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Introduction

This course looks at analytical, rather than computational, methods of tackling
difficult problems in applied mathematics. We will primarily apply our attention
to differential equations: both ODEs and PDEs.

You might ask, what’s the point of searching for analytical solutions or part-
solutions when we can solve numerically? There are two killer reasons why
analytical techniques remain relevant even in the age of parallel computation:

Programme verification There is always a concern with numerical calcu-
lations about whether the code is correct. A helpful check can be to find
an extreme case (perhaps setting one parameter to zero, or making it very
large or small, or using unphysical but simple boundary conditions) where
an analytical solution can be found. If the numerical solution finds the
same analytical solution we have increased confidence in its correctness.

Physical insight More importantly, a numerical calculation does not often
provide insight into the underlying physics. Sometimes (surprisingly often
in practice) the simplified problems presented by taking a limiting case
have a simplified physics which nonetheless encapsulates some of the key
mechanisms from the full problem – and these mechanisms can then be
better understood through analytical methods.

We will be looking at perturbation methods, applied specifically to ODEs and
PDEs; many of the principles laid out here will apply equally to other situations
such as integral equations (as some of the examples will demonstrate). However,
I will intersperse the teaching on perturbation methods (numbered sections)
with background techniques in partial differential equations (lettered sections).

References

The principal reference for the perturbation methods is the book by Hinch. In
particular, many of the examples and exercises are taken from it. I have also
listed three other perturbation methods texts: they are also very good, and your
choice here is really a question of style preference.

• Hinch, Perturbation methods

• Van Dyke, Perturbation methods in fluid mechanics

• Kevorkian & Cole, Perturbation methods in applied mathematics

• Bender & Orszag, Advanced mathematical methods for scientists and en-
gineers

I am only giving one reference for the background on partial differential equa-
tions. I would strongly recommend you to get hold of this book unless your
background in PDEs is very strong.

• Weinberger, A first course in Partial Differential Equations with complex
variables and transform methods

1



1 Introduction to perturbation methods

1.1 What are perturbation methods?

Perturbation methods are methods which rely on there being a parameter in
the problem that is relatively small: ε ≪ 1. The most common example you
may have seen before is that of high-Reynolds number fluid mechanics, in which
a viscous boundary layer is found close to a solid surface. Note that in this case
the standard physical parameter Re is large: our small parameter is ε = Re−1.

1.2 A real research example

This comes from research into polymer flows1. I will not present the equations
or the working here: but the problem in question is the stability of a polymer
extrusion flow. The parameter varied is wavelength: and for both very long
waves (wavenumber k ≪ 1) and very short waves (k−1 ≪ 1) the system is much
simplified. The long-wave case, in particular, gives very good insight into the
physics of the problem.

If we look at the plot of growth rate of the instability against wavenumber
(inverse wavelength):

we can see good agreement between the perturbation method solutions (the
dotted lines) and the numerical calculations (solid curve): this kind of agree-
ment gives confidence in the numerics in the middle region where perturbation
methods can’t help.

1H J Wilson & J M Rallison. J. Non-Newtonian Fluid Mech., 72, 237–251, (1997)
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2 Regular perturbation expansions

We’re all familiar with the principle of the Taylor expansion: for an analytic
function f(x), we can expand close to a point x = a as:

f(a+ ε) = f(a) + εf ′(a) + 1
2ε

2f ′′(a) + · · ·

For general functions f(x) there are many ways this expansion can fail, including
lack of convergence of the series, or simply an inability of the series to capture
the behaviour of the function; but the paradigm of the expansion in which a
small change to x makes a small change to f(x) is a powerful one, and the basis
of regular perturbation expansions.

The basic principle and practice of the regular perturbation expansion is:

1. Set ε = 0 and solve the resulting system (solution f0 for definiteness)

2. Perturb the system by allowing ε to be nonzero (but small in some sense).

3. Formulate the solution to the new, perturbed system as a series

f0 + εf1 + ε2f2 + · · ·

4. Expand the governing equations as a series in ε, collecting terms with
equal powers of ε; solve them in turn as far as the solution is required.

2.1 Example differential equation

Suppose we are trying to solve the following differential equation in x ≥ 0:

df(x)

dx
+ f(x)− εf2(x) = 0, f(0) = 2. (1)

Ignore the fact that we could have solved this equation directly! We’ll use it as
a model for more complex examples.

We look first at ε = 0:

df(x)

dx
+ f(x) = 0, f(0) = 2, =⇒ f(x) = 2e−x.

Now we follow our system and set

f = 2e−x + εf1(x) + ε2f2(x) + ε3f3(x) + · · ·

where in order to satisfy the initial condition f(0) = 2, we will have f1(0) =
f2(0) = f3(0) = · · · = 0. Substituting into (1) gives

−2e−x + εf ′1(x) + ε2f ′2(x) + ε3f ′3(x)
+2e−x + εf1(x) + ε2f2(x) + ε3f3(x)

− 4εe−2x − 4ε2e−xf1(x) − 4ε3e−xf2(x)
− ε3f21 (x) = O(ε4)
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and we can collect powers of ε:

ε0 : −2e−x + 2e−x = 0
ε1 : f ′1(x) + f1(x)− 4e−2x = 0
ε2 : f ′2(x) + f2(x)− 4e−xf1(x) = 0
ε3 : f ′3(x) + f3(x)− f21 (x)− 4e−xf2(x) = 0

The order ε0 (or 1) equation is satisfied automatically. Now we simply solve at
each order, applying the boundary conditions as we go along.

Order ε terms.

f ′1(x) + f1(x) = 4e−2x =⇒ f1(x) = −4e−2x + c1e
−x

and the boundary condition f1(0) = 0 gives c1 = 4:

f1(x) = 4(e−x − e−2x).

Order ε2 terms.

The equation becomes

f ′2(x) + f2(x) = 4e−xf1(x) =⇒ f ′2(x) + f2(x) = 16e−x(e−x − e−2x)

with solution
f2(x) = 8(−2e−2x + e−3x) + c2e

−x

and the boundary condition f2(0) = 0 gives c2 = 8:

f2(x) = 8(e−x − 2e−2x + e−3x).

Order ε3 terms.

The equation is f ′3(x) + f3(x)− f21 (x)− 4e−xf2(x) = 0 which becomes

f ′3(x) + f3(x) = 48(e−2x − 2e−3x + e−4x).

The solution to this equation is

f3(x) = 16(−3e−2x + 3e−3x − e−4x) + c3e
−x.

Applying the boundary condition f3(0) = 0 gives c3 = 16 so

f3(x) = 16(e−x − 3e−2x + 3e−3x − e−4x).

The solution we have found is:

f(x) = 2e−x + 4ε(e−x − e−2x) + 8ε2(e−x − 2e−2x + e−3x)

+ 16ε3(e−x − 3e−2x + 3e−3x − e−4x) + · · ·

This is an example of a case where carrying out a perturbation expansion gives
us an insight into the full solution. Notice that, for the terms we have calculated,

fn(x) = 2n+1e−x(1− e−x)n,
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suggesting a guessed full solution

f(x) =

∞∑
n=0

εn2n+1e−x(1− e−x)n = 2e−x
∞∑

n=0

[2ε(1− e−x)]n =
2e−x

1− 2ε(1− e−x)
.

Having guessed a solution, of course, verifying it is straightforward: this is
indeed the correct solution to the ODE of equation (1).

2.2 Example eigenvalue problem

We will find the first-order perturbations of the eigenvalues of the differential
equation

y′′ + λy + εy2 = 0

in 0 < x < π, with boundary conditions y(0) = y(π) = 0.
[Exercise: repeat this with the final term as εy (easy) or εy3 (harder).]

First we look at the case ε = 0:

y′′ + λy = 0

This has possible solutions:

λ < 0 y = A cosh [x
√
−λ] +B sinh [x

√
−λ]

λ = 0 y = Ax+B

λ > 0 y = A cos [x
√
λ] +B sin [x

√
λ]

The first two solutions can’t satisfy both boundary conditions. The third must
have A = 0 to satisfy the condition y(0) = 0, and the second boundary condition
leaves us with

B sin [π
√
λ] = 0 =⇒ λ = m2, m = 1, 2, . . .

Now we return to the full problem, posing regular expansions in both y and λ:

y = sinmx+ εy1 + · · ·

λ = m2 + ελ1 + · · ·

Substituting in, we obtain for the differential equation:

−m2 sinmx + m2 sinmx = 0
εy′′1 + εm2y1 + ελ1 sinmx + ε sin2mx = 0

As we would expect, the order 1 equation is already satisfied, along with the
boundary conditions.

Order ε

The ODE at order ε becomes

y′′1 +m2y1 = −λ1 sinmx− sin2mx = −λ1 sinmx+
1

2
cos 2mx− 1

2
.
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We expect a solution of the form

y1 = A sinmx+B cosmx+ Cx cosmx+D cos 2mx+ E

and substituting this form back in to the left hand side gives us

−2Cm sinmx− 3m2D cos 2mx+ Em2 = −λ1 sinmx+
1

2
cos 2mx− 1

2

which fixes C = λ1/2m, D = −1/6m2, E = −1/2m2. The solution is

y1 = A sinmx+B cosmx+
λ1
2m

x cosmx− 1

2m2
− 1

6m2
cos 2mx.

