
ities) on a closed manifold M, sum of the indices of the singularities of F is
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1.1. what is a foliation?

Figure 4: The complement of the standard solid torus in S3 = R3 ∪ {∞} is another
solid torus. If we think of a solid torus as a disjoint union of discs parametrised by S1,
then 4 of these discs are shown in this figure. Note that the union of the horizontal
annulus and the point∞ is one such disc. One can think of the parametrising S1

as the union of∞ and the vertical line through the origin.

equal to the Euler characteristic of M. In particular, this sum does not depend
on the choice of the vector field and is a topological invariant of M. If M has
boundary, the same result holds if the vector field F is pointing outward along
all boundary components of M. See Milnor [MW97][Chapter 6].

Now, let F be a codimension-one foliation on M. Assume that F is trans-
versely orientable for the moment. Fix a Riemannian metric M, and let F
be the oriented unit normal vector to F . Then F has no singularity, and so
by Poincaré–Hopf formula we must have χ(M) = 0. If F is not transversely
orientable, then there is a double cover M̃ → M where the lift of F to M̃
becomes transversely orientable. Since χ(M̃) = 2χ(M), the result follows.

1.4 example (Foliations from submersions). Let f : M → N be a smooth
submersion between manifolds, without boundary, of dimensions respectively
n and k; i.e. the derivative Df : TM → TN is surjective. By the submersion
theorem, for each point m ∈ M there are neighbourhoods U of m parametrised
by (x1, · · · , xn), and V of f (m) parametrised by x1, · · · , xq relative to which the
map f has the form of the projection

f (x1, · · · , xn) = (x1, · · · , xk).

Hence, the level sets of f locally form a product Rn−k × Rk, giving rise to a
codimension-k foliation of M.

1.5 example (Example 1.1.2 of [CC00a]). Consider the map f : R2 → R de-
fined as

f (x, y) = (x2 − 1)ey .

We have ∂f
∂x = 2xey and ∂f

∂y = (x2 − 1)ey . Therefore the equation (∂f∂x ,
∂f
∂y ) =

(0,0) has no solution and so f is a submersion. The level sets of f are as in
Figure 5.
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1. basic definitions and examples

Figure 5: Example of a foliation defined by level sets of a submersion from R2 to R

1.2 Holonomy

The exposition in this section follows Camacho and Neto [CN13].
Let F be a codimension-k foliation of a manifold M and γ : [0, 1]→ M be

a path lying in a leaf L of F . We allow the possibility that γ is closed. Let Da

and Db be transversals around γ(0) = a and γ(1) = b. Intuitively we can flow
the points of Da in a neighbourhood of a along the leaves of the foliation above
γ and map them to points of Db in a neighbourhood of b. We will make this
idea precise, and furthermore show that the resulting map, called holonomy
along γ, only depends on the homotopy class of the path γ in L relative to its
endpoints. Note that this is a generalisation of Poincaré’s first return map.

Given any point p on γ, by looking at a foliation chart around p, it is easy to
see that such a holonomy map can be defined for a small open neighbourhood
Up of p in γ. Clearly {Up} is a cover of γ, and by compactness it admits a
finite subcover. Hence, there is a sequence 0 = t0 < t1 < · · · < tm+1 = 1 and
local foliation charts Ui such that γ([ti , ti+1]) lies in Ui . Choose transverse
k-dimensional discs Di based as γ(ti), where D0 = Da and Dm+1 = Db. For
each i, the plaque of Ui intersecting Di in a small neighbourhood of γ(ti)
intersects Di+1 in a unique point, and hence we have a well-defined map fi
from a small neighbourhood of Di to a small neighbourhood of Di+1. Note
that fi is an injective continuous map between manifolds (small transverse
discs) of the same dimension, and hence fi is a Cr diffeomorphism if F is Cr .
Define f as the composition

f = fm ◦ · · · ◦ f1 ◦ f0,

which is defined on a possibly smaller neighbourhood of γ(0) = 0. This map f
is called the holonomy of F along γ.

1.6 definition. Given two functions f , g : X→ Y between topological spaces
X and Y and a point x ∈ X, we say that f and g have the same germ at x if there
is an open neighbourhood U of x such that the restrictions of f and g to U
coincide. This defines an equivalence relation on the set of functions from X
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1.2. holonomy

to Y. The germ of f at x is defined as its equivalence class.

1.2 Lemma. 1. Fixing the endpoint transversals Da and Db, the germ of the
map f at γ(0) = a ∈ Da does not depend on the choice of the intermediate
points ti ∈ (0, 1) and the transverse discs Di .

2. If γ and γ′ are homotopic relative to their endpoints in L, then the
holonomy maps along γ and γ′ are equal.

1.7 proposition. Let F be a Cr codimension-k foliation of a manifold M. Let
p ∈ M be a base point lying on a leaf L, and D be a transverse k-dimensional disc
around p. The holonomy map defines a homomorphism

hol : π1(L, p)→ G(D, p),

where G(D, p) is the group of germs of Cr diffeomorphisms of D at p.

1.8 example. Consider the Reeb foliation of S3. Let L be the torus leaf and T
be one of the two solid tori bounded by L. Pick γ ∈ π1(L) such that γ bounds
a disc in T; i.e. γ is a meridian of T. Then the holonomy of γ on the side of L
contained in T is the germ of the identity homeomorphism of [0, 1]. Moreover,
the holonomy of γ on the side of L not contained in T is the germ of a shift
map; i.e. a homeomorphism f : [0, 1]→ [0, 1] such that f (0) = 0 and either

- f (x) < x for every x ∈ (0, 1); or

- f (x) > x for every x ∈ (0, 1).

The next theorem states that the germ of a foliation in a neighbourhood of
a compact leaf L is completely determined by the holonomy along L. To state
this result, we need some preliminary setup. Note that the holonomy map for
a leaf depends on the choice of a transversal as well. However, varying the
transversal changes the holonomy map only by a conjugation (A conjugate of
f is a map of the form g ◦ f ◦ g−1 where g is a homeomorphism. It is useful
to think of a conjugation as ‘renaming’ the points of the ambient space via
the map g). Let L and L′ be compact leaves of Cr codimension-k foliations F
and F ′ respectively. The holonomies of L and L′ are Cr-conjugate when there
exists

- transversals D and D′ to L and L′;

- basepoints p ∈ D ∩ L and p′ ∈ D′ ∩ L′;

- a homeomorphism f : L∪ D→ L′ ∪ D′ such that f (p) = p′, and f |D and
f |L are Cr-diffeomorphisms, and for every [γ] ∈ π1(L, p) and every x′

sufficiently close to p′

f ◦ holγ ◦ f −1(x′) = holf ◦γ(x′).

7



1. basic definitions and examples

Figure 6: Defining the conjugating map H

1.3 Theorem. Let L and L′ be compact leaves of Cr codimension-k foliations
F and F ′. Then the holonomy maps of L and L′ are Cr-conjugate if and only
if there are neighbourhoods N ⊃ L and N′ ⊃ L′ and a Cr-diffeomorphism
H : N → N′, with H(L) = L′ and with H taking leaves of F |N to leaves of
F ′ |N′. In this case we say that F and F ′ are locally equivalent on L and L′.

Proof. We only sketch the proof and leave some of the details as an exercise.
Let F and F ′ be locally equivalent on L and L′ via a Cr-diffeomorphism
H : N → N′, then it is easy to see that the holonomies of L and L′ are Cr-
conjugate. For example pick a transversal D for L and a basepoint p ∈ D∩ L
and define p′ = H(p) and D′ = H(D). Given γ ∈ π1(L, p), a chain of charts for
F used to define holγ is mapped by H to a chain of charts for F ′. It follows
that the holonomies of L and L′ are Cr-conjugate.

Now assume that the holonomies of L and L′ are Cr-conjugate. We use the
following claim, whose proof we leave as an exercise: there is a neighbourhood
N of the compact leaf L and a retraction π : N → L such that for each x ∈ L
the fiber π−1(x) is transverse to F .

