London Taught Course Centre: Graph Theory Exam Solutions

2023

Question 1

(a) Show that the set of all trees, with subgraph ordering \leq_{S} as the ordering relation, is not a well-quasi-ordering.

Solution: For $k \geq 1$, let T_{k} be the tree formed by taking a path with $k+1$ vertices and then adding four new vertices, two of whom are adjacent to each of the end vertices of the path. We claim that for $k \neq \ell, T_{k}$ is not a subgraph of T_{ℓ}. The easiest way to see this is by observing that every proper connected subgraph of T_{ℓ} has at most one vertex of degree 3 , while T_{k} has two vertices of degree 3 .

Let G, H be graphs so that H is obtained from G by a sequence of suppressions of vertices of degree two.
(b) Show that for all $k \geq 3$, if H is k-choosable, then G is k-choosable.

Solution: Suppose $k \geq 3$ and H is k-choosable. Let L be a list assignment of k colours to each vertex of G. Each vertex of H corresponds to a vertex of G. Let L_{H} be list assignment to the vertices of H corresponding to the lists given to the vertices of G. Then H can be properly coloured using colours from each of the vertices' lists. This corresponds to a partial colouring of G (proper, since if two vertices from G are present in H and adjacent in G, then they are also adjacent in H). The only vertices not coloured yet in G are the vertices of degree two that were suppressed. But since these have only two neighbours and $k \geq 3$ colours in their lists, they can be coloured without any problems.
(c) Give an example showing that we cannot take $k=2$ in part (b).

Solution: All n-cycles with n even are 2-choosable, while those with n odd are not 2-choosable (question in the homework). So if we take H a 4 -cycle and G a 5 -cycle, then H can be obtained from G by a suppressing one vertex of degree two. But these two graphs fail the implication " H k-choosable $\Rightarrow G k$-choosable".

Question 2

Theorem 7 from Lecture 4 reads as follows: " $1 / n$ is a threshold for $G(n, p)$ to contain a triangle."
Generalise this theorem to give a threshold for $G(n, p)$ to contain a clique K_{r}, and give a proof.
Solution: Let $X=\sum_{S} X_{S}$ be the number of copies of K_{r} in $G(n, p$, where the sum is taken over all subsets of the vertex set of $G(n, p)$ of size r, and X_{S} is the indicator random variable that the set S induces a clique. We have $\mathbb{E} X=p^{\binom{r}{2}\binom{n}{r}}$ and $\mathbb{E} X^{2}=\sum_{S, S^{\prime}} \mathbb{E} X_{S} x_{S^{\prime}}$. As in the lectures, $\operatorname{Var} X=\sum_{S, S^{\prime}}\left(\mathbb{E} X_{S} X_{S^{\prime}}-\mathbb{E} X_{S} \mathbb{E} X_{S^{\prime}}\right)=\sum_{S, S^{\prime}} \mathbb{E} X_{S} X_{S^{\prime}}-p^{2}\binom{r}{2}$.
For S, S^{\prime} sharing at most one vertex we have $\sum_{S, S^{\prime}} \mathbb{E} X_{S} X_{S^{\prime}}=p^{2\binom{r}{2}}$. For S, S^{\prime} sharing i vertices we have $\sum_{S, S^{\prime}} \mathbb{E} X_{S} X_{S^{\prime}}=p^{2\binom{r}{2}-\binom{i}{2}}$.

Therefor we can calculate

$$
\begin{aligned}
\operatorname{Var} X & =\sum_{i=2}^{r} \#\left\{S, S^{\prime}| | S \cap S^{\prime} \mid=i\right\} \times\left(p^{2\binom{r}{2}-\binom{i}{2}}-p^{2\binom{r}{2}}\right) \\
& =\sum_{i=2}^{r} \Theta_{r}\left(n^{2 r-i}\right) \times\left(p^{2\binom{r}{2}-\binom{i}{2}}-p^{2\binom{r}{2}}\right) \\
& \leq \sum_{i=2}^{r} \Theta_{r}\left(n^{2 r-i}\right) \times p^{2\binom{r}{2}-\binom{i}{2}} .
\end{aligned}
$$

We claim that the threshold is $p=n^{-2 /(r-1)}$.
Indeed, suppose that $p \ll n^{-2 /(r-1)}$. Then $\mathbb{E} X \leq p^{\binom{r}{2}} n^{r} \rightarrow 0$ as $n \rightarrow 0$, so $\mathbb{P}(X \geq 1) \leq \mathbb{E} X \rightarrow 0$, by Markow's inequality.
If $p \gg n^{-2 /(r-1)}$, we have by Chebyshev's inequality that $\mathbb{P}(X=0) \leq \frac{\operatorname{Var} X}{(\mathbb{E} X)^{2}}$. The squared mean can be crudely lower-bounded by $p^{r(r-1)}(n / 2 r)^{2 r}$, so we get

$$
\mathbb{P}(X=0) \leq \sum_{i=2}^{r} \Theta_{r}\left(n^{-i}\right) \times p^{-\binom{i}{2}}=\sum_{i=2}^{r} \Theta_{r}\left(\frac{p^{-(i-1) / 2}}{n}\right)^{i} \leq \sum_{i=2}^{r} \Theta_{r}\left(\frac{p^{-(r-1) / 2}}{n}\right)^{i}
$$

The condition of p is equivalent to $p^{-(r-1) / 2} \rightarrow 0$, so $\mathbb{P}(X=0) \rightarrow 0$, as required.