Now we apply the boundary conditions to determine the eigenvalue: y(0) = 0
gives

0 = B − 1

2m2
− 1

6m2
B =

2

3m2

and then the condition y(π) = 0 becomes:

0 =
2

3m2
(−1)m +

λ1
2m

π(−1)m − 1

2m2
− 1

6m2

which simplifies to determine λ1:

λ1 =
4

3mπ
[(−1)m − 1] =

−8

3mπ

{
0 m even
1 m odd

Thus the eigenvalues become

λ = 1− 8ε

3π
, 4, 9− 8ε

9π
, 16, 25− 8ε

15π
, · · ·

2.3 Warning signs

As I mentioned earlier, the Taylor series model of function behaviour does not
always work. The same is true for model systems: and a regular perturbation
expansion will not always capture the behaviour of your system. Here are a few
of the possible warning signs that things might be going wrong:

One of the powers of ε produces an insoluble equation
By this I don’t mean a differential equation with no analytic solution: that
is just bad luck. Rather I mean an equation of the form x1 + 1 − x1 = 0
which cannot be satisfied by any value of x1.

The equation at ε = 0 doesn’t give the right number of solutions
An nth order ODE should have n solutions. If the equation produced
by setting ε = 0 has less solutions then this method will not give all the
possible solutions to the full equation. This happens when the coefficient
of the highest derivative is zero when ε = 0. Equally, for a PDE, if the
solution you find at ε = 0 cannot satisfy all your boundary conditions,
then a regular expansion will not be enough.

The coefficients of ε can grow without bound
In the case of an expansion f(x) = f0(x)+εf1(x)+ε

2f2(x)+· · · , the series
may not be valid for some values of x if some or all of the fi(x) become
very large. Say, for example, that f2(x) → ∞ while f1(x) remains finite.
Then εf1(x) is no longer strictly larger than ε2f2(x) and who knows what
even larger terms we may have neglected. . .
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A First-order PDEs

First-order partial differential equations can be tackled with the method of
characteristics, a powerful tool which also reaches beyond first-order. We’ll
be looking primarily at equations in two variables, but there is an extension to
higher dimensions.

A.1 Wave equation with constant speed

Consider the first-order wave equation with constant speed:

∂u

∂t
+ c

∂u

∂x
= 0.

It responds well to a change of variables:

ξ = x+ ct η = x− ct

The chain rule gives us

∂

∂x
=
∂ξ

∂x

∂

∂ξ
+
∂η

∂x

∂

∂η
=

∂

∂ξ
+

∂

∂η

∂

∂t
=
∂ξ

∂t

∂

∂ξ
+
∂η

∂t

∂

∂η
= c

(
∂

∂ξ
− ∂

∂η

)
and so the wave equation is equivalent to

2c
∂u

∂ξ
= 0.

Integrating gives the general solution u = F (η), u = F (x− ct).

But where did we get the change of variables from? The line x− ct = constant
is a line in the x–t plane along which u is constant. This means that if we
parametrise this line

x = x(r) t = t(r)

then moving along the line by changing r will not change u, i.e.

du

dr
= 0.

This is the underlying principle of the characteristic.

A.2 Variable speed

Let’s look now at the variable speed case:

∂u

∂t
+ c(x, t)

∂u

∂x
= 0.

We would like again to find curves along which u is constant. Suppose such a
curve is given by x = x(r) and t = t(r). Then, using the chain rule,

du

dr
=
∂u

∂t

dt

dr
+
∂u

∂x

dx

dr
.
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We want this to be zero, which is easily achieved if we make this expression the
same as the original linear operator:

dt

dr

∂u

∂t
+

dx

dr

∂u

∂x
=
∂u

∂t
+ c(x, t)

∂u

∂x
= 0.

This gives us the two parametric equations governing the shape of the charac-
teristic curve:

dt

dr
= 1,

dx

dr
= c(x, r).

These are both ODEs and straightforward to solve.

Example

Look at the equation

2 sin θ cos 2ϕ
∂u

∂θ
− cos θ sin 2ϕ

sin θ

∂u

∂ϕ
= 0.

Suppose that our characteristic is given by θ = θ(r), ϕ = ϕ(r). Then the
requirement that u be constant along a characteristic becomes

∂u

∂θ

dθ

dr
+
∂u

∂ϕ

dϕ

dr
= 0.

A näıve attempt would be to look at the coupled ODEs

dθ

dr
= 2 sin θ cos 2ϕ

dϕ

dr
= −cos θ sin 2ϕ

sin θ

but we can uncouple them if, before we start, we multiply the original equation
by sin θ/ cos θ cos 2ϕ:

2 sin2 θ

cos θ

∂u

∂θ
− sin 2ϕ

cos 2ϕ

∂u

∂ϕ
= 0,

dθ

dr
=

2 sin2 θ

cos θ

dϕ

dr
= − sin 2ϕ

cos 2ϕ
.

Now the equations are decoupled, and solving them in turn gives

sin θ = − 1

2r
sin 2ϕ = exp [C − 2r].

Note that we only use a constant of integration in one of these equations; since
r is just a parameter, the point r = 0 is not defined a priori. Effectively, we are
making a change of variables from x, t to r, C. We can invert the transformation:

C = ln sin 2ϕ− 1

sin θ
r = − 1

2 sin θ

and since u is constant on this curve, we can deduce the general solution

u = F (C) = F

(
ln sin 2ϕ− 1

sin θ

)
.
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A.3 More than two dimensions

Now suppose we have the PDE

∂u

∂x
+ c1(x, y, z)

∂u

∂y
+ c2(x, y, z)

∂u

∂z
= 0.

Again, we look for a curve on which u is constant; being a curve, it can still be
described with a single variable r so we set x = x(r), y = y(r) and z = z(r).
Then the chain rule gives

du

dr
=
∂u

∂x

dx

dr
+
∂u

∂y

dy

dr
+
∂u

∂z

dz

dr

and to make this equal to zero we choose

dx

dr
= 1

dy

dr
= c1(x(r), y(r), z(r))

dz

dr
= c2(x(r), y(r), z(r)).

The latter two are now coupled ODEs so we are not guaranteed to be able to
find a solution; but sometimes you may be lucky.

Example

Look at the equation
∂u

∂x
+ xy

∂u

∂y
− z ln y

∂u

∂z
= 0.

We set x = x(r), y = y(r) and z = z(r) and the chain rule gives

du

dr
=
∂u

∂x

dx

dr
+
∂u

∂y

dy

dr
+
∂u

∂z

dz

dr
.

To match the three coefficients we set:

dx

dr
= 1 x(r) = r

dy

dr
= xy = ry y(r) = y0 exp [r

2/2]

dz

dr
= −z ln y = −z(ln y0 + r2/2) z(r) = z0y

−r
0 exp [−r3/6].

Now we have expressed all points in terms of the three parameters r, y0 and z0
and u is independent of r, so the solution is any function of y0 and z0. Reversing
the change of variables gives

r = x y0 = y exp [−x2/2] z0 = zyr exp [−r3/3]

and the full solution is

u = F (y exp [−x2/2]; zyx exp [−x3/3]).

9



A.4 Inhomogeneous case

The characteristic curve is just as fundamental if the equation is not homoge-
neous, although the function value is no longer constant along characteristics.
The method is best seen by example:

∂u

∂t
+ 2xt

∂u

∂x
= u

over all x, with initial condition (at t = 0) u = x. We start by finding the
characteristic. Here the characteristic is given by

dt

dr
= 1 t = r

dx

dr
= 2xr x = x0 exp [r

2].

This time our two new variables are r and x0. Along a specific characteristic
we have

du

dr
=
∂u

∂t
+
∂u

∂x

dx

dt
= u u = u0e

r or more exactly u = F (x0)e
r.

We now have a one-parameter family of solutions (parameter x0): on the curve

x = x0 exp [t
2], u = F (x0)e

t so u = F (x exp [−t2])et.

We need to apply the initial conditions to determine the function F . At t = 0
we have x = x0 and u = F (x0) so the initial condition gives F (x0) = x0:

u = x exp [−t2]et = x exp [t− t2].

A.5 Nonlinear homogeneous case

A general first-order homogeneous PDE in two variables can be written as

∂u

∂t
+ c(u, x, t)

∂u

∂x
= 0

and the method of characteristics still applies (but we expect an implicit solution
in general). The characteristic curves are given by

dx

dt
= c(u, x, t).

Again, we will write the curve parametrically as t = r, and x some function of
r and a constant x0 (that is, constant for a given characteristic). Along any
characteristic we will have

du

dr
= 0

and so u is constant along a characteristic. We can then make this into a solution
everywhere by setting u = F (x0) on the characteristic specified by x0.

Since u is constant on our characteristic, the equation of the curve is simply

dx

dt
= c(F (x0), x, t),
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which is a straightforward ODE in x and t. Once we have solved it we have the
characteristic curve

t = r x = G(x0, F (x0), r) = G(x0, u, r).

The implicit form of the solution is now:

x = G(x0, u, t) u = F (x0)

which is a one-parameter family with parameter x0. In many cases it is possible
to rearrange the first equation to obtain x0 in terms of u and t; then substitut-
ing this into the second equation gives the more standard form of the implicit
solution.

Example

Consider the advection equation

∂u

∂t
+ ux2t

∂u

∂x
= 0.

Because it is homogeneous, we expect u to be constant along characteristics: so
we parameterise with x0 (constant on each characteristic) and r (which varies
along the characteristic) and we can say u = F (x0).

Now our characteristic curve becomes

dx

dt
= ux2t = F (x0)x

2t,

which we can solve:∫
dx

x2
= F (x0)

∫
tdt − 1

x
=

1

2
F (x0)t

2 − 1

x0

x =
2x0

2− x0F (x0)t2
.

