London Taught Course Centre: Graph Theory Exam Solutions 2023

Question 1

(a) Show that the set of all trees, with subgraph ordering \leq_S as the ordering relation, is not a wellquasi-ordering.

Solution: For $k \ge 1$, let T_k be the tree formed by taking a path with k + 1 vertices and then adding four new vertices, two of whom are adjacent to each of the end vertices of the path. We claim that for $k \ne \ell$, T_k is not a subgraph of T_ℓ . The easiest way to see this is by observing that every proper connected subgraph of T_ℓ has at most one vertex of degree 3, while T_k has two vertices of degree 3.

Let G,H be graphs so that H is obtained from G by a sequence of suppressions of vertices of degree two.

(b) Show that for all $k \ge 3$, if H is k-choosable, then G is k-choosable.

Solution: Suppose $k \ge 3$ and H is k-choosable. Let L be a list assignment of k colours to each vertex of G. Each vertex of H corresponds to a vertex of G. Let L_H be list assignment to the vertices of H corresponding to the lists given to the vertices of G. Then H can be properly coloured using colours from each of the vertices' lists. This corresponds to a partial colouring of G (proper, since if two vertices from G are present in H and adjacent in G, then they are also adjacent in H). The only vertices not coloured yet in G are the vertices of degree two that were suppressed. But since these have only two neighbours and $k \ge 3$ colours in their lists, they can be coloured without any problems.

(c) Give an example showing that we cannot take k = 2 in part (b).

Solution: All *n*-cycles with *n* even are 2-choosable, while those with *n* odd are not 2-choosable (question in the homework). So if we take *H* a 4-cycle and *G* a 5-cycle, then *H* can be obtained from *G* by a suppressing one vertex of degree two. But these two graphs fail the implication "*H k*-choosable \Rightarrow *G k*-choosable".

Question 2

Theorem 7 from Lecture 4 reads as follows: "1/n is a threshold for G(n, p) to contain a triangle." Generalise this theorem to give a threshold for G(n, p) to contain a clique K_r , and give a proof.

Solution: Let $X = \sum_{S} X_{S}$ be the number of copies of K_{r} in G(n, p), where the sum is taken over all subsets of the vertex set of G(n, p) of size r, and X_{S} is the indicator random variable that the set S induces a clique. We have $\mathbb{E}X = p^{\binom{r}{2}}\binom{n}{r}$ and $\mathbb{E}X^{2} = \sum_{S,S'} \mathbb{E}X_{S}x_{S'}$. As in the lectures, $\operatorname{Var} X = \sum_{S,S'} (\mathbb{E}X_{S}X_{S'} - \mathbb{E}X_{S}\mathbb{E}X_{S'}) = \sum_{S,S'} \mathbb{E}X_{S}X_{S'} - p^{2\binom{r}{2}}$.

For S, S' sharing at most one vertex we have $\sum_{S,S'} \mathbb{E}X_S X_{S'} = p^{2\binom{r}{2}}$. For S, S' sharing i vertices we have $\sum_{S,S'} \mathbb{E}X_S X_{S'} = p^{2\binom{r}{2} - \binom{i}{2}}$.

Therefor we can calculate

$$\operatorname{Var} X = \sum_{i=2}^{r} \# \{ S, S' \mid |S \cap S'| = i \} \times \left(p^{2\binom{r}{2} - \binom{i}{2}} - p^{2\binom{r}{2}} \right)$$
$$= \sum_{i=2}^{r} \Theta_r(n^{2r-i}) \times \left(p^{2\binom{r}{2} - \binom{i}{2}} - p^{2\binom{r}{2}} \right)$$
$$\leq \sum_{i=2}^{r} \Theta_r(n^{2r-i}) \times p^{2\binom{r}{2} - \binom{i}{2}}.$$

We claim that the threshold is $p = n^{-2/(r-1)}$.

Indeed, suppose that $p \ll n^{-2/(r-1)}$. Then $\mathbb{E}X \leq p^{\binom{r}{2}}n^r \to 0$ as $n \to 0$, so $\mathbb{P}(X \geq 1) \leq \mathbb{E}X \to 0$, by Markow's inequality.

If $p \gg n^{-2/(r-1)}$, we have by Chebyshev's inequality that $\mathbb{P}(X = 0) \leq \frac{\operatorname{Var} X}{(\mathbb{E} X)^2}$. The squared mean can be crudely lower-bounded by $p^{r(r-1)}(n/2r)^{2r}$, so we get

$$\mathbb{P}(X=0) \le \sum_{i=2}^{r} \Theta_r(n^{-i}) \times p^{-\binom{i}{2}} = \sum_{i=2}^{r} \Theta_r\left(\frac{p^{-(i-1)/2}}{n}\right)^i \le \sum_{i=2}^{r} \Theta_r\left(\frac{p^{-(r-1)/2}}{n}\right)^i.$$

The condition of p is equivalent to $p^{-(r-1)/2} \to 0$, so $\mathbb{P}(X = 0) \to 0$, as required.