Note that we do not assume that the neighbourhood N can be chosen to be
a saturated neighbourhood; i.e. a union of leaves of F . In particular, the leaves
of F might exit any such N; for example think of L being the torus leaf of a
Reeb foliation.

Choose such retractions π : N → L and π′ : N′ → L′. Let f : L ∪ D →
L′ ∪ D′ be a homeomorphism that conjugates the holonomies of L and L′. The
retractions can be chosen such that D = π−1(p) and D′ = π′−1(f (p)). Given a
point x ∈ L, choose a path γ from p to x. Define H(y) for y ∈ holγ(D) as

H(y) = holf (γ)(f (hol−1
γ (y))).

See Figure 6. Note that every point in N lies one a transverse discs holγ(D)
for some γ, so the above definition covers all points of N. One can check
that this definition is independent of the choice of γ. The defined map H is a
Cr-diffeomorphism.

1.9 exercise. Prove the claim in the proof of Theorem 1.3.
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1.3. operations for modifying foliations

Figure 7: Gluing operation

We will see later that in some special cases (such as in suspension foliations)
it is possible to define holonomy as global maps rather than germs of maps.

1.3 Operations for modifying foliations

1.4 Operation (Cutting). Let F be a foliation of a manifold M and S ⊂ M be
an embedded codimension-one submanifold that is either transverse to F or
is a leaf of F . Then we can cut the manifold M along S and obtain an induced
foliation on it.

1.5 Operation (Gluing). Let M1 and M2 be two foliated manifolds with bound-
ary. Let T1 and T2 be boundary components of M1 and M2 such that the
induced foliations on them are smoothly conjugate; i.e. there is a diffeomor-
phism f : T1 → T2 sending leaves to leaves. Then we can glue M1 and M2 to
obtain a foliation of M1 ∪f M2. Similarly if M is a foliated manifold and T1
and T2 are boundary components of M whose induced foliations are smoothly
conjugate, then we can glue M to itself by gluing T1 and T2 and obtain a new
foliation.

1.10 example. Let S be a compact surface, C1 and C2 be two distinct boundary
components of S, and F be the product foliation on S × [0,1] by leaves S ×
{point }. Let f : [0, 1]→ [0, 1] be a homeomorphism such that f (0) = 1, f (1) =
1, and f (x) > x for every x ∈ (0, 1). Define a homeomorphism

f̂ : C1 × [0, 1]→ C2 × [0, 1],

f̂ (t, x) = (t, f (x)).

Glue the foliated manifold (S × [0,1], F ) to itself using the map f̂ to obtain
a new foliation F ′ on M′. Then M′ is diffeomorphic to Ŝ × [0,1], where Ŝ is
obtained from S by gluing the boundary components C1 and C2. Each leaf of
F ′ in the interior of M′ is non-compact and limits to the leaves Ŝ × {0, 1}. See
Figure 7.

1.11 example (Sheer). Let F be a codimension-one foliation of a 3-manifold M.
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1. basic definitions and examples

Let α be a simple closed curve in a leaf L of F such that there is a fence above
α that is foliated as a product. By this we mean that there is an embedding
α × [−1,1] ↪→ M with α × 0 = α such that α × [−1,1] is transverse to F , and
the induced foliation on α × [0,1] is the product foliation. Then we can cut
the foliation along α × [0,1] and reglue the two copies of α × [0,1] together
via an orientation-preserving homeomorphism of [0,1]. Starting from the
product foliation of M = S × S1, by repeatedly applying sheers, one can obtain
complicated foliations of M = S × S1.

1.12 remark. Given a manifold M and an injectively immersed codimension-
one submanifold L of M, cutting M along L, denoted by M \ \L, is the metric
completion of M − L with respect to the path metric. When L is two-sided (i.e.
transversely orientable), M \ \L is obtained from M − L by adding two copies
of L.

1.6 Operation (Turbulisation). Let F be a codimension-one foliation of a
3-manifold such that F is both orientable and transversely orientable. Let
γ be a closed transversal for F , and N(γ) be a regular neighbourhood of γ

diffeomorphic to a solid torus D2 × S1 with the product foliation by discs.
The induced foliation on the torus ∂N(γ) is the product foliation S1 × S1.
Remove the foliation in the interior of the solid torus. Then ‘Spin’ the leaves
of F |∂N(γ) to converge to a torus T ⊂ N(γ) parallel to ∂N(γ). Then T bounds
a solid torus contained in N(γ), and we can insert a Reeb foliation inside this
solid torus. The resulting foliation is called a turbulisation of F along the
closed transversal γ. The turbulisation operation can similarly be done in
other dimensions as well.

Note that the Reeb foliation of a solid torus can be obtained by starting
from the product foliation of a solid torus, spinning the leaves intersecting
the boundary, and finally adding the limiting two-dimensional torus leaf.

We need the notion of a Dehn twist for the next operation. Let A = S1×[0, 1]
be an annulus, where S1 = R/Z. Define a homeomorphism of A fixing ∂A
pointwise as follows:

f (θ, x) = (θ+ x, x).

See Figure 8.

1.7 Operation (Spinning). Let F be a codimension-one transversely oriented
foliation of an orientable 3-manifold, and T be a torus component of ∂M. As-
sume that the foliation F |T is the mapping torus of an orientation-preserving
homeomorphism f : S1 → S1. Hence T = S1 × S1 and F |T is transverse to the
circles S1 × point. We describe how to spin the leaves of F in a neighbourhood
of T so that T becomes a leaf of the new foliation. Let N1 = T× [0, 1] be a neigh-
bourhood of T with T × 0 = T. Let f1 be a homeomorphism of N1 = T × [0, 1]
such that the restriction of f1 to each annulus S1 ×point× [0, 1] is a Dehn twist.
We can think of f1 as a homeomorphism of M by extending f1 via identity to
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1.3. operations for modifying foliations

Figure 8: The image of an arc γ under the Dehn twist is shown.

M − N1. Note that f1 spins the leaves of F once around S1 × point direction
in T, which is the direction transverse to the leaves of F |T. Similarly, define
homeomorphisms fn of Nn = T × [0, 1

n ] and extend them by identity to the rest
of M. Let f be the infinite composition · · · ◦ f3 ◦ f2 ◦ f1. Then f is well-defined
since

- The restriction of each fi , and hence f , to T is the identity map.

- Define the support of a self-homeomorphism h as the set of points x in
its domain such that f (x) , x; i.e. points that are moved by h. Then each
point p in M − T lies in the support of at most finitely many fi , and so
f (p) is well-defined.

We say that the foliation f (F ) is obtained by spinning the leaves of F around
T. Note that the result of the operation also depends on the choice of the
product structure S1 × S1.

1.13 remark. Even if F is transversely smooth, the foliation obtained by
spinning might not be transversely smooth along T. Such examples can be
constructed using Kopell’s Lemma concerning commuting diffeomorphisms of
[0, 1].

1.8 Operation (Denjoy blow-up). Let f be an orientation-preserving homeo-
morphism of S1, and F be the induced foliation on the mapping torus of f .
Fix a point x0 on S1, and let xn := f n(x) be the orbit of x for n ∈ Z. Replace
each point xn by an interval In such that the total length of the intervals In is
bounded. This is called blowing up the orbit of x0. Hence after blowing up the
orbit of x0, the circle S1 is replaced by a new circle C. For each n ∈ Z choose an
orientation-preserving homeomorphism hn : In → In+1. The map f together
with the collection of homeomorphisms {hn}n∈Z induce a foliation F ′ of C× S1

via the mapping torus construction. See Figure 10. We say that F ′ is obtained
from F by a generalised Denjoy blow-up. Geometrically, we blow-up a leaf L
of F (corresponding to the orbit of x0) and replace it with L × [0,1]. Inside
L × [0, 1] we insert a foliation transverse to [0, 1] factor. If L is a line then any
such foliation of L × [0, 1] is isotopic to a product foliation by leaves L × point,
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1. basic definitions and examples

Figure 9: Blowing up an orbit

Figure 10: Generalised Denjoy blow-up

but if L is a circle, then we can insert any foliation of L × [0, 1] obtained from
an orientation-preserving homeomorphism of [0,1] via the mapping torus
construction.