Thus the characteristic curve and implicit solution are:

t = r x =
2x0

2− x0F (x0)r2
u = F (x0).

As above, we can rearrange to get x0 in terms of x, t and u:

x =
2x0

2− x0ut2
x0 =

2x

2 + uxt2

and the standard implicit form of the solution is

u = F

(
2x

2 + uxt2

)
.
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A.6 Nonlinear inhomogeneous

We are now looking at the most complex of first-order PDEs: those of the form

∂u

∂t
+ c(u, x, t)

∂u

∂x
= f(u, x, t)

Characteristics still exist in these systems, and they may have important phys-
ical properties (for instance, discontinuities in the derivatives of the solution
will propagate along them) but unfortunately, since u itself now varies along a
characteristic, we can no longer solve even implicitly in general.

Example

Here is a case where we can achieve a little:

∂u

∂t
+ u

∂u

∂x
= cos t.

In this case we can immediately spot one solution

u = A+ sin t

but can we show that this is not the most general solution?

The characteristics are defined by

dx

dt
= u;

let us suppose we know the family of curves x = f(x0, r), t = r. Then we have

du

dr
=
∂u

∂t

dt

dr
+
∂u

∂x

dx

dr
=
∂u

∂t
+

∂

∂r
f(x0, r)

∂u

∂x

which gives us the two coupled equations

∂

∂r
f(x0, r) = u

du

dr
= cos r.

These are easy to solve in reverse order:

u = A(x0) + sin r x = A(x0)r − cos r + x0.

Unfortunately, we can’t extract x0 explicitly without choosing the function
A(x0); but note that

A(x0) = α =⇒ x0 = x+ cos t− αt u = α+ sin t

A(x0) = x0/β =⇒ x0 =
β (x+ cos t)

(β + t)
u =

x+ cos t

β + t
+ sin t

so our “spotted” solution is only one of a family of possible solutions.

12



3 Dimensional Analysis

Dimensional analysis is a very simple and straighforward tool, but with a little
flexibility it can be extended to create more general scaling laws: it is always
worth considering at the outset of a physical problem.

3.1 Simple concepts

The fundamental units of standard dimensional analysis are the units mass, M ;
length, L; and time, T . There are others – but we’ll start with these. So a mass
has dimension M , a velocity dimension LT−1, and a force dimension MLT−2.

The most basic task of dimensional analysis is a check on the sanity of your equa-
tions. It is only sensible to add two quantities if they have the same dimensions.
Let’s look at the Navier–Stokes momentum equation as an example:

ρ (∂tu+ u · ∇u) = −∇p+ η∇2u.

The dimensions of the individual quantities are:

[ρ] =ML−3 [∂t] = T−1 [u] = LT−1 [∇] = L−1 [p] =ML−1T−2

and let’s suppose we don’t know what viscosity, η, should be measured in. Then
putting all these dimensions into our equation gives:

ML−3(LT−2) =ML−3(LT−2) =ML−2T−2 = [η]L−2LT−1

and we can deduce that [η] =ML−1T−1.

3.2 Extending the concept

Even dimensionless numbers can be part of a dimensions system. For instance,
a mole of a substance is defined to be 6.0221367× 1023 atoms of it. Avogadro’s
number is just a number – it has no dimensions – and yet in scaling an equation,
if one quantity is “per mole” then other quantities added to it must be too. For
instance, the ideal gas law

pV = nRT

has the obvious dimensions

[p] =ML−1T−2 [V ] = L3 [T ] = Θ

in which we are using Θ for the dimension of temperature. The other two
quantities are less obvious: n is the number of moles of the substance present
– just a number, but if we were to define a “dimension” for moles, M, then we
could deduce

[n] = M [R] =ML2T−2Θ−1M−1

which does indeed fit: the value of the ideal gas constant R is

R = 8.314472m3 PaK−1 mol−1 = 8.314472 kgm2 s−2 K−1 mol−1.

This concept brings us away from pure dimensional analysis and into the realm
of scaling laws.
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3.3 Dimensionless parameters

The other critical technique based on dimensional analysis is nondimensionali-
sation. To quote Andrew Fowler,2

Confronted with, or having created, a mathematical model of a
continuous physical system, which consists of a set of differential
equations and associated boundary condition, the first thing that
an applied mathematician will want to do is non-dimensionalize the
system.

Some think this desire is the only real difference between an applied mathemati-
cian and a theoretical physicist.

The principle is this: for every dimension relevant in your problem (which may
include moles or other such pseudo-dimensions), pick a representative value. It
may be that the natural choices are the basic dimensions M , L and T ; more
often they are not. For the standard example of the Navier–Stokes momentum
equations above, we typically choose typical values for the three combinations

L lengthscale U = LT−1 velocity η =ML−1T−1 viscosity.

We introduce new dimensionless variables which are just the original variables,
scaled with the relevant dimensional combinations. Thus (using a tilde ˜ to
denote each dimensionless quantity) we would introduce

u = Uũ p = Uηp̃/L

and scaling lengths and times gives also

∂̃t = L∂t/U ∇̃ = L∇

which result in the new equation (multiplying by L2U−1/η):

ρUL

η

(
∂ũ

∂t̃
+ ũ · ∇̃ũ

)
= −∇̃p̃+ ∇̃2ũ.

We have now reduced the number of physical parameters from two (ρ and η) to
just one: the Reynolds number Re = ρUL/η. It expresses the balance between
inertial and viscous terms.

Typically you will have some choice as to which variables to use for scaling and
which combinations to use as your dimensionless numbers. Prior work in the
field often gives the best clue here: there may be named dimensionless groups
and these are often the most convenient choice.

2Andrew C. Fowler, Mathematical Models in the Applied Sciences, p. 19.
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4 Rescaling

After our foray into dimensional analysis at the end of last week, we return to
standard perturbation methods now: the next step after we’ve made our system
dimensionless and found that one of the dimensionless parameters is small (or
large). In this section we’ll look at one of the reasons that our ε = 0 system
might not have enough solutions, and introduce a tool that is fundamental to
all perturbation systems. We’ll start with a very simple example and work up
from there.

4.1 Example algebraic equation

Here our model equation is

εx2 + x− 1 = 0. (2)

Suppose we try a regular perturbation expansion on it. Setting ε = 0 gives

x− 1 = 0,

with just the one solution x = 1. Since we started with a second-degree poly-
nomial we know we have lost one of our solutions; however, if we carry on with
the regular perturbation expansion we will get a perfectly valid series for the
root near x = 1.

Now let us look at the true solution to see what’s gone wrong.

x =
−1±

√
1 + 4ε

2ε

As ε→ 0, the leading-order terms of the two roots are

x = 1 +O(ε); and − 1

ε
+O(1).

The first of these is amenable to the simplistic approach; we haven’t seen the
second root because it → ∞ as ε→ 0.

- x

6ε

For this second root, let us try a series

x = x−1ε
−1 + x0 + εx1 + · · ·

We substitute it into (2):

x2−1ε
−1 + 2x−1x0 + ε(x20 + 2x−1x1) + · · ·

+ x−1ε
−1 + x0 + εx1 + · · ·

− 1 = 0
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and collecting powers of ε gives:

ε−1 : x2−1 + x−1 = 0 ; x−1 = 0 , −1
ε0 : 2x−1x0 + x0 − 1 = 0 ; x0 = 1 , −1
ε1 : x20 + 2x−1x1 + x1 = 0 ; x1 = −1 , 1

Note that we can now get the expansions for both of the roots using the same
method.

4.2 Finding the scaling

What do we do if we can’t use the exact solution to tell us about the first term
in the series?

We use a trial scaling δ. We put

x = δ(ε)X

with δ being an unknown function of ε, and X being strictly order 1. We call
this X = ord(1): as ε→ 0, X is neither small nor large.

Let’s try it for our example equation: εx2+x− 1 = 0. We put in the new form:

εδ2X2 + δX − 1 = 0

and then look at the different possible values of δ. We will only get an order 1
solution for X if the biggest term in the equation is the same size as another
term: a dominant balance or distinguished scaling.

Finding scalings in large systems is more of an art than a science – it’s easy to
check your scaling works, but finding it in the first place is tricky. But with
small systems, it’s quite straightforward. I view this process in two ways: one
completely systematic (but really only practical with a three-term equation)
and the other more of a mental picture.

Systematic method

Since we need the two largest terms to balance, we try all the possible pairs of
terms and find the value of δ at which they are the same size. Then for each
pair we check that the other term is not bigger than our balancing size.

Balance terms 1 and 2 These two are the same size when εδ2 = δ which
gives δ = ε−1. Then both terms 1 and 2 scale as ε−1 and term 3 is smaller
– so this scaling works.

Balance terms 1 and 3 These two balance when εδ2 = 1 and so δ = ε−1/2.
Then our two terms are both order 1, and term 2 scales as ε−1/2 which is
bigger. The balancing terms don’t dominate so this scaling is no use.

Balance terms 2 and 3 These two balance when δ = 1, when they are both
order 1. Then term 1 is order ε, which is smaller: so we have a working
balance at δ = 1.

This process quickly gives us the only two scalings which work: δ = ε−1 and
δ = 1.

16



Horse-race picture

Think of the terms as horses, which “race” as we change δ. The largest term
is considered to be leading, and we are interested in the moment when the lead
horse is overtaken: that is, the two biggest terms are equal in size.

The three horses in our case are

[A] εδ2 [B] δ [C] 1

and we will start from the point δ ≈ 0. Initially, [C] is ahead, with [B] second
and [A] a distant third.