Question 3

Use the regularity lemma to prove that for any $\gamma, \nu>0$ there exist $\eta>0$ and $n_{0} \in \mathbb{N}$ such that if a graph G on $n \geq n_{0}$ vertices has minimum degree $(1 / 2+\gamma) n$ and every set of vertices of size ηn contains an edge, then G contains a collection of vertex-disjoint triangles covering at least $(1-\nu) n$ vertices of G.
To do this, execute the following steps in order.

1. Apply the regularity lemma with parameters $\varepsilon<\gamma^{1000} \times \nu^{1000}$ (to be read: ridiculously small compared to any reasonable function of both γ and ν) and $k_{0}=1 / \varepsilon$. Consider the cluster graph $R(G)$ as defined in the lectures, except only take edges of weight at least $\gamma / 4$.
Show that this cluster graph has minimum degree at least $|R(G)| / 2$.
2. Is there a result that guarantees a perfect matching in $R(G)$? Can we reduce the problem of finding vertex-disjoint triangles to a single regular pair $\left(V_{i}, V_{j}\right)$?
3. Show that if (U, V) is an ε-regular pair from the partition of density at least $\gamma / 4$, and every set of ηn vertices contains an edge, then if η is sufficiently small compared to ε, we can carry out the following procedure iteratively, covering all but $2 \varepsilon|U|$ and $2 \varepsilon|V|$ vertices respectively on each side: Pick $v \in U$ of maximum degree to V; find an edge in its neighbourhood in V; remove the resulting triangle; switch sides.

Solution:

1. Let m be the size of a cluster of the regularity partition (except the junk set V_{0} which has size at most εn), and let $k \leq K(\varepsilon)$ be the number of clusters. If there is a vertex $i \in V(R(G))$ of degree less than $|R(G)| / 2$, then by definition the edges between the cluster V_{i} and the rest of the graph are at most

$$
\frac{k}{2} \cdot \frac{\gamma}{4} \cdot m^{2}+m \cdot \varepsilon n+\left(k-\frac{k}{2}\right) \cdot m^{2} .
$$

(The first term counts the edges to sets V_{j} such that $i j \notin E(R(G))$; the second term counts the edges to V_{0}; and the third term counts the edges to sets V_{j} such that $i j \in E(R(G))$.)
Now we show that this somehow contradicts the minimum degree of G. By the minimum degree we have $e\left(V_{i}, G\right) \geq m(1 / 2+\gamma) n \geq(1 / 2+\gamma) k m^{2}$ (edges within V_{i} are counted twice). Also, $m \cdot \varepsilon n \leq \frac{\gamma}{8} k m^{2}$, since $k m=n-\left|\overline{V_{0}}\right| \geq(1-\varepsilon) n$ and also $\varepsilon<\gamma^{1000}$. Simplifying the upper and lower bound we have

$$
(1 / 2+\gamma) k m^{2} \leq(1 / 2+\gamma / 4) \mathrm{km}^{2}
$$

which is a contradiction. Therefore the k-vertex graph $R(G)$ has minimum degree at least $k / 2$.
2. There is! It's Dirac's theorem which says that a k-vertex graph with degree at least $k / 2$ has a Hamilton cycle. The cycle contains a perfect matching if k is even, or a matching on $k-1$ vertices if k is odd. Applying this to $R(G)$, we get a matching of $\lfloor k / 2\rfloor$ pairs of clusters. If we cover all but $\nu / 2$ proportion of the vertices in each of these pairs with triangles, we will have covered all but $k \nu m / 2+m+\varepsilon n \leq \nu n$ vertices of G, so the problem reduces to covering all but $\nu / 2$ proportion of the vertices of an ε-regular pair of density $\gamma / 4$ with triangles. Note that it suffices to cover all but 2ε-proportion of vertices, as $2 \varepsilon<\nu / 2$.
3. Carry out the procedure until it is no longer possible. Let U^{\prime}, V^{\prime} be the uncovered vertices, and suppose U^{\prime} has size at least $2 \varepsilon|U|$. The procedure was carried out in a balanced way, so V^{\prime} must have size at least $\varepsilon|V|$. If there is a vertex $u \in U^{\prime}$ with more than ηn neighbours in V^{\prime}, then the neighbourhood of u in V^{\prime} must contain an edge (recall that η is much smaller than ε), which would form a triangle with u, contradicting the maximality of the set of vertex-disjoint triangles we consider. Therefore, $e\left(U^{\prime}, V^{\prime}\right) \leq\left|U^{\prime}\right| \eta n \leq(\gamma / 8)|U||V| \leq(\gamma / 4-\varepsilon)|U||V|$, by our choice of constants (ε much smaller than ν and γ, and $|V| \geq(1-\varepsilon) n / K(\varepsilon) \geq 1000 \eta n / \gamma$). By regularity this means that either U^{\prime} has size less than $\varepsilon|U|$ or V^{\prime} has size less than $\varepsilon|V|$, a contradiction.