1.14 remark. Even if F is smooth, a Denjoy blow-up of F might not be smooth.
Denjoy used this operation to construct homeomorphisms of S1 that have
irrational rotation number but are not topologically conjugate to a rotation,
answering a question of Poincaré.

1.4 Suspension foliations

This section mainly follows Camacho and Neto [CN13]. Intuitively, a fiber
bundle is a family of manifolds homeomorphic to a fixed manifold F, called
the fiber, and parametrised by the points in another manifold B called the
base. More precisely, a fiber bundle consists of differentiable manifolds E, B,
and F and a differentiable map π : E→ B such that there is a cover {Ui} of B
and diffeomorphisms φi : π−1(Ui)→ Ui × F such that the following diagram
commutes

π−1(Ui) Ui × F

Ui

π

φi

p
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1.4. suspension foliations

Figure 11: The Möbius band has the structure of a [0, 1]-bundle over S1. A leaf of a
foliation transverse to the fibers is shown.

where p is the projection onto the first factor. In particular π is a submersion.
The manifold E is the total space, F is the fiber, and B is the base of the fiber
bundle.

A continuous map p : Y→ X is a covering map if there is a discrete space
D such that every x ∈ X has a neighbourhood Ux where p−1(Ux) is a disjoint
union of neighbourhoods Vd for d ∈ D such that each p|Vd : Vd → Ux is a
homeomorphism. The degree of a covering map is the cardinality of D. A
covering map is called universal covering if Y is simply connected. In this case
π1(X) acts on the universal cover Y via deck transformations (shuffling the
points in p−1(point) as cards in a deck). If X is connected and locally simply
connected then the universal covering exists. Covering maps are fiber bundles
whose fibers are a discrete set of D points.

Let π : E→ B be the projection map of a fiber bundle with total space E,
fiber F, and base B. A foliation F on E is transverse to the fibers if at each point
x ∈ E the leaf L of F passing through x is transverse to the fiber above π(x)
and of complementary dimension, and the projection p|L: L→ B is a covering
map. The pair (π : E→ B, F ) is called a foliated bundle.

1.15 example. The simplest examples of fiber bundles are products E = B × F
with the map π : B × F → B being the projection onto the first factor. Such
fiber bundles are sometimes referred to as trivial fiber bundles. The foliation
of E by leaves B × point is transverse to the fibers.

1.16 example. Let f : M → M be a homeomorphism of a manifold M, and
Mf be the mapping torus of f . Then Mf is the total space of a fiber bundle
with fiber M and base S1. If M = S1 then Mf is a torus or a Klein bottle, and
if M = [0, 1] then Mf is an annulus or a Möbius band. The foliation by points
on M induces, via the suspension construction, a one-dimensional foliation F
of Mf that is transverse to the fibers. See Figure 11.

1.17 example. Let S be a surface with two distinguished boundary components
b1 and b2. Consider S× [0, 1] with the product foliation. The induced foliations
on the annuli bi × [0, 1] are products. Hence we can glue the annuli bi × [0, 1]
together according to an orientation-preserving homeomorphism f : [0, 1]→
[0,1] to obtain a foliation of Ŝ × [0,1] transverse to [0,1] fibers, where Ŝ is
obtained from S by gluing the boundary components b1 and b2 together.

13



1. basic definitions and examples

1.18 example. Let f and g be two orientation-preserving homeomorphisms
of [0, 1] that commute with each other; i.e. f ◦ g = g ◦ f . For example f and g
could be the following:

• f = hn and g = hm for some homeomorphism h of [0, 1] and m, n ∈ Z.

• If X is a vector field on [0, 1] vanishing at 0 and 1, then f is the time-t1
of the flow of X and g is the time-t2 of the flow of X for fixed t1 and t2.

Start with the product foliation of I2 × [0, 1] with leaves I2 × point, and glue
a pair of oppose sides according to the map f and the other pair of opposite
sides according to the map g. More precisely, define an equivalence relation
on the boundary of I2 × [0, 1] where (x, y, t) ∼ (x′ , y′ , t′) if

• x = x′, y = 0, y′ = 1, and t′ = f (t); or

• x = 0, x′ = 1, y = y′, and t′ = g(t).

We check that this equivalence relation induces a foliation on the quotient
space. We examine that every point in the quotient space has a neighbourhood
with a product structure. This is clear for points in the interior of I2 × [0,1]
since they are not identified with any other point. Given a point (x, y, t) on the
boundary of I2 × [0, 1] and not lying in (∂I)2 × [0, 1], it is identified with exactly
one other point and so their local (half plane × R) foliated neighbourhoods
patch together to give a foliated neighbourhood R2 × R in the quotient. It
remains to inspect the points in (∂I)2 × [0, 1]. In this case x, y ∈ {0, 1}. The orbit
of (0, 0, t) consists of

(0, 0, t), (0, 1, f (t)), (1, 0, g(t)), (1, 1, f ◦ g(t)).

Here we use the relation f ◦g = g ◦f . Therefore the (quarter plane×R) foliated
neighbourhoods of the 4 points in the equivalence class patch together to give a
foliated neighbourhood in the quotient space. This gives a foliation transverse
to the fibers of a fiber bundle with fiber [0, 1] and with base the torus T2. Note
that the data of {f , g} satisfying the relation f ◦ g = g ◦ f can be rephrased as
a homomorphism

π1(T2)→ Homeo+([0, 1]).

Let p : E→ B be the projection map of a fiber bundle with fiber F, and F
be a foliation transverse to the fibers of E. Then we can define a holonomy map

hol : π1(B, b)→ Diffeo(F)

as follows. Let γ : [0,1] → B with γ(0) = γ(1) = b be a loop based at b ∈ B.
Identify p−1(b) with F. Let f ∈ F = π−1(b) be a point and Lf be the leaf of F
passing through f . Since p|Lf : Lf → B is a covering map by definition, we
can lift the path γ : [0,1]→ B to a unique path γ̃ : [0,1]→ Lf with γ̃(0) = f .
Define the map φγ : F→ F by φγ(f ) = γ̃(1). Note that φγ has an inverse, which
is φγ−1 . Hence φγ is a diffeomorphism of F. Moreover, it only depends on the
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1.4. suspension foliations

based homotopy class of γ, and it defines a homomorphism hol : π1(B, b)→
Diffeo(F). Note that the holonomy of a foliated fiber bundle is defined globally
unlike the holonomy of a leaf of a foliation which is defined as a germ of a
local diffeomorphism.

1.9 Theorem (Suspension of a representation). Let B and F be connected
manifolds. Given a representation

h : π1(B)→ Homeo(F)

there is a fiber bundle with fiber F, base B, and total space E, and a foliation
F of E transverse to the fibers whose holonomy is h.

Proof. Let p : B̃→ B be the projection map of the universal cover B̃ of B, and
denote the deck action of γ ∈ π1(B) on x ∈ B̃ by γ · x. Consider the product
fiber bundle projection B̃ × F→ B̃ and the foliation G transverse to the fibers
whose leaves consist of B̃×point. There is an action of π1(B) on the total space
B̃ × F, with γ ∈ π1(B) acting as

γ · (x, f ) = (γ · x, h(γ)(f )),

where γ · x in the first factor is the deck action. This action is a covering action,
and sends leaves of G to leaves of G. Hence there is an induced foliation F on
the quotient

E := (B̃ × F)/π1(B).

Then E is the total space of a fiber bundle with fiber F and base B, and with
projection map π(x, f ) = p(x) where (x, f ) ∈ B̃ × F. Note that the projection
map is well-defined since p(x) = p(γ · x) for every γ ∈ π1(B). Moreover F is a
foliation transverse to fibers of E, and the total holonomy of F is h.

1.19 remark. Note that the topology of the fiber bundle depends on the
representation.