As we increase δ, each horse moves according to its power of δ: higher powers
move faster (but start further behind). We are looking for the first moment that
one of [A] or [B] catches [C]. A quick glance tells us that for [B] it will happen
at δ = 1 whereas for [A] we have to wait until δ > 1. So the first balance is at
δ = 1, when [B] overtakes [C].

Now because [C] is the slowest horse (in fact stationary) it will never catch [B]
again, so we only need to look for the moment (if any) when [A] overtakes [B].
This is given by εδ2 = δ which gives our second balancing scaling of δ = ε−1.

4.3 Impossible equations: non-integral powers

Try this algebraic equation:

(1− ε)x2 − 2x+ 1 = 0.

Setting ε = 0 gives a double root x = 1. Now we try an expansion:

x = 1 + εx1 + ε2x2 + · · ·

Substituting in gives

1 + 2εx1 + ε2(x21 + 2x2) + · · ·
− ε − 2ε2x1 + · · ·

− 2 − 2εx1 − 2ε2x2 + · · ·
+ 1 = 0

At ε0, as expected, the equation is automatically satisfied. However, at order
ε1, the equation is

2x1 − 1− 2x1 = 0 1 = 0

which we can never satisfy. Something has gone wrong. . .

In fact in this case we should have expanded in powers of ε1/2. If we set

x = 1 + ε1/2x1/2 + εx1 + · · ·

then we get

1 + 2ε1/2x1/2 + ε(x21/2 + 2x1) + · · ·
− ε + · · ·

− 2 − 2ε1/2x1/2 − 2εx1 + · · ·
+ 1 = 0
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At order ε0 we are still OK as before; at order ε1/2 we have

2x1/2 − 2x1/2 = 0

which is also automatically satisfied. We don’t get to determine anything until
we go to order ε1, where we get

x21/2 + 2x1 − 1− 2x1 = 0 x21/2 − 1 = 0

giving two solutions x1/2 = ±1. Both of these are valid and will lead to valid
expansions if we continue.

We could have predicted that there would be trouble when we found the double
root: near a quadratic zero of a function, a change of order ε1/2 in x is needed
to change the function value by ε:

- x

6

ε1/2

ε p p p p p p p pppps

4.4 Choosing the expansion series

In the example above, if we had begun by defining δ = ε1/2 we would have had
a straightforward regular perturbation series in δ. But how do we go about
spotting what series to use?

In practice, it is usually worth trying an obvious series like ε, ε2, ε3 or, if there
is a distinguished scaling with fractional powers, then a power series based on
that. But this trial-and-error method, while quick, is not guaranteed to succeed.

In general, for an equation in x, we can pose a series

x ∼ x0δ0(ε) + x1δ1(ε) + x2δ2(ε) + · · ·

in which xi is strictly order 1 as ε → 0 (i.e. tends neither to zero nor infinity)
and the series of functions δi(ε) has δ0(ε) ≫ δ1(ε) ≫ δ2(ε) · · · for ε≪ 1.

Then at each order we look for a distinguished scaling. Let us work through an
example:

√
2 sin

(
x+

π

4

)
− 1− x+

1

2
x2 = −1

6
ε.

In this case there is a solution near x = 0, which we will investigate.

First let us sort out the trigonometric term, expanding it as a Taylor series
about x = 0:

√
2 sin

(
x+

π

4

)
=

√
2
[
sinx cos

(π
4

)
+ cosx sin

(π
4

)]
=

√
2

[
1√
2
sinx+

1√
2
cosx

]
= sinx+ cosx = 1+ x− x2

2!
− x3

3!
+
x4

4!
+
x5

5!
+ · · ·

The governing equation becomes

−x
3

6
+
x4

24
+

x5

120
+O(x6) = −1

6
ε.
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x3 − x4

4
− x5

20
+O(x6) = ε.

We pose a series
x = x0δ0(ε) + x1δ1(ε) + · · ·

and substitute it. The leading term on the left hand side is x30δ
3
0 , and on the

right hand side is ε. So we set δ0 = ε1/3 and x0 = 1.

Now we have
x = ε1/3 + x1δ1(ε) + · · ·

which we substitute into the governing equation. Remembering that δ1 ≪ ε1/3

and keeping terms up to order ε2/3δ1 and ε4/3 (neglecting only terms which are
guaranteed to be smaller than one of these), we have

3x1ε
2/3δ1 − ε4/3/4 = 0.

To make this work, we need δ1 = ε2/3 and then x1 = 1/12.

The first two terms of the solution are:

x = ε1/3 +
1

12
ε2/3 + · · ·

4.5 A worse expansion series: Logarithms

Let us consider the equation (with ε > 0):

e−x − εx = 0.

We’re looking for the leading-order scaling for x:

x ∼ x0δ0 + x1δ1 + · · ·

As a quick first hack, we need to check we expect a solution at all. Both e−x and
−εx are decreasing functions so the whole left hand side is a decreasing function
of x. At x = 0 the function value is 1; for large x, it is negative. Therefore we
expect exactly one root, and we expect it to lie in positive x.

In order to see the scaling of the leading term, we will look at the function

f(x) = x−1e−x (we need f(x) = ε).

It is also a decreasing function, moving from ∞ at x = 0 to 0 as x → ∞. We
can check the value of f(x) for various values of x, so that we know where to
look for the root.

If x = 1 then f(x) = e−1 which is too large: so we need x > 1.

If x = ε−1, then f(x) = ε exp (−ε−1) which is exponentially small: so we need
x < ε−1.

If x = ε−α for some fixed positive α, then f(x) = εα exp (−ε−α) which is still
exponentially small: so we need a value of x which is larger than 1 but smaller
than any negative power of ε. This naturally leads us to the logarithm.

If we try δ0 = ln (1/ε) (with the inverse present so that δ0 is positive, which
makes everything more intuitive) then the leading-order approximation to f(x)
is

f(x0δ0) = x−1
0 δ−1

0 exp [−δ0x0] =
εx0

x0 ln (1/ε)

Does this work? Let’s pick values of x0 to try.

19



• If x0 = 1 then f(x) = ε/ ln (1/ε) ≪ ε.

• If x0 = 1/2 then f(x) = 2ε1/2/ ln (1/ε) ≫ ε.

These two order-1 values for x0 bound our root, so we know we have found the
right scaling to start with. Once we’ve got the first scaling it all becomes much
easier.

Now let’s continue with the series:

x = x0 ln (1/ε) + δ1x1 + δ2x2 + · · ·

Before we go any further, note that ln (1/ε) is large and positive, and let us
denote

L1 = ln (1/ε), L2 = ln ln (1/ε) = lnL1.

The scaling of these terms is ε−α ≫ L1 ≫ L2 ≫ 1.

Now on with our expansion. We substitute the first two terms into the governing
equation to have:

exp (−[x0 ln (1/ε) + x1δ1 + · · · ])− ε[x0 ln (1/ε) + x1δ1 + · · · ] = 0

εx0 exp (−[x1δ1 + · · · ]) = x0ε ln (1/ε) + · · · .

Clearly to make the powers of ε work we need x0 = 1; we then want to fix δ1 so
that

exp (−[x1δ1 + · · · ]) = ln (1/ε) + · · · .

For this we need

−[x1δ1 + · · · ] = ln ln (1/ε) + · · ·, x1δ1 = −L2.

We return to the expansion:

x = L1 − L2 + x2δ2 + · · ·

and to the governing equation:

exp (−[L1 − L2 + x2δ2 + · · · ]) = ε[L1 − L2 + x2δ2 + · · · ]

εL1 exp (−[x2δ2 + · · · ]) = εL1 − εL2 + · · ·

exp (−[x2δ2 + · · · ]) = 1− L2

L1
+ · · ·

Now since L2 ≪ L1 we can assume δ2 ≪ 1 and expand the exponential in the
usual way:

1− x2δ2 + · · · = 1− L2

L1
+ · · ·

and so we have found

x2δ2 =
L2

L1
.

We will carry out just one more term:

x = L1 − L2 +
L2

L1
+ x3δ3 + · · ·
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exp (−[L1 − L2 + L2/L1 + x3δ3 + · · · ]) = ε[L1 − L2 + L2/L1 + x3δ3 + · · · ].

x3δ3 = −L2/L
2
1 + L2

2/2L
2
1 + · · · .

In general, if logarithms appear in a problem, only trial and error (as here) or an
iterative scheme (see, e.g. Hinch page 12) will give access to a solution. However,
solutions are usually expressible in terms of the two logarithmic building blocks
L1 and L2.

Warning!

Not only are logarithmic expansions horrible to find, they are also a lot less use
in practice than the power series we have been looking at. Unless your physical
“small parameter” is extremely small, L1 will not be very large and L2 probably
not large at all: so the ordering of terms, while correct in the limit ε→ 0, may
not be helpful at a real value of ε. The table below gives an idea of the problem.

ε L1 L2 L2/L1 (L2
2 − 2L2)/L

2
1

10−1 2.303 0.834 0.362 -0.183
10−3 6.908 1.933 0.280 -0.003
10−5 11.51 2.443 0.212 0.008
10−7 16.12 2.780 0.172 0.008
10−9 20.72 3.031 0.146 0.007

B Similarity solutions

Similarity solutions to PDEs are solutions which depend on certain groupings
of the independent variables, rather than on each variable separately. The
technique for finding them is very similar to scaling analysis in perturbation
methods, except that we don’t need a small parameter.

I’ll show the method by a couple of examples, one linear, the other nonlinear.

