LTCC Homological algebra mock exam

Let A be an algebra over a commutative ring k.

1. Let X be a chain complex of A-modules such that $H_n(X) = \{0\}$ for all but finitely many integers n.

(a) Show that there exist a bounded below complex of A-modules Y and a quasi-isomorphism $f: Y \to X$.

(*Hint:* use the fact that there is an integer r such that $H_n(X) = \{0\}$ for $n \leq r$, and define $Y_n = X_n$ for $n \geq r$, $Y_{r-1} = \text{Im}(\delta_r)$, where δ is the differential of X, and $Y_n = \{0\}$ for n < r-1).

(b) Show that there exist a bounded above complex of A-modules Z and a quasi-isomorphism $g: X \to Z$.

2. Let X be a chain complex of A-modules. For any integer n set $C(X)_n = X_{n-1} \oplus X_n$ and denote by $\Delta : C(X)_n \to C(X)_{n-1}$ the A-homomorphism given by

$$\Delta_n(x,y) = (-\delta_{n-1}(x), x + \delta_n(y))$$

- (a) Show that $(C(X)_n, \Delta_n)_{n \in \mathbb{Z}}$ is a contractible chain complex.
- (b) Show that there is an exact sequence of chain complexes

$$0 \longrightarrow X \longrightarrow C(X) \longrightarrow X[1] \longrightarrow 0$$

- **3.** For any integer $n \ge 0$ calculate the abelian groups $\operatorname{Ext}_{\mathbb{Z}}^{n}(\mathbb{Z}/4\mathbb{Z},\mathbb{Z}/2\mathbb{Z})$ and $\operatorname{Ext}_{\mathbb{Z}}^{n}(\mathbb{Z}/4\mathbb{Z},\mathbb{Z}/3\mathbb{Z})$.
- **4.** Let $d: A \to A$ be a derivation. Show that d(1) = 0.

5. Suppose that k is a field. Calculate the dimension of $HH^1(k[x]/(x^2))$. (*Hint:* calculate all derivations on $k[x]/(x^2)$.)

6. Show that for any A-module, the chain complex

 $\cdots \longrightarrow 0 \longrightarrow U \xrightarrow{\operatorname{Id}_U} U \longrightarrow 0 \longrightarrow \cdots$

is contractible, where U is in any two consecutive degrees of the chain complex.