1.20 example (I-budnle replacement). We revisit the Denjoy blow-up. Let L
be a leaf of a codimension-one transversely orientable foliation F . Replace
L by a [0,1]-bundle over L. Insert any transversely orientable foliation of
[0, 1]-bundle over L transverse to [0, 1] factor. The resulting foliation is called
an I-bundle replacement over L. The special case where the inserted foliation
in L × [0,1] is the product foliation is called the Denjoy blow-up of L. More
generally if L is not transversely orientable then L is replaced by a non-trivial
[0, 1]-bundle over L and a foliation transverse to the fibers.

15



1. basic definitions and examples

1.5 Exercises

Exercise 1

Let M be a compact 3-manifold whose boundary is a union of a torus and a
genus two surface; for example one such M could be obtained by removing a
regular neighbourhood of the union of a knot and a Θ-shape curve from S3.
Does M admit a codimension-one transversely orientable foliation tangential
to ∂M (i.e. having ∂M as a union of leaves)?

You may assume the following version of the Poincaré–Hopf formula: Let
M be a compact 3-manifold with boundary. Let F be a smooth vector field on
M with isolated singularities and transverse to ∂M. Then sum of the Euler
characteristics for the inward pointing components of ∂M (with respect to F)
is equal to that of the outward pointing components of ∂M.

Exercise 2

(Exercise 1.1.13 of [CC00a])

a) Find a submersion f : int(Dn × S1)→ S1 whose level sets give the restric-
tion of the Reeb foliation to the interior of Dn × S1.

b) Show that there are no submersion from Dn×S1 onto a 1-manifold whose
level sets give the Reeb foliation (Hint: Show that if a level set f −1(a) of a
submersion is compact, then every level set that comes sufficiently close
to f −1(a) is also compact.)

Exercise 3

Show that the foliation of S3 obtained by gluing two Reeb foliations of the
solid torus together is not analytic; i.e. the change of coordinate maps cannot
be chosen to be real analytic in the transverse direction (Hint: Observe that
it is not possible for an analytic function f around 0 ∈ R to have non-trivial
germ exactly on one side of 0).

1.21 remark. Indeed, Haefliger showed that S3 does not admit any codimension-
one analytic foliation. Hence, this exercise shows that the theory of foliations
is sensitive to the regularity class.

Exercise 4

The projection map of a fiber bundle is a submersion. We have also seen
that given a submersion, there is an induced foliation on the domain whose
leaves are the level sets of the submersion. In the case of a fiber bundle,
this foliation is the foliation by fibers. Give an example of a submersion
whose induced foliation is not a fiber bundle, and deduce that foliations from
submersions are more general than fiber bundles.

16
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Exercise 5

a) In the proof of Theorem 1.9, show that the projection of each leaf of
the constructed suspension foliation F to the base B is a covering map.
Given a point (x, f ) ∈ B̃× F, what is the fundamental group of the leaf of
F passing through the projection of (x, f ) in terms of the representation
h?

b) Let π : E → B be the projection map of a fiber bundle with compact
fiber F, and let F be a foliation such that at each point x ∈ E the leaf of
F passing through x is transverse to the fibers and of complementary
dimension. Show that for every leaf L of F , the projection π : L→ B is a
covering map.

c) Give an example of a fiber bundle π : E→ B with non-compact fiber F
such that at each point x ∈ E the leaf of F passing through x is transverse
to the fiber and of complementary dimension, but the restriction of the
projection map π to some leaf L is a not a covering map.

17



2. some foundational theorems

2 some foundational theorems

2.1 Reeb stability theorem

We saw in Theorem 1.3 that the holonomy of a compact leaf determines the
germ of the foliation in a neighbourhood of that leaf. In particular, if the
holonomy is trivial then the foliation in a neighbourhood of the compact leaf
is locally the product foliation.

2.1 Theorem (Reeb Stability). Let L be a compact leaf of a foliation F on a
manifold M such that the image of the holonomy homomorphism

hol : π1(L, p)→ G(D, p)

is trivial. Then L has a neighbourhood in M that is foliated as a product. In
particular, this happens if L is compact and simply connected.

In codimension-one there is a global stability result.

2.2 Theorem (Global stability). Let F be a transversely orientable codimension-
one foliation of a compact connected manifold that has a simply connected
leaf L. Then there is a submersion f : M → S1 such that the leaves of F are
the level sets of f .

2.3 Corollary. Let F be a transversely orientable codimension-one foliation
of a compact connected orientable 3-manifold that has a leaf homeomorphic
to L = S2 or D2. Then (M, F ) is either L × [0,1] or L × S1 with the product
foliation.

Proof. If the submersion f : M → S1 is not surjective, then the level sets
form the product foliation. If f is surjective, then F is the mapping torus
of f . Since M is orientable, f is orientation-preserving. Every orientation-
preserving homeomorphism (respectively diffeomorphism [Sma59]) of S2 or
D2 is isotopic to the identity map. Hence (M, F ) is the product foliation on
L × S1.

2.1 remark. Thurston generalised the Reeb stability theorem and showed
that if the foliation is C1 then one can weaken the hypothesis to the following:
H1(L;R) = 0 (i.e. every homomorphism π1(L)→ R is trivial) and there is no
non-trivial homomorphism π1(L)→ GL(k,R), where k is the codimension of
the foliation and GL(k,R) is the general linear group. Unlike the Reeb stability,
Thurston’s stability is not true for C0 foliations.

2.2 Existence of foliations

By the Poincaré–Hopf index formula, a compact manifold M admitting a
codimension-1 foliation transverse to ∂M satisfies χ(M) = 0. The converse also
holds; this is a theorem of Lickorish [Lic65], Novikov [Nov65], and Zieschang
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2.2. existence of foliations

Figure 12: The Hopf link (left) and the trefoil knot (right) are fibered.

in dimension 3, and a deep theorem of Thurston [Thu76] in higher dimensions.
Note that the condition χ(M) = 0 is automatically satisfied for closed odd-
dimensional manifolds. Before discussing the proof in dimension 3, we need
to introduce the notions of Dehn surgery and fibered links.

A knot K in a 3-manifold M is a smooth embedding K: S1 ↪→ M. Similarly
a link L is defined as a smooth embedding L:

∐
S1 ↪→ M, where

∐
S1 is a

disjoint union of finitely many copies of S1. We often identify a knot or link
with its image. Given an orientable 3-manifold M and a knot K in M, Dehn
surgery on K is the operation of removing an open regular neighbourhood
N◦(K) � S1 × D2 of K from M and attaching a solid torus to M − N◦(K) along
∂N(K) in a different way.

A link L is a compact 3-manifold M is fibered if the exterior X = M − L of
L is a 3-manifold that fibers over the circle, and moreover, the closure of the
fibers are compact surfaces that intersect exactly in their common boundary
L.

2.2 example. The unknot in the 3-sphere is a fibered knot, since its exterior
fibers over S1 with fiber a disc. Other examples are the Hopf link and the
trefoil knot, but it is harder to visualise their fibrations over S1. See Figure 12.

2.3 remark. Gabai [Gab86] gave a method for detecting fibered links in S3

using foliations.

2.4 Theorem (Lickorish, Wallace). Every closed orientable 3-manifold can be
obtained by Dehn surgery on a link in S3. More generally, for every compact
orientable 3-manifold M there is an embedding Γ ∪ L ↪→ S3, where Γ is a
graph, L is a link, and M can be obtained from S3 by removing a tubular
neighbourhood of Γ and performing Dehn surgery on L.

2.5 Theorem (Lickorish, Novikov, Zieschang). Any compact orientable 3-
manifold with boundary a (possibly empty) union of tori admits a codimension-
one transversely oriented foliation.

Proof. Let M a compact orientable 3-manifold with ∂M a union of tori. By the
theorem of Lickorish and Wallace, there is an embedding Γ ∪L ↪→ S3 such that
M can be obtained from S3 by removing a tubular neighbourhood of the graph
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2. some foundational theorems

Figure 13: The view of a braided link from a point on the z-axis with z ≫ 0. The
center point represents the z-axis and the dashed lines represent three half planes
y = rx transverse to the link.