B.1 Linear example: the heat equation

The heat equation in one dimension is

ut = κuxx.

It is parabolic, which means there is just one family of characteristics. t =
constant: but because of the first-order term that fact doesn’t help us much.

This form of equation arises often within boundary layers in a PDE: the first-
order derivative may be in an unstretched direction and the higher-order deriva-
tive come from the component of ∇2 in a stretched direction, if the coefficient
of ∇2 in the original equation was small (i.e. an advection–diffusion equation
with weak diffusion).

We introduce the dilation transformation

z = εax, s = εbt, v = εcu

21



under which ∂t = εb∂s and so on, and the PDE becomes

εb−cvs = κε2a−cvzz.

We look for values under which our PDE is unchanged: in this case we have
b− c = 2a− c and so b = 2a. That tells us that, provided b = 2a, if u(x, t) is a
solution of the original equation, then so is εcu(εax, εbt). But what use is this
observation?

The key thing is to note that the combinations

vs−c/b = εcu(εbt)−c/b = ut−c/b and zs−a/b = εax(εbt)−a/b = xt−a/b

are both unchanged by the transformation , which suggests we look for a solution
which combines these two forms:

u = tc/bf(xt−a/b).

Returning to our specific example, we needed b = 2a which means the combi-
nation for the argument of f is xt−1/2 = x/

√
t. We introduce a new variable

for this combination
ξ = x/

√
t u = tc/bf(ξ)

and substitute into the original equation:

ut =
c

b
tc/b−1f(ξ) + tc/bf ′(ξ)

(
−1

2
xt−3/2

)
=

(
c

b
f(ξ)− 1

2
ξf ′(ξ)

)
tc/b−1

uxx = tc/b−1f ′′(ξ)

0 = ut − κuxx =

(
c

b
f(ξ)− 1

2
ξf ′(ξ)− κf ′′(ξ)

)
tc/b−1

We have reduced a constant-coefficient PDE to a variable-coefficient ODE:

κf ′′(ξ) +
1

2
ξf ′(ξ)− c

b
f(ξ) = 0.

For a linear equation like this, the ratio c/b is not determined by the equation
and we have some flexibility to use in meeting boundary conditions.

B.1.1 Fixed boundary conditions

Suppose our original equation came with the boundary conditions

u(x, 0) = 0, x > 0 u(x, t) → 0, x→ ∞ u(0, t) = u0, t > 0.

Transforming these into the new variables gives

tc/bf(ξ) → 0, ξ → ∞, even as t→ 0 tc/bf(0) = u0, t > 0.

The first of these gives two conditions: f(ξ) → 0 as ξ → ∞ and also c/b ≥ 0.
The second, on the other hand, can only be satisfied if c/b = 0 and then we
have the transformation

u = f(ξ) ξ = xt−1/2
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κf ′′(ξ) +
1

2
ξf ′(ξ) = 0 f(ξ) → 0, as ξ → ∞, f(0) = u0.

We can integrate this once to obtain

f ′(ξ) = C1 exp

[
− ξ2

4κ

]

f(ξ) = C1

∫ ξ

0

exp

[
− p2

4κ

]
dp+ C2 = C1(κπ)

1/2 erf

(
ξ

2
√
κ

)
+ C2

where erf (x) := (2/
√
π)

∫ x

0
e−t2 dt. Then the boundary conditions lead to

f(ξ) = u0

(
1− erf

(
ξ

2
√
κ

))
= u0 erfc

(
ξ

2
√
κ

)
.

The solution of the original equation is

u = u0 erfc

(
x

2
√
κt

)
.

B.1.2 Flux boundary conditions

On the other hand, if we have a flux boundary condition on u:

u(x, 0) = 0, x > 0 u(x, t) → 0, x→ ∞ ux(0, t) = Q, t > 0.

then we still have the conditions c/b ≥ 0 and f(ξ) → 0 as ξ → ∞, but now

tc/b−1/2f ′(0) = Q, t > 0,

which can only be satisfied by taking c/b = 1/2. The final transformation is

u = t1/2f(ξ) ξ = xt−1/2

giving the ODE and boundary conditions

2κf ′′(ξ) + ξf ′(ξ)− f(ξ) = 0 f(ξ) → 0, ξ → ∞, f ′(0) = Q.

It is easy to spot one solution to this equation: f(ξ) = C1ξ. So we use the
reduction-of-order trick and set f(ξ) = ξg(ξ) to get:

2κξg′′(ξ) + (4κ+ ξ2)g′(ξ) = 0

Now we can integrate once:

g′(ξ) =
C1

ξ2
exp

[
− ξ2

4κ

]
g(ξ) = C1

∫ ξ 1

p2
exp

[
− p2

4κ

]
dp+ C2

f(ξ) = C1ξ

∫ ξ 1

p2
exp

[
− p2

4κ

]
dp+ C2ξ.

Integrating by parts gives

f(ξ) = C1

[
− exp

[
− ξ2

4κ

]
− ξ

√
π

2
√
κ
erf

(
ξ

2
√
κ

)]
+ C2ξ,

and after applying the boundary conditions the solution becomes

f(ξ) = Q

(
ξ erfc

(
ξ

2
√
κ

)
− 2

√
κ√
π

exp

[
− ξ2

4κ

])
.
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B.2 Nonlinear example: KdV equation

The Korteweg–de Vries equation is

ut + 6uux + uxxx = 0.

Setting z = εax, s = εbt and v = εcu gives

εb−cvs + 6εa−2cvvz + ε3a−cvzzz = 0,

which gives us the conditions for invariance:

b− c = a− 2c = 3a− c : b = 3a, c = −2a.

The transformation u = t−2/3f(ξ), ξ = xt−1/3 converts the KdV equation to

t−5/3

(
f ′′′(ξ) + f ′(ξ)

[
6f(ξ)− ξ

3

]
− 2

3
f(ξ)

)
= 0,

f ′′′(ξ) + f ′(ξ)

(
6f(ξ)− ξ

3

)
− 2

3
f(ξ) = 0.

This ordinary differential equation can be shown to have the so-called Painlevé
property, meaning that all movable singular points are poles. A movable
singular point is a point where the solution becomes singular but the location of
this singularity depends on the arbitrary constants of integration. For instance,
the equation y′ = y2 has the solution y = (C − ξ)−1, which has a singular
point whose location depends on the arbitrary constant of integration, C; this
equation therefore does have the Painlevé property. The equation y′ = y3,
on the other hand, does not have this property. There is a conjecture3, that
any ODE obtained as a reduction of a PDE which is solvable by the inverse
scattering transform should have the Painlevé property, possibly after a change
of variables.

Thus although we can’t solve the ODE above in general, the act of deriving it
can give us useful information about the original PDE.

C The second-order 1D wave equation

C.1 Homogeneous wave equation with constant speed

The simplest form of the second-order wave equation is given by:

∂2u

∂t2
− c2

∂2u

∂x2
= 0

Like the first-order wave equation, it responds well to a change of variables:

ξ = x+ ct η = x− ct

which reduces it to

−4c2
∂2u

∂ξ∂η
= 0

3Ablowitz et al., J. Math. Phys. 21, 715 (1980)
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which is solved by

u = p(ξ) + q(η) = p(x+ ct) + q(x− ct)

for any differentiable functions p and q. The lines ξ = constant and η = constant
are the characteristics, exactly analogous to the characteristics for the first-order
equation.

If we add initial conditions

u(x, 0) = f(x) ∂u/∂t(x, 0) = g(x)

then a little algebra gives us d’Alembert’s solution:

u(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct

g(y) dy.

C.2 Inhomogeneous wave equation

The inhomogeneous wave equation:

∂2u

∂t2
− c2

∂2u

∂x2
= F (x, t) (3)

can be solved in a very similar way. The change of variables results in:

−4c2
∂2u

∂ξ∂η
= F

(
ξ + η

2
,
ξ − η

2c

)
which can be integrated directly for any specific function F ; however (Wein-
berger p. 25) it is also possible to carry out the integrals symbolically (paying
particular attention to which variable is held constant when integrating with
respect to another). The general result is

u = p(x+ ct) + q(x− ct) +
1

2c

∫ t

0

∫ x+c(t−t′)

x−c(t−t′)

F (x′, t′) dx′ dt′. (4)

As this is a linear PDE, the general solution to the inhomogeneous equation is
the sum of the general solution to the homogeneous equation (the CF in the
notation of ODEs) and one particular solution to the full equation (the PI). To
verify the solution we simply check that the last term of (4) satisfies (3).

Example

Let’s consider the example inhomogeneous wave equation

∂2u

∂t2
− c2

∂2u

∂x2
= 12xt.

We can find the solution using the formula (4) but it’s not straightforward!

u = p(x+ ct) + q(x− ct) +
1

2c

∫ t

0

∫ x+c(t−t′)

x−c(t−t′)

12x′t′ dx′ dt′.

25



Looking just at the integral and carrying out the x′ integration first gives∫ t

0

∫ x+c(t−t′)

x−c(t−t′)

12x′t′ dx′ dt′ =

∫ t

0

[
6(x′)2t′

]x+c(t−t′)

x′=x−c(t−t′)
dt′

=

∫ t

0

6
(
(x+ c(t− t′))2t′ − (x− c(t− t′))2t′

)
dt′

=

∫ t

0

24cxt′(t− t′) dt′ =
[
cx(12tt′2 − 8t′3)

]t
t′=0

= 4cxt3,

and the general solution is

u = p(x+ ct) + q(x− ct) + 2xt3.