Question 3

Use the regularity lemma to prove that for any $\gamma, \nu > 0$ there exist $\eta > 0$ and $n_0 \in \mathbb{N}$ such that if a graph G on $n \ge n_0$ vertices has minimum degree $(1/2 + \gamma)n$ and every set of vertices of size ηn contains an edge, then G contains a collection of vertex-disjoint triangles covering at least $(1 - \nu)n$ vertices of G.

To do this, execute the following steps in order.

1. Apply the regularity lemma with parameters $\varepsilon < \gamma^{1000} \times \nu^{1000}$ (to be read: ridiculously small compared to any reasonable function of both γ and ν) and $k_0 = 1/\varepsilon$. Consider the cluster graph R(G) as defined in the lectures, except only take edges of weight at least $\gamma/4$.

Show that this cluster graph has minimum degree at least |R(G)|/2.

- 2. Is there a result that guarantees a perfect matching in R(G)? Can we reduce the problem of finding vertex-disjoint triangles to a single regular pair (V_i, V_j) ?
- 3. Show that if (U, V) is an ε -regular pair from the partition of density at least $\gamma/4$, and every set of ηn vertices contains an edge, then if η is sufficiently small compared to ε , we can carry out the following procedure iteratively, covering all but $2\varepsilon|U|$ and $2\varepsilon|V|$ vertices respectively on each side: Pick $v \in U$ of maximum degree to V; find an edge in its neighbourhood in V; remove the resulting triangle; switch sides.

Solution :

1. Let m be the size of a cluster of the regularity partition (except the junk set V_0 which has size at most εn), and let $k \le K(\varepsilon)$ be the number of clusters. If there is a vertex $i \in V(R(G))$ of degree less than |R(G)|/2, then by definition the edges between the cluster V_i and the rest of the graph are at most

$$\frac{k}{2} \cdot \frac{\gamma}{4} \cdot m^2 + m \cdot \varepsilon n + \left(k - \frac{k}{2}\right) \cdot m^2.$$

(The first term counts the edges to sets V_j such that $ij \notin E(R(G))$; the second term counts the edges to V_0 ; and the third term counts the edges to sets V_j such that $ij \in E(R(G))$.)

Now we show that this somehow contradicts the minimum degree of G. By the minimum degree we have $e(V_i, G) \ge m(1/2 + \gamma)n \ge (1/2 + \gamma)km^2$ (edges within V_i are counted twice). Also, $m \cdot \varepsilon n \le \frac{\gamma}{8}km^2$, since $km = n - |V_0| \ge (1 - \varepsilon)n$ and also $\varepsilon < \gamma^{1000}$. Simplifying the upper and lower bound we have

$$(1/2 + \gamma)km^2 \le (1/2 + \gamma/4)km^2,$$

which is a contradiction. Therefore the k-vertex graph R(G) has minimum degree at least k/2.

- 2. There is! It's Dirac's theorem which says that a k-vertex graph with degree at least k/2 has a Hamilton cycle. The cycle contains a perfect matching if k is even, or a matching on k-1 vertices if k is odd. Applying this to R(G), we get a matching of $\lfloor k/2 \rfloor$ pairs of clusters. If we cover all but $\nu/2$ proportion of the vertices in each of these pairs with triangles, we will have covered all but $k\nu m/2 + m + \varepsilon n \le \nu n$ vertices of G, so the problem reduces to covering all but $\nu/2$ proportion of the vertices as $2\varepsilon < \nu/2$.
- 3. Carry out the procedure until it is no longer possible. Let U', V' be the uncovered vertices, and suppose U' has size at least $2\varepsilon|U|$. The procedure was carried out in a balanced way, so V' must have size at least $\varepsilon|V|$. If there is a vertex $u \in U'$ with more than ηn neighbours in V', then the neighbourhood of u in V' must contain an edge (recall that η is much smaller than ε), which would form a triangle with u, contradicting the maximality of the set of vertex-disjoint triangles we consider. Therefore, $e(U', V') \leq |U'|\eta n \leq (\gamma/8)|U||V| \leq (\gamma/4 \varepsilon)|U||V|$, by our choice of constants (ε much smaller than ν and γ , and $|V| \geq (1 \varepsilon)n/K(\varepsilon) \geq 1000\eta n/\gamma$). By regularity this means that either U' has size less than $\varepsilon|U|$ or V' has size less than $\varepsilon|V|$, a contradiction.