Γ and performing Dehn surgery on the link L. Note that ∂M is homeomorphic
to ∂N(Γ ), and hence Γ can be assumed to be a link. Let L̂ := Γ ∪ L. We think of
S3 as R3 ∪ {∞}. By Alexander’s theorem, the link L̂ can be braided, meaning
that L̂ can be isotoped such that

1. L̂ is disjoint from the vertical line x = y = 0.

2. L̂ is transverse to each half-plane y = rx with r = constant.

See Figure 13. Let K ⊂ S3 be the knot that is the union of the vertical line
x = y = 0 and the point ∞. Then the link R := L̂ ∪ K is a fibered link, with
fiber a planar surface. Hence, there is a foliation G on S3 − N◦(R) whose leaves
are fibers of the fibration of S3 − N◦(R) over the circle. Use Operation 1.7
to spin the leaves of G around ∂N(R) and obtain a foliation Gs of M − N◦(R)
tangential to its boundary ∂N(R). Now M is obtained from S3 − N◦(R) by
attaching solid tori. Therefore, we can extend the foliation Gs to a foliation F
of M by inserting a Reeb component in each of the attached solid tori.
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2.3 Exercises

Exercise 1

a) Let L be a compact leaf of a transversely orientable codimension-1 folia-
tion F on a manifold M such that the image of the holonomy homomor-
phism

hol : π1(L, p)→ G(D, p)

is a finite group. Show that L has a neighbourhood in M that is foliated as
a product (Hint: Show that if the germ at 0 of an orientation-preserving
homeomorphism of [0, 1) is periodic, then it is equal to the germ of the
identity homeomorphism.).

b) Show that the conclusion does not hold in higher codimensions.

Exercise 2

Let F be a codimension-1 transversely orientable foliation of a compact
connected manifold M such that all leaves of F are compact. Show that (M, F )
is either a product or a fibration over the circle.

2.4 remark. A theorem of Epstein shows that if F is a codimension-2 foliation
of a compact 3-manifold M such that all leaves of F are compact (i.e. circles),
then F is a Seifert fibration. This means that each leaf L has a neighbourhood
homeomorphic to a solid torus S1 ×D2 with L = S1 × (0, 0), where the foliation
on S1 × D2 is induced by a periodic homeomorphism f : D2 → D2 of the form

f (z) = rotation of z around (0, 0) by the angle
2πp
q
∈ 2πQ

via the suspension construction. Three-dimensional manifolds admitting such
foliations are called Seifert fibered and constitute an important class of 3-
manifolds, specially in relation to the Geometrisation Conjecture (proved by
Perelman).

Exercise 3

Show that a compact odd-dimensional manifold M satisfies χ(∂M) =
2χ(M). Deduce that a compact orientable 3-manifold M with χ(M) = 0 and no
sphere boundary components has boundary a (possibly empty) union of tori.

Exercise 4

Prove Alexander’s theorem that every link in S3 (or equivalently in R3)
can be braided.
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3. taut foliations i

Figure 14: Constructing a closed transversal from a transverse arc

3 taut foliations i

We have seen that every compact orientable 3-manifold with boundary a (pos-
sibly empty) union of tori admits a codimension-one transversely orientable
foliation. Therefore, the existence of a foliation does not say much about the
topology of the 3-manifold. This motivates the study of special classes of
foliations that can inform us about the topology of their ambient space.

Taut foliations are a class of foliations introduced by Dennis Sullivan,
which have been proved to be fruitful in the study of 3-manifolds, particularly
through the work of Thurston and Gabai. We give a topological definition of
taut foliations; although they have other geometric and homological character-
isations as well.

3.1 definition. Let L be a leaf of a codimension-one foliation F on a manifold
M. A closed transversal γ for F is an immersed closed curve in M that is
transverse to the foliation F at every point of γ. A transverse arc can be defined
similarly.

3.2 definition (Taut foliation). A transversely orientable codimension-one
foliation of a compact 3-manifold is taut if every leaf has a closed transversal
intersecting it.

3.3 example. If S is a compact surface, then the product foliation on S × S1

by leaves S × point is taut, since point × S1 is a closed transversal intersecting
every leaf. More generally, a foliation of a compact 3-manifold M induced
by a fibration of M over S1 is taut. To see this, assume that S is the fiber
of the fibration M → S1. Then M is homeomorphic to the mapping torus
S × [0,1]/(x,1) ∼ (f (x),0) of some homeomorphism f : S→ S. Let p ∈ S be a
point, σ be an arc in S connecting p to f (p), and define the closed curve γ as
the union of p × [0,1] and σ. Then one can perturb γ to a closed transversal
that intersects every leaf. See Figure 14.

A priori, the transversals for different leaves need not be the same. But
as the next proposition shows, the compactness hypothesis for the ambient
manifold implies that one transversal suffices for all leaves.

3.1 Proposition. A transversely orientable codimension-one foliation of a
connected 3-manifold is taut if and only if there is a closed transversal that
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intersects every leaf.

Proof. Denote the ambient manifold by M. For every point p ∈ M, there is
a closed transversal passing through p. To see this, let L be the leaf passing
through p, and take a transversal intersecting L at some point q and drag
the intersection point q to p while maintaining the transversality. Since M is
compact, there are finitely many such transversals γ1, · · · , γn that intersect all
leaves of M. Assume that n is the smallest natural number with this property;
we will show that n = 1. Define Mi as the union of leaves in M that intersect
γi . Then Mi is an open submanifold of M and the union of Mi is all of Mi . We
show that any two Mi and Mj are disjoint; then the connectivity of M implies
that n = 1. Assume to the contrary that Mi ∩Mj , ∅. We show this contradicts
n being minimal. Let L be a leaf intersecting both γi and γj at respectively p
and q. Let σ be a path in L connecting p to q. Then the path γiσγjσ

−1 can be
perturbed to a closed transversal γ such that every leaf intersecting γi or γj
intersects γ. This shows that n is not minimal. The contradiction completes
the proof.

The next proposition shows that non-compact leaves of codimension-one
foliations of compact manifolds always have closed transversals.

3.2 Proposition. Let L be a non-compact leaf of a transversely orientable
codimension-one foliation of a compact manifold M. Then L has a closed
transversal.

Proof. The ambient manifold can be covered by foliation charts, where the
the restriction of the foliation to each chart is a product. Since M is compact,
finitely many foliation charts suffices to cover M. Since L is non-compact, it
should intersect at least one of the charts infinitely many times. In particular,
there is a transverse arc γ in this chart with both endpoints on L. Let α be an
arc in L connecting the endpoints of γ. Then α∪ γ can be slightly perturbed
to form a closed transversal for L; here we use the hypothesis that the foliation
is transversely orientable.

3.4 exercise. Show that Proposition 3.2 holds without the transverse ori-
entability hypothesis as well.

Next we talk about some non-examples.

3.5 example. Let F be a foliation of a closed 3-manifold M such that F
contains an embedded copy of a Reeb foliation of the solid torus S1 × D2. We
allow the core of the solid torus to be knotted in M. Then F is not taut. To
see this, without loss of generality assume that the transverse orientation of
the boundary torus leaf of S1 × D2 points into the 3-dimensional submanifold
S1 × D2. Hence there could be no closed transversal intersecting this torus
leaf.
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3. taut foliations i

3.6 example (Generalised Reeb component). Let S be a compact orientable
surface with ∂S , ∅. Let M = S × S1, and denote the product foliation on
M by G. The restriction of the foliation G to each component of ∂M is the
product foliation of a torus by circles. Choose an orientation on the S1 factor
of M = S × S1; this induces a transverse orientation on the leaves of G. Spin
the leaves of G|∂M according to this orientation of S1 to obtain a foliation F of
M tangent to ∂M. Note that the transverse orientation on ∂M either entirely
points into M or entirely points out of M. Moreover when S is a disc, the
foliation F is the Reeb foliation on M = D2 × S1. This is called the generalised
Reeb component. Taut foliations cannot contain generalised Reeb components,
since all boundary components point to the inside or all point to the outside.

The above examples motivate the following definition.