For a specific case, though, it is usually more straightforward to work directly
from the original equation (with change of variables). In this case when we put
ξ = x+ ct and η = x− ct we obtain

−4c2
∂2u

∂ξ∂η
=

3

c
(ξ + η)(ξ − η) =

3

c
(ξ2 − η2).

Integrating gives

−4c2
∂u

∂ξ
= p(ξ) +

1

c
(3ξ2η − η3);

−4c2u = p(ξ) + q(η) +
ξη

c
(ξ + η)(ξ − η).

Converting the coordinates gives

u = f(x+ ct) + g(x− ct)− (x+ ct)(x− ct)

4c3
(2x)(2ct)

= f(x+ ct) + g(x− ct)− xt(x2 − c2t2)

c2
.

This doesn’t immediately look the same; but note that the difference can be
absorbed into f(x+ ct) and g(x− ct):

2xt3 +
xt(x2 − c2t2)

c2
=

(
xt(x2 + c2t2)

)
c2

=
(ξ + η)(ξ − η)((ξ + η)2 + (ξ − η)2)

64c3

=
1

32c3
(
(ξ2 − η2)(ξ2 + η2)

)
=

1

32c3
(ξ4 − η4)

which is the sum of a function of ξ and a function of η.

If you’re in any doubt about your solution, plug it back into the original equa-
tion: as long as you have the p and q terms, anything that works will be the
general solution!

C.3 Varying speed: two sets of characteristics

We saw in the constant-speed case that the characteristic curves were the
straight lines

x = k1 + ct x = k2 − ct
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Thus any point (x, t) lies on two characteristics, and finding the curves is not
quite as straightforward as it was with the first-order wave equation. Charac-
teristics, even for the homogeneous wave equation, are no longer curves along
which u is constant.

To understand the wave equation better, let’s look at the generalisation to a
wavespeed which varies in space:

∂2u

∂t2
− c2(x)

∂2u

∂x2
= 0.

The characteristics in this case are curves which satisfy(
dt

dx

)2

=
1

c2(x)
.

Not everything carries over from the constant-speed case: the “obvious” change
of variables

ξ =

∫ x dx′

c(x′)
+ t η =

∫ x dx′

c(x′)
− t,

which makes the characteristics into lines of constant ξ or constant η, only
reduces the governing equation to

−4
∂2u

∂ξ∂η
− c′(x)

(
∂u

∂η
+
∂u

∂ξ

)
= 0,

which has no straightforward solution.

Suppose we specify our initial conditions:

u(x, 0) = f(x) ∂u/∂t(x, 0) = g(x).

This time we will look at the value of the solution at a specific position and time
u(x, t). We will prove that the solution depends only on the initial conditions
over a range of x determined by the characteristics through our point: so that
information propagates along the characteristic curves as in our previous cases.

The characteristics of this problem are curves which satisfy:(
dt

dx

)2

=
1

c2(x)

dt

dx
= ± 1

c(x)
.

-

6

x

t

x1 x2

C1 C2

q(x, t)
We can find the two characteristic curves C1 and C2

passing through our point (x, t). These character-
istics will reach the initial line t = 0 at points x1
and x2 respectively (we take x1 < x2 so that C1 has
positive dt/dx and C2 the negative sign). Either x1
or x2 may be infinite.

Now consider two different sets of initial conditions:

u1(x, 0) = f1(x) u2(x, 0) = f2(x)

∂u1/∂t(x, 0) = g1(x) ∂u2/∂t(x, 0) = g2(x)
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with f1(x) = f2(x) and g1(x) = g2(x) over the range x1 ≤ x ≤ x2. If we can
show that the corresponding solutions are equal at (x, t) then we know that the
function value only depended on the initial conditions between x1 < x < x2.

The linearity of the problem means that the function v(x, t) = u1 − u2 satisfies

∂2v

∂t2
− c2(x)

∂2v

∂x2
= 0 (5)

v(x, 0) = f1(x)− f2(x) ∂v/∂t(x, 0) = g1(x)− g2(x)

with the initial condition functions both being zero over x1 ≤ x ≤ x2.

Multiplying (5) by (1/c2(x))(∂v/∂t) we can rewrite it as

∂

∂t

[
1

2c2(x)

(
∂v

∂t

)2

+
1

2

(
∂v

∂x

)2
]
− ∂

∂x

[
∂v

∂x

∂v

∂t

]
= 0

Now we integrate this equation over the region between the line t = 0 and the
two characteristics C1 and C2, meeting at the point (x, t): we integrate the first
term first with respect to t and then x, and the second in the other order.∫ x2

x1︸︷︷︸
C1, C2

1

2c2(x)

(
∂v

∂t

)2

+
1

2

(
∂v

∂x

)2

dx−
∫ t

0︸︷︷︸
C2

∂v

∂x

∂v

∂t
dt+

∫ t

0︸︷︷︸
C1

∂v

∂x

∂v

∂t
dt = 0

The later two can be converted to integrals over x, as we know dt/dx on the
two characteristics:∫ x2

x1︸︷︷︸
C1, C2

1

2c2(x)

(
∂v

∂t

)2

+
1

2

(
∂v

∂x

)2

+
∂v

∂x

∂v

∂t

dt

dx
dx = 0

and completing the square gives∫ x2

x1︸︷︷︸
C1, C2

{
1

2c2(x)

[
∂v

∂t
+ c2(x)

∂v

∂x

dt

dx

]2
+

1

2

(
∂v

∂x

)2
[
1− c2(x)

(
dt

dx

)2
]}

dx = 0

Finally, since (dt/dx)2 = 1/c2(x) on the characteristics, the second term is zero
and we have ∫ x2

x1︸︷︷︸
C1, C2

{
1

2c2(x)

[
∂v

∂t
+ c2(x)

∂v

∂x

dt

dx

]2}
dx = 0

Since the integrand is nonnegative, it must be zero along both characteristics.
It follows that

∂v

∂t
+ c(x)

∂v

∂x
= 0 on C1;

∂v

∂t
− c(x)

∂v

∂x
= 0 on C2.

Since (x, t) lies on both characteristics it follows that ∂v/∂t = 0 at (x, t).
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Following the same procedure for a point (x, t0) with t0 < t, the characteristics
will lie within the triangle we used, and will intersect the line t = 0 inside the
region x1 < x < x2 where the initial conditions are zero. Thus the working
follows identically and we can deduce

∂v

∂t
(x, t) = 0 for 0 ≤ t ≤ t.

Since v(x, 0) = 0 we can integrate wrt t to show v(x, t) = 0.

This completes the proof that u1(x, t) = u2(x, t) and the solution of the wave
equation at (x, t) is only affected by information from those initial conditions
lying within the characteristics through that point.

29



D Classification of linear 2nd order PDEs

Consider a linear homogeneous second-order PDE in x and t having constant
coefficients and only second-order derivatives:

L[f ] = A
∂2f

∂t2
+B

∂2f

∂x∂t
+ C

∂2f

∂x2
= 0.

We can reduce the differential operator L to one of three canonical forms using
a linear coordinate transformation: if we take

ξ = αx+ βt η = γx+ δt

the operator becomes

L[f ] = [Aβ2 +Bαβ + Cα2]
∂2f

∂ξ2

+ [2Aβδ +B(αδ + βγ) + 2Cαγ]
∂2f

∂ξ∂η
+ [Aδ2 +Bγδ + Cγ2]

∂2f

∂η2
.

We had great success with the wave equation, choosing coordinates in which
only the second term had nonzero coefficient. Can we repeat that in general?
We will need to choose α, β, γ and δ so that

Aβ2 +Bαβ + Cα2 = 0 Aδ2 +Bγδ + Cγ2.

Suppose for the sake of the argument that A is nonzero (if it is zero but C is
nonzero, switching x and t gives nonzero A; if both A and C are zero we don’t
need to change variables at all). Then neither α nor γ can be zero and we can
divide by them:

A

(
β

α

)2

+B
β

α
+ C = 0 A

(
δ

γ

)2

+B
δ

γ
+ C = 0

The solutions (identical) to these two constraints are

β

α
=

1

2A
[−B ±

√
B2 − 4AC]

δ

γ
=

1

2A
[−B ±

√
B2 − 4AC]

and the two ratios must be different (for otherwise ξ is a multiple of η): so
providing B2 − 4AC > 0 we can choose

α = γ = 2A β = −B +
√
B2 − 4AC δ = −B −

√
B2 − 4AC

ξ = 2Ax+ [−B +
√
B2 − 4AC]t η = 2Ax+ [−B −

√
B2 − 4AC]t

which reduces the whole equation to

L[f ] = −4A(B2 − 4AC)
∂2f

∂ξ∂η
= 0,

with its general solution

f = p(ξ) + q(η)

f(x, t) = p(2Ax+ [−B +
√
B2 − 4AC]t) + q(2Ax+ [−B −

√
B2 − 4AC]t).

This only works where B2−4AC > 0: and in fact this quantity, the discriminant,
is very powerful in determining the global behaviour of the PDE solution.
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There are three possible cases.

Discriminant positive: Hyperbolic system
This is the case we have just looked at: it can be reduced to a single
mixed-derivative term. The example we’ve seen is the second-order wave
equation

∂2u

∂t2
− c2

∂2u

∂x2
= 0

which has A = 1, B = 0 and C = −c2 giving a discriminant of 4c2.

These systems have two families of characteristics along which information
propagates, and a typical solution is a combination of travelling waves.

Discriminant zero: Parabolic system
If the discriminant is zero, B2 = 4AC, we can use the transformation

α = 2A β = −B ξ = 2Ax−Bt

and any η independent of ξ, and the PDE becomes

[Aδ2 +Bγδ + Cγ2]
∂2f

∂η2
= 0.

The general solution of this equation is (using for illustration η = t which
is fine as long as A ̸= 0):

f = p(ξ) + ηq(ξ)

f(x, t) = p(2Ax−Bt) + tq(2Ax−Bt).

A typical parabolic system is the steady one-dimensional heat equation

∂2u

∂x2
= 0.

Discriminant negative: Elliptic system
In this case we cannot get rid of the coefficients of uξξ and uηη; however,
we can eliminate the mixed derivative using

α = 2A β = −B γ = 0 δ =
√
4AC −B2

ξ = 2Ax−Bt η =
√

4AC −B2t

to obtain

A(4AC −B2)

[
∂2f

∂ξ2
+
∂2f

∂η2

]
= 0.

The classic example of an elliptic PDE is precisely this reduced form:
Laplace’s equation

∂2u

∂t2
+
∂2u

∂x2
= 0

∂2u

∂x2
+
∂2u

∂y2
= 0 ∇2u = 0

whose discriminant is −1. There are no real characteristics in this case
(but we shall see, later, that once we move into complex variable theory,
characteristics return to their earlier power).

Typical solutions are energy-minimising surfaces or functions.
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D.1 Varying coefficients

If we have a general linear second-order partial differential operator:

L[f ] = A(x, t)
∂2f

∂t2
+B(x, t)

∂2f

∂x∂t
+ C(x, t)

∂2f

∂x2

+D(x, t)
∂f

∂t
+ E(x, t)

∂f

∂x
+ F (x, t)f

then it can be classified as hyperbolic, parabolic or elliptic at a point (x0, t0)
according to the value of B2(x0, t0) − 4A(x0, t0)C(x0, t0), in other words the
local discriminant.

D.2 General hyperbolic equation

Suppose that the discriminant is positive everywhere in our domain: then we
say the PDE is hyperbolic in the domain, and it will have two families of
characteristics along which information propagates. We can reduce the second-
order terms to the standard form ∂2u/∂ξ∂η, although that does not guarantee
us a solution: nonetheless, finding the characteristic curves can be very useful.

Instead of using a linear change of variables, we use a general (twice differen-
tiable) transformation:

ξ = ξ(x, t) η = η(x, t)

and the chain rule gives:

L[f ] =

[
A

(
∂ξ

∂t

)2

+B
∂ξ

∂t

∂ξ

∂x
+ C

(
∂ξ

∂x

)2
]
∂2f

∂ξ2

+

[
2A

∂ξ

∂t

∂η

∂t
+B

∂ξ

∂t

∂η

∂x
+B

∂η

∂t

∂ξ

∂x
+ 2C

∂ξ

∂x

∂η

∂x

]
∂2f

∂ξ∂η

+

[
A

(
∂η

∂t

)2

+B
∂η

∂t

∂η

∂x
+ C

(
∂η

∂x

)2
]
∂2f

∂η2

+ [L[ξ]− F ]
∂f

∂ξ
+ [L[η]− F ]

∂f

∂η
+ Ff = 0

To zero the unmixed second derivatives, both ratios

∂ξ/∂t

∂ξ/∂x

∂η/∂t

∂η/∂x

need to be solutions of the quadratic equation

Az2 +Bz + C = 0

So now we can calculate the characteristic curves (if we are given A, B and C)
by choosing one of these roots for each family.
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D.3 Hyperbolic example: finding the characteristics

Since the characteristics only depend on the second-order derivatives, we will
just look at the second-order operator for our example (Weinberger p. 45):

L[f ] = ∂2f

∂t2
+ (5 + 2x2)

∂2f

∂x∂t
+ (1 + x2)(4 + x2)

∂2f

∂x2
.

Note that this is indeed hyperbolic:

B2 − 4AC = (5 + 2x2)2 − 4(1 + x2)(4 + x2) = 9.

Then we need our two ratios to be

∂ξ/∂t

∂ξ/∂x
=

−(5 + 2x2) + 3

2
= −1−x2 ∂η/∂t

∂η/∂x
=

−(5 + 2x2)− 3

2
= −4−x2.

Along the curve η = constant,

0 =
dη

dt
=
∂η

∂x

dx

dt
+
∂η

∂t
so

dx

dt
= − ∂η/∂t

∂η/∂x
= 4 + x2;

similarly, on ξ = constant,

0 =
dξ

dt
=
∂ξ

∂x

dx

dt
+
∂ξ

∂t
so

dx

dt
= − ∂ξ/∂t

∂ξ/∂x
= 1 + x2.

The η = constant characteristics are

t+ η =

∫
dx

4 + x2
=

1

2
arctan

x

2
x = 2 tan (2t+ 2η)

and on ξ = constant we have

t+ ξ =

∫
dx

1 + x2
= arctanx x = tan (t+ ξ).

The change of variables we need is

ξ = arctanx− t η =
1

2
arctan

x

2
− t

∂ξ

∂x
=

1

(1 + x2)
L[ξ] = (1 + x2)(4 + x2)

∂2ξ

∂x2
=

−2x(4 + x2)

(1 + x2)

∂η

∂x
=

1

(4 + x2)
L[η] = (1 + x2)(4 + x2)

∂2η

∂x2
=

−2x(1 + x2)

(4 + x2)

and the linear operator becomes

L[f ] = − 9

(1 + x2)(4 + x2)

∂2f

∂ξ∂η
− 2x(4 + x2)

(1 + x2)

∂f

∂ξ
− 2x(1 + x2)

(4 + x2)

∂f

∂η

in which, of course, we should also substitute the new form for x, taken from
inverting the function

η − ξ =
1

2
arctan

x

2
− arctanx.
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E Separation of variables: a “lucky” method

Let’s look now at the most general constant-coefficient homogeneous linear PDE
of second order:

A
∂2f

∂t2
+B

∂2f

∂x∂t
+ C

∂2f

∂x2
+D

∂f

∂t
+ E

∂f

∂x
+ Ff = 0.

If we can eliminate the mixed-derivative term then we have a chance of using
the method of separation of variables.

The linear change of variables we were looking at while classifying our equations:

ξ = αx+ βt η = γx+ δt

gave the mixed-derivative term as

[2Aβδ +B(αδ + βγ) + 2Cαγ]
∂2f

∂ξ∂η

It is clear that our four variables are more than enough: we can make a choice
under which there is no mixed-derivative term. We’ll look later at how to
optimise the choice.

E.1 The basics

You will all have seen this method before: I will only run through it briefly. We
seek to express our solution as a sum of solutions of the form

f(x, t) = X(x)T (t).

Substituting this into the governing equation (we’ve made our change of vari-
ables already so there is no mixed derivatives term)

A
∂2f

∂t2
+ C

∂2f

∂x2
+D

∂f

∂t
+ E

∂f

∂x
+ Ff = 0

gives

AX(x)T ′′(t) + CX ′′(x)T (t) +DX(x)T ′(t) + EX ′(x)T (t) + FX(x)T (t) = 0

AT ′′(t)

T (t)
+
DT ′(t)

T (t)
= −CX

′′(x)

X(x)
− EX ′(x)

X(x)
− F

Now the left hand side of this equation is a function of t only and the right hand
side only depends on x, so they must both be a constant, λ, independent of x
and t. This insight gives us two ODEs to solve:

AT ′′(t) +DT ′(t)− λT (t) = 0 CX ′′(x) + EX ′(x) + (F + λ)X(x) = 0.

These give us pairs of solutions, coupled through the value of the constant λ,
and typically we write the final solution as

f(x, t) =
∑
n

Xn(λn, x)Tn(λn, t).
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Example: Laplace in plane polars

Laplace’s equation in plane polar coordinates is

1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
= 0 r2

∂2f

∂r2
+ r

∂f

∂r
+
∂2f

∂θ2
= 0.

The separable solution f(r, θ) = R(r)T (θ) gives the coupled ODEs

r2R′′(r) + rR′(r)

R(r)
= A

T ′′(θ)

T (θ)
= −A.

We look at the three cases A > 0, A < 0 and A = 0 separately; depending on
our domain, some solutions may not be permissible (e.g. if the domain encircles
the origin then any solution must be periodic of period 2π in θ).

Positive constant A = λ2

r2R′′(r) + rR′(r)− λ2R(r) = 0 gives R(r) = a1r
λ + a2r

−λ.

T ′′(θ) = −λ2T (θ) gives T (θ) = b1 cosλθ + b2 sinλθ

and the periodicity condition may fix λ to be an integer.

Negative constant A = −µ2

T ′′(θ) = µ2T (θ) gives T (θ) = c1e
µθ + c2e

−µθ

and now the periodicity condition cannot be satisfied for µ ̸= 0, so these
solutions will only be useful in a domain which does not encircle the origin.

r2R′′(r)+rR′(r)+µ2R(r) = 0 givesR(r) = c3 cosµ ln r+c4 sinµ ln r.

Zero constant A = 0

T ′′(θ) = 0 T (θ) = d1 + d2θ d2 = 0.

r2R′′(r) + rR′(r) = 0 R(r) = d3 + d4 ln r.