3.7 definition (Dead end component). Let F be a transversely oriented
codimension-one foliation of a closed 3-manifold M. An embedded subman-
ifold N of M is a dead end component if ∂N is a non-empty union of leaves
and the transverse orientation of F restricted to ∂N entirely points into N or
entirely points out of N.

Note that a foliation having a dead end component cannot be taut. Later
we will see that the converse holds as well: a foliation of a 3-manifold is taut
if and only if it contains no dead end component.

3.8 remark. It follows from the Poincaré–Hopf formula that χ(∂N) = 0. Using
the global Reeb stability theorem, it follows that ∂N is a union of tori and
Klein bottles. If M is orientable as well, the leaves are orientable and hence
∂N is a union of tori.

3.3 Proposition. Let L be a compact leaf of a taut foliation of a closed 3-
manifold M. Then L is homologically non-trivial in H2(M;Z).

Proof. Otherwise, a homologically trivial compact leaf bounds a dead end
component.

3.9 example. Let M be a taut foliation of an integer homology 3-sphere, mean-
ing that the homology groups of M with integer coefficients are isomorphic
to those of the 3-sphere. In particular H2(M;Z) = 0. Then all leaves of F are
non-compact.

3.10 remark. Some but not all homology 3-spheres admit taut foliations.
There is a conjectural (at the time of this writing) characterisation of rational
homology 3-spheres that admit taut foliations, known as the L-space conjecture.
On the other hand, Gabai proved that every compact orientable irreducible
3-manifold with boundary a (possibly empty) union of tori and satisfying
H2(M, ∂M;R) , 0 admits a taut foliation. The foliations constructed by Gabai
have a compact leaf, which is consistent with the condition H2(M, ∂M;R) , 0.
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3.1. prime decomposition for 3-manifolds

3.1 Prime decomposition for 3-manifolds

Let M1 and M2 be connected oriented 3-manifolds. Then we can form their
connected sum, denoted by M1♯M2 as follows. Choose smoothly embedded
closed 3-balls i1 : B ↪→ M1 and i2 : B ↪→ M2, and denote the image of i1 and i2
by respectively B1 and B2. Glue M1 − int(B1) to M2 − intB2 by an orientation-
reversing diffeomorphism i : ∂B1 → ∂B2 to obtain M1♯M2. The connected
sum operation does not depend on the choices involved; see Exercise 6. Note
that for any 3-manifold M the connected sum M♯S3 is diffeomorphic to M.

3.11 definition (Prime 3-manifold). A connected oriented 3-manifold M is
prime if it is not diffeomorphic to any connected sum M1♯M2 with Mi ≇ S3.

In 1928, Kneser showed that each compact connected oriented 3-manifold
can be written as a connected sum

M = M1♯M2♯ · · · ♯Mk ,

where each Mi is prime; the point being that one cannot carry on writing each
summand as a sum of non-trivial factors. In 1962, Milnor showed that the
above decomposition of M is unique up to reordering of factors [Mil62]. This
is called the prime decomposition of M.

3.12 definition (Irreducible 3-manifold). A 3-manifold M is irreducible if
every smoothly embedded two-dimensional sphere S ↪→ M bounds an embed-
ded 3-dimensional ball on at least one side.

The notions of prime and irreducible 3-manifold almost coincide with one
exception.

3.4 Proposition. A compact connected oriented 3-manifold M , S2 × S1 is
prime if and only if it is irreducible.

Proof. Note that a 3-manifold M is prime if and only if every separating sphere
in M bounds a 3-ball, where we think of the separating 2-sphere as the sphere
in the connected sum operation. Therefore every irreducible 3-manifold is
prime.

Now let M be a prime manifold that is not irreducible. We show that
M = S2 × S1. Since M is not irreducible, there is an embedded smooth sphere
S in M that does not bound a 3-ball. Since M is prime, S is non-separating.
Let α ⊂ M be a simple closed curve intersecting S once. Let N be a tubular
neighbourhood of S ∪ α. Then ∂N is a separating 2-sphere, and so ∂N bounds
a 3-ball B, necessarily to the outside of N. Note that we have M = N ∪∂N B. By
Smale’s theorem, every orientation-reversing diffeomorphism of a 2-sphere is
isotopic to the identity. Hence the diffeomorphism type of N∪∂N B is uniquely
determined. Therefore, it is enough to exhibit one gluing of N to B along their
boundaries resulting in S2 × S1. Write S as the union of two discs D∪D′ and B
as D′ × I. Then by gluing B = D′ × I to N = N(α∪ S), we see that M = N ∪∂N B
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3. taut foliations i

is diffeomorphic to S2 × S1.

3.5 Proposition. The manifold S2 × S1 is prime but not irreducible.

Proof. Let S2 × S1 = M1♯M2. We show that one of M1 and M2 is S3. In other
words, if S ⊂ S2 × S1 is the attaching 2-dimensional sphere between (M1 −
3-ball) and (M2 − 3-ball), then S bounds a 3-ball in S2 × S1. Note that S is
separating in S2 × S1 by the definition of the connected sum. By Seifert–Van
Kampen theorem, we have Z � π1(S2 × S1) = π1(M1) ∗ π1(M2). Therefore, one
of M1 and M2 have trivial fundamental group, otherwise Z = π1(M1) ∗π1(M2)
would be non-abelian. Assume that π1(M1) is trivial and so M1 is simply
connected. Therefore M1 lifts to the universal cover S2×R of S2× S1. Note that
S2 ×R can be identified with R3 − {0} by looking at concentric spheres around
the origin in R3. Hence we can think of M1 as embedded in R3 − {0} ⊂ R3.
By Alexander’s theorem, the sphere S = ∂M1 bounds an embedded 3-ball
on at least one side. This has to be the side not containing the origin and so
(M1 − 3-ball) is diffeomorphic to a ball, implying that M1 = S3. This shows
that S2 × S1 is prime. Clearly S2 × S1 is not irreducible since S2 × point is a
non-separating sphere.

3.2 Taut foliations and irreducibility

The following theorem of Alexander is one of the first applications of foliations
in studying 3-manifolds.

We need the notion of a Morse function for the proof. Let M be a smooth
manifold of dimension n, and f : M → R be a real valued smooth function.
A point p of M is a critical point, if the first derivative of f at p vanishes. A
critical point p of f is non-degenerate if the matrix of the second derivatives of
f at p (i.e. the Hessian matrix) is non-singular. The index of a non-degenerate
critical point p is the number of negative eigenvalues of the Hessian matrix
at the point p; this is intuitively the number of directions around p at which
f decreases. A smooth function f : M → R is a Morse function if all critical
points of f are non-degenerate.

The Morse Lemma states that if p is a non-degenerate critical point of
f : M→ R then there is a chart (x1, · · · , xn) in a neighbourhood of p such that
p corresponds to the point xi = 0 and the function f has the form

f (x) = f (p) − x2
1 − · · · − x

2
r + x2

r+1 + · · · + x2
n,

where r is the index of p. Note that the Morse Lemma in particular implies
that non-degenerate critical points are isolated.

Given a smooth manifold M, the set of Morse functions f : M→ R forms
an open and dense subset of the set of all smooth functions f : M→ R with
the C2 topology; hence Morse functions are generic and every smooth function
can be approximated by Morse functions.

3.6 Theorem (Alexander). The manifold R3 is irreducible.
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3.2. taut foliations and irreducibility

Figure 15: Three types of singularities for the induced foliation on S. Here the
leaves of the singular foliation are the level sets of the height function.

Figure 16: A sphere in standard position in R3

Proof. Consider the foliation F of R3 by horizontal planes z = constant. Let
S be a sphere in R3, and isotope S slightly such that the height function
restricted to S is a Morse function such that the critical points of f have
distinct heights. This can be done, for example, by applying a small rotation
to S. See Figure 15 for the three possible types of critical points. Let F |S be the
induced singular foliation on S. Hence F |S has only finitely many singularities
of center or saddle type. If the number of centers and saddles are respectively
I+ and I−, then by Poincaré–Hopf formula we have

2 = χ(S) = I+ − I−.

In particular, I+ > 0, and so there is at least one center. Alternatively, this
could be seen by looking at a point p ∈ S with maximal (or minimal) height.