The general solution to Laplace’s equation in plane polars is then:

f(r, θ) = A+B ln r +

∫
rλ(a(λ) cos [λθ] + b(λ) sin [λθ]) dλ

+

∫
eµθ(c(µ) cos [µ ln r] + d(µ) sin [µ ln r]) dµ. (6)

E.2 Boundary conditions

Of course, Laplace’s equation is also separable (has no mixed derivatives) in
Cartesian coordinates; and a similar procedure produces the general solution

f(x, y) = (αx+ β)(γy + δ)

+

∫
(a(λ) cosλx+ b(λ) sinλx)(c(λ)eλy + d(λ)e−λy) dλ

+

∫
(A(λ) cosλy +B(λ) sinλy)(C(λ)eλx +D(λ)e−λx) dλ
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so how do we know which solution to use?

The simple answer is that the boundary conditions are crucial. Any second
order PDE possesses a range of possible coordinates in which it has no mixed
derivatives: and the boundary conditions of the specific problem to be solved
must inform our choice.

We need the following conditions to be satisfied:

Separable equation
The differential equation must be separable: that is, there are no mixed
derivatives and, if the coefficients depend on η and ξ, then (after multipli-
cation of the whole equation by some function if necessary) the derivatives
w.r.t. η have coefficients which depend only on η and those w.r.t. ξ have
coefficients which depend only on ξ. The coefficient of the no-derivatives
term must be at worst the sum of a function of η and a function of ξ.

∂2u

∂t2
− x2

(t+ 1)2
∂2u

∂x2
= 0 is OK

∂2u

∂t2
− ∂2u

∂x2
+ cos (xt)u = 0 is not.

Boundary conditions on coordinate lines
All the boundary conditions in the problem must be located along lines
η = constant or ξ = constant. This does include the possibility of a
boundary condition as one variable → ∞.

Correct type of boundary conditions
Along a line η = constant, the boundary condition must not involve any
partial derivatives with respect to ξ; and the coefficients of derivatives
involved in the boundary conditions must not vary with ξ.

∂f

∂η
(0, ξ) = g(ξ) is OK

(
∂f

∂η
+
∂f

∂ξ

)
(0, ξ) = 0 is not.

The equivalent condition is required of the boundary conditions along a
line ξ = constant.

Realistically, the boundary conditions are likely to completely constrain the co-
ordinates we use if we wish to use separation of variables; and if the coordinates
that work for the boundary conditions don’t work for the PDE, there’s very
little we can do about it.

Example

[Weinberger p. 70.]
∂2u

∂x2
+

∂2u

∂x∂y
+
∂2u

∂y2
= 0

This is a flukey one: it looks like it won’t work but a bit of cunning will get us
there. First we try the standard separable solution:

u = X(x)Y (y) X ′′(x)Y (y) +X ′(x)Y ′(y) +X(x)Y ′′(y) = 0

and then look at Y ′′/Y :

−Y
′′(y)

Y (y)
=
X ′′(x)

X(x)
+
X ′(x)Y ′(y)

X(x)Y (y)
.
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Taking the partial derivative of this equation w.r.t. x (and noting that the left
hand side is independent of x) gives

0 =
d

dx

(
X ′′(x)

X(x)

)
+
Y ′(y)

Y (y)

d

dx

(
X ′(x)

X(x)

)
=

X ′′′(x)X(x)−X ′′(x)X ′(x)

X2(x)
+
Y ′(y)

Y (y)

(
X ′′(x)X(x)−X ′(x)2

X2(x)

)
,

which is separable if we divide by the bracketed term on the right:

−X
′′′(x)X(x)−X ′′(x)X ′(x)

X ′′(x)X(x)−X ′(x)2
=
Y ′(y)

Y (y)
= 2λ

Now we proceed as before: solve

Y ′(y) = 2λY (y) Y (y) = e2λy

If we were to carry on with this equation we would have to solve

X ′′′(x)X(x)−X ′′(x)X ′(x) + 2λX ′′(x)X(x)− 2λX ′(x)2 = 0

but now that we know Y , we can return to the original equation:

−Y
′′(y)

Y (y)
=
X ′′(x)

X(x)
+
X ′(x)Y ′(y)

X(x)Y (y)
: −4λ2 =

X ′′(x)

X(x)
+ 2λ

X ′(x)

X(x)
.

X(x) = e−λx(a cos
√
3λx+ b sin

√
3λx)

and the general solution is

u(x, y) =
∑
λ

exp [λ(2y − x)](aλ cos
√
3λx+ bλ sin

√
3λx).

The moral of this story is: if your boundary conditions look suitable for sepa-
ration of variables, but your equation doesn’t, don’t despair – at least not until
you’ve had a go!

5 Scalings with differential equations

5.1 Stretched coordinates

Consider the first-order linear differential equation

ε
df

dx
+ f = 0.

Since it is first order, we expect a single solution to the homogeneous equation.
If we try our standard method and set ε = 0 we get f = 0 which is clearly not
a good first term of an expansion!

Solving the differential equation directly gives

f = A0 exp [−x/ε].

37



This gives us the clue that what we should have done was change to a stretched
variable z = x/ε.

Let us ignore the full solution and simply make that substitution in our govern-
ing equation. Note that df/dx = df/dz dz/dx = ε−1df/dz.

εε−1 df

dz
+ f = 0

df

dz
+ f = 0.

Now the two terms balance: that is, they are the same order in ε. Clearly the
solution to this equation is now A0 exp [−z] and we have found the result.

This is a general principle. For a polynomial, we look for a distinguished scaling
of the quantity we are trying to find. For a differential equation, we look for a
stretched version of the independent variable.

The process is very similar to that for a polynomial. We use a trial scaling δ
and set

x = a+ δ(ε)X.

Then we vary δ, looking for values at which the two largest terms in the scaled
equation balance.

Let’s work through the process for the following equation:

ε
d2f

dx2
+

df

dx
− f = 0.

Again, we note that if x = a+ δX then d/dx = d/dX dX/dx = δ−1d/dX. We
substitute in these scalings, and then look at gradually increasing δ:

[A] εδ−2 [B] δ−1 [C] 1

For small δ term [A] is the largest; as δ increases term [B] catches up first at
δ = ε. Then [C] catches [B] at δ = 1 so the two distinguished stretches are
δ = ε and δ = 1.

For δ = 1 we can treat this as a regular perturbation expansion:

f = f0(x) + εf1(x) + · · ·

f ′0 − f0 = 0
εf ′′0 + εf ′1 − f1 = 0

At leading order we have

f ′0 − f0 = 0 f0(x) = a0e
x,

and the next order becomes

f ′1 − f1 = −a0ex f1(x) = a1e
x − a0xe

x

so the regular solution begins

f(x) ∼ a0e
x + ε(a1 − a0x)e

x + · · ·

For δ = ε we use our new variable X = ε−1(x − a) and work with the new
governing equation:

d2f

dX2
+

df

dX
− εf = 0
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Again, with the new scaling, we try a regular perturbation expansion:

f = f0 + εf1 + ε2f2 + · · ·

We substitute this in and collect powers of ε:

f0XX + f0X = 0
εf1XX + εf1X − εf0 = 0
ε2f2XX + ε2f2X − ε2f1 = 0

We then solve at each order:

ε0 : f0XX + f0X = 0 f0 = A0 +B0e
−X

ε1 : f1XX + f1X − f0 = 0 f1 = A0X −B0Xe
−X +A1 +B1e

−X

and so on. Of course, without boundary conditions to apply, this process spawns
large numbers of unknown constants. Rescaling to our original variable com-
pletes the process:

f(x) ∼ A0 +B0 exp

[
− (x− a)

ε

]
+ ε

{
A1 +A0

(
x− a

ε

)
+

(
B1 −B0

(
x− a

ε

))
exp

[
− (x− a)

ε

]}
+ · · ·

Note that this expansion is only valid where X = (x− a)/ε is order 1: that is,
for x close to the (unknown) value a.

5.2 Must two terms dominate?

In fact we’ve been rather harsh in our conditions. To find all roots of a polyno-
mial, we only ever consider scalings where the two largest terms balance. But
for a differential equation we can, if we like, be more relaxed. We must include
at least one scaling in which the highest-order derivative participates, otherwise
we have lost one solution of our equation; but it is possible to have a solution
in which a derivative (usually the highest derivative) dominates alone. Some-
times this is a (non-fatal) sign that we could have chosen our scaling better;
sometimes, in complicated systems, it’s unavoidable.

Example

df

dx
+ εf = 0 with boundary condition f(0) = C.

Of course in this case we can either find the scaling instantly (x ∼ ε−1) or solve
the whole equation. But suppose instead we were to try a regular expansion:

f = f0 + εf1 + ε2f2 + ε3f3 + · · ·

f ′0 + εf ′1 + ε2f ′2 + ε3f ′3 + · · ·
+ εf0 + ε2f1 + ε3f2 = 0

then solving at each order in turn, applying the boundary condition, gives

f ′0 = 0 f0 = a0 f0 = C
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f ′1 + C = 0 f1 = a1 − Cx f1 = −Cx

f ′2 − Cx = 0 f2 = a2 +
1
2Cx

2 f2 = 1
2Cx

2

which is a perfectly good regular expansion for the true solution:

f = C
{
1− εx+ 1

2εx
2 + · · ·

}
f = C exp (−εx).

5.3 Nonlinear differential equations: scale and stretch

Recall that for a linear differential equation, if f is a solution then so is Cf for
any constant C. So if f(x; ε) is a solution as an asymptotic expansion, then Cf
is a valid asymptotic solution even if C is an arbitrary function of ε.

The same is not true of nonlinear differential equations. Suppose we are looking
at the equation:

d2f

dx2
+ εf(x)

df

dx
+ f2(x) = 0

There are two different types of scaling we can apply: we can scale f , or we can
stretch x. To get all valid scalings we need