The idea is to use the induced foliation F |S as a road map to simplify
S via isotopy until it is in the standard position, i.e. with only two center
singularities and with no saddle singularities. See Figure 16. We argue by
induction on the total number of singularities of F |S. An important property
of the foliation F |S is that it has trivial holonomy; i.e. every circle leaf of F |S
has a neighbourhood consisting of parallel circles.

Let p be a center tangency. The induced foliation on S in a small neighbour-
hood of p consists of concentric circles. Take a maximal neighbourhood U of p
in S that consists of concentric circles with no singularities on them. Then U is
an open disc, otherwise it could be extended to a larger such neighbourhood.
If U = S, then S is in the standard position. Otherwise, there should be at
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3. taut foliations i

Figure 17: The two possibilities for the closure of a ‘maximal’ neighbourhood of a
center singularity.

least one saddle singularity, say q, on U − U. In fact q is the only singularity
on U − U since we assumed that distinct critical points have distinct heights.
Locally there are 4 rays of the singular foliation F|S coming out of q. Note that
if h is the height function, then all these rays lie inside the compact level set
h−1(h(q)) which is a graph embedded in S; in particular the 4 rays coming out
of q have to close up globally.

There are two possibilities for the shape of U − U as in Figure 17. The
relative position of S with respect to the foliation F is shown in a neighbour-
hood of U in each case. In either case, there is an isotopy of S that simplifies
the induced foliation on S, and reduces the number of centers and saddles
each by one. Repeating this procedure, S can be isotoped such that no saddle
singularities are left, and the induced foliation on S has exactly two center
singularities. Then, each circle of F |S bounds a disc in R3, and it is not hard
to see that these discs patch together to form an embedded ball bounded by S
on one side of it.

3.13 remark. Alexander [Ale24] proved the above theorem for PL embedded
spheres in R3.

Rosenberg [Ros68] generalised Alexander’s argument to 3-manifolds ad-
mitting taut foliations.

3.7 Theorem (Rosenberg). Let M , S2×S1 be a compact orientable 3-manifold
that admits a taut foliation. Then M is irreducible.

3.14 example. Rosenberg’s theorem implies that any compact orientable 3-
manifold M fibering over S1, with fiber not the sphere, is irreducible.

3.15 remark. Prior to Rosenberg, Novikov [Nov65] had shown that for mani-
folds as in Theorem 3.7, the second homotopy group π2(M) is trivial; i.e. every
immersed sphere bounds a (not necessarily embedded) 3-ball. Rosenberg’s
proof relies on the work of Novikov.
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3.3. exercises

3.3 Exercises

Exercise 1

Let M be the connected sum of 3-manifolds M1 and M2. Show that the fun-
damental group π1(M) is isomorphic to π1(M1) ∗ π1(M2). Deduce that if M1
is not simply connected, then it has no inverse; i.e. there is no M2 such that
M1♯M2 is diffeomorphic to S3.

Exercise 2

Let S be a non-separating sphere in a connected oriented 3-manifold M.
Show that M can be written as (S2 × S1)♯N for some oriented 3-manifold N.

Exercise 3

Prove the last statement in the proof of Alexander’s theorem that if F |S
has exactly two center singularities and no saddle singularities, then S bounds
an embedded ball on one side of it.

Exercise 4

Use Alexander’s theorem to show that S3 is irreducible.

Exercise 5

Use Alexander’s theorem to deduce that if K ⊂ S3 is a knot with tubular
neighbourhood N(K), then its complement X := S3 − N◦(K) is irreducible.

For the next exercise, you need the notion of isotopy defined below.

3.16 definition (Isotopy). Given manifolds N and M and two embeddings
f0, f1 : N → M, we say that f1 and f2 are isotopic if there is a continuous map
F: N × [0,1] → M such that for each t ∈ [0,1] the restriction F|N×{t} is an
embedding and that F|N×{0} = f0 and F|N×{1} = f1.

Exercise 6

Let M1 and M2 be compact orientable 3-manifolds. Show that the homeo-
morphism type of the connected sum M1♯M2 does not depend on the choice
of the embeddings i1 : B ↪→ M1 and i2 : B ↪→ M2 and the gluing homeomor-
phism i : ∂B1 → ∂B2. You can use the following two facts without proof:

1. Smale’s theorem [Sma59]: every orientation-preserving diffeomorphism
of a two-dimensional sphere is isotopic to the identity map.

This implies that the isotopy class of the map i is unique.

2. Palais’ theorem [Pal60]: if j1 : Bn ↪→ Mn and j2 : Bn ↪→ Mn are two em-
beddings of the closed n-ball into a connected n-dimensional manifold
M, then i1 and i2 are isotopic.

This implies that the isotopy classes of i1 and i2 are unique.
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4. taut foliations ii

Figure 18: A Seifert surface for the Hopf link (left) obtained by two disks A and B
that are attached by two twisted bands (right).

Figure 19: A non-orientable spanning surface for the trefoil.

4 taut foliations ii

In this section, we discuss some of the applications of taut foliations, mostly
without proof.

4.1 Knot genus

Given a link L in R3, there is an embedded compact orientable surface S in
R3 with S ∩ L = ∂S = L. See Figure 18 for the Hopf link.

Note that a non-orientable spanning surface is not a Seifert surface. See
Figure 19 for an example of a Möbius band spanning the trefoil. However a
Seifert surface can always be constructed from a projection of the knot via
Seifert’s algorithm. The algorithm is as follows:

1. Orient the knot. Resolve each crossing according to orientation as in
Figure 20 to obtain a union of disjoint circles. Each such circle bounds a
disc in the plane of the knot projection.

2. Locate the discs in different heights and attach them to each other by
twisted bands. See Figure 21.

4.1 Activity. a) Using paper, scissor, and tape, build a Seifert surface for
the trefoil knot via Seifert’s algorithm (Tip: long thin bands are easier to
twist in practice).
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4.1. knot genus

Figure 20: Seifert algorithm I: resolving the crossings as in the right hand side
produces a union of disjoint circles.

Figure 21: A Seifert surface for the trefoil produced by Seifert’s algorithm.

b) A compact orientable surface S with one boundary component is home-
omorphic to a torus with a disc removed if and only if there are disjoint
properly embedded arcs α and β in S such that cutting S along α∪ β pro-
duces a disc. Use this fact to show that the surface obtained by Seifert’s
algorithm applied to the trefoil knot is homeomorphic to a torus with a
disc removed.

4.1 remark. A knot K in a 3-manifold M has a Seifert surface if and only if
[K] = 0 ∈ H1(M;Z). Note that this condition is automatically satisfied if M is
an integer homology 3-sphere.

4.2 definition (Seifert surface). Given a knot K in a 3-manifold M, a Seifert
surface for K is any embedded compact orientable surface S in M such that
S ∩ K = ∂S = K.

4.3 definition (Knot genus). Given a knot K in R3, the genus of K, denoted by
g(K), is defined as the minimum genus of a Seifert surface for K.

4.4 example. A knot K in a 3-manifold M is called the unknot if K can be
isotoped to a round circle standardly embedded in a small 3-ball in M. Then
a knot K has genus 0 if and only if it is the unknot.

4.5 example. The Hopf link has genus 0 since it bounds an annulus. The trefoil
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4. taut foliations ii

knot has genus one since it bounds a genus one surface and it is not isotopic
to the unknot (we do not give a proof of this fact). Note that the genus of the
Seifert surface in Figure 21 can be read by calculating its Euler characteristic
and using the following formula

χ(S) = 2 − 2g − b,

where g is the genus and b = 1 is the number of boundary components.

Note that in order to prove an upper bound g(K) ≤ C it is enough to
exhibit one Seifert surface with genus at most C. However, proving a lower
bound c ≤ g(K) requires ruling out the existence of any Seifert surface with
genus less than c. In general there are infinitely Seifert surfaces, up to isotopy,
for a knot K (for example one can locally connect sum a Seifert surface with a
torus), and so proving a lower bound is the challenging part. We will see that
taut foliations can be used to give such lower bounds.

4.6 remark. Agol, Hass, and Thurston [AHT06] proved that the problem of
upper bound for knot genus in closed orientable 3-manifolds is NP-complete:
Here the input is a triangulated closed orientable 3-manifold M, a knot K
which is a union of edges of the triangulation, and an integer n, and the
problem asks whether g(K) ≤ n?

4.2 Thurston norm

Let K be a knot in the 3-sphere. Let N(K) be a tubular neighbourhood of K and
X := S3 − N◦(K) be the exterior of an open tubular neighbourhood of K. Then
X is a compact orientable 3-manifold with boundary the torus T = ∂N(K).
Define the meridian µ for K as the boundary of a disc pt ×D2 in S1×D2 � N(K).
Given a Seifert surface S for K, define the surface S′ by restricting S to X; i.e.
S′ = S∩ X. If the tubular neighbourhood N(K) is small, then ∂S ⊂ T is a curve
that intersects a meridian µ exactly once and transversely. Fix an orientation
on K and orient S such that the boundary orientation on ∂S agrees with that
of K. We claim that the homology class of S′ in H2(X, ∂X) does not depend on
the choice of the Seifert surface S. To see this note that

H1(X) = H1(S3 − N◦(K)) � H1(S3 − K) � H1(K) � Z,

where we used Alexander duality in H1(S3 − K) � H1(K). On the other hand
by Poincaré duality we have

H2(X, ∂X) � H1(X).

Combining them we see that H2(X, ∂X) � Z generated by a surface Poincaré
dual to the meridian of K. On the other hand any surface S′ constructed as
above intersects the meridian exactly once and positively, and so it is Poincaré
dual to µ. Therefore, all such S′ are homologous in H2(X, ∂X). Denote this
common homology class by h ∈ H2(X, ∂X).
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4.2. thurston norm

It follows that the genus of K can be defined as the minimum genus of
compact connected orientable surfaces in the homology class of h ∈ H2(X, ∂X).
This perspective was used by Thurston to define a norm on the second ho-
mology group of compact orientable 3-manifolds, ‘generalising’ the notion of
knot genus. Thurston used with a variant of the Euler characteristic instead of
genus.

4.7 definition. Given a compact orientable surface S with components S1, · · · , Sn,
define the negative part of the Euler characteristic, χ−(S), as sum of |χ(Si)| over
those Si that have negative Euler characteristic. Equivalently χ−(S) is the ab-
solute value of the Euler characteristic after discarding any sphere and disc
components.

4.8 definition (Thurston norm). Let M be a compact orientable 3-manifold.
Given an integral homology class a ∈ H2(M, ∂M;R), define the Thurston norm
of a, denoted by x(a), as

x(a) = min{χ−(S)|S ⊂ M properly embedded compact orientable surface, [S] = a}.

4.9 remark. We will see later that this definition can be extended to a contin-
uos function x : H2(M, ∂M;R)→ R≥0, which is a semi-norm; i.e.

1. (non-negativity) x(a) ≥ 0 for every a; and

2. (triangle inequality) x(a + b) ≤ x(a) + x(b) for every a, b.

Note that a semi-norm is a norm if it further satisfies x(a) = 0 ⇐⇒ a = 0.

Thurston showed that compact leaves of taut foliations are norm-minimizing.
This was used by Gabai to compute the genus of all knots with at most 10
crossings [Gab84]; this is done by identifying a minimal genus candidate S
and then constructing a taut foliation having S as a compact leaf.

4.2 Theorem (Thurston). Let M be a compact orientable 3-manifold with
boundary a (possibly empty) union of tori. Let F be a taut foliation of M such
that the restriction of F to each torus boundary component is a suspension of
a circle homeomorphism. Then every compact leaf S of F is norm-minimizing;
i.e. x([S]) = χ−(S).

4.10 example. Let K be a fibered knot in a closed orientable 3-manifold M,
with fiber F. Recall that this means the exterior of a tubular neighbourhood of
K is the total space of a fibration over S1 such that each fiber intersects the
meridian of K algebraically non-zero number of times. The fibration is a taut
foliation, and the fiber F is a compact leaf of a taut foliation. Therefore the
fiber F is norm-minimizing. Since χ−(F) = 2g(F) − 1 if g(F) ≥ 1, and χ−(F) = 0
otherwise, it follows that F is a minimum genus Seifert surface for K.

As an example, the trefoil is a fibered knot with fiber a surface of genus
one with one boundary component. Therefore the genus of trefoil is equal to
one.
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4. taut foliations ii

We recall the proof of Alexander theorem stating that every smoothly em-
bedded sphere in R3 bounds an embedded 3-ball. We considered the foliation
F of R3 by parallel planes and looked at the induced singular foliation on S.
We then used the induced foliation F |S as a road map to inductively simplify
F |S via isotopies of S until F |S has exactly two centres and no saddles; at
which point the surface S is in standard position in R3 and so bounds a 3-ball.
In the process of simplifying F |S, a centre was cancelled together with a
saddle; however sometimes a new circle tangency was introduced. Roussarie
[Rou74] and Thurston generalised this argument to show the following, which
is the main ingredient in the proof of Theorem 4.2. An immersed connected
surface S in a compact 3-manifold is π1-injective if the map i∗ : π1(S)→ π1(M),
induced by inclusion, is injective. A proof of Roussarie–Thurston theorem can
be found in [CC00b] and [Gab00].

4.3 Theorem (Roussarie, Thurston). Let M be a compact orientable 3-manifold
with boundary a (possibly empty) union of tori. Let F be a taut foliation on
M such that the induced foliation on each boundary component of M is a
suspension of a circle homeomorphism. Let S be a connected embedded π1-
injective surface in M with χ(S) ≤ 0. Then S can be isotoped such that the
induced foliation on F has only finitely many saddle and circle singularities
and no centre singularity.

4.11 remark. a) A foliation of a 2-dimensional torus is a suspension of a
circle homeomorphism if and only if it contains no 2-dimensional Reeb
component.

b) Unlike the foliation of R3 by horizontal planes, F can have holonomy
and one needs to take more care in the proof.

c) The hypothesis χ(S) ≤ 0 is necessary: if S is a sphere or disc, then the
induced foliation on S has at least one centre singularity by the Poincaré–
Hopf formula.

d) The hypothesis of S being π1-injective is necessary. For example let F
be a product foliation (or any taut foliation) and let S be a closed surface
of genus ≥ 1 such that S is standardly embedded in a small ball in M.
Then one can not remove the centre singularities by any isotopy of S (we
do not prove this, but the statement should be intuitively plausible to
the reader).

Gabai proved a converse to Theorem 4.2, namely a norm-minimising
surface is a compact leaf of a taut foliation. This shows that taut foliation and
the minimum genus problem are intimately related to each other.

4.4 Theorem (Gabai). Let M be a compact orientable irreducible 3-manifold
with boundary a (possibly empty) union of tori such that H2(M, ∂M;R) has
rank at least one. Let S be a properly embedded compact orientable surface in
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4.2. thurston norm

M that is norm-minimizing. There is a taut foliation F on M such that

i) S is a union of compact leaves of F ; and

ii) the induced foliation on each boundary component of M is a suspension
of a circle homeomorphism.

4.12 remark. The irreducibility hypothesis is necessary: by Rosenberg a com-
pact orientable 3-manifold M , S2×S1 admitting a taut foliation is irreducible.
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4. taut foliations ii

4.3 Exercises

Exercise 1

Prove that Seifert’s algorithm produces an orientable surface spanned by the
knot in S3.

Exercise 2

Show that a compact orientable surface S with one boundary component is
homeomorphic to a torus with a disc removed if and only if there are disjoint
properly embedded arcs α and β in S such that cutting S along α∪ β produces
a disc.

Exercise 3

Let M and F be as in the hypothesis of Roussarie–Thurston theorem. Let T
be a properly embedded π1-injective torus or annulus in M. Use the statement
of Roussarie–Thurston theorem to deduce that T can be isotoped such that
the induced foliation on T has no saddle and centre singularities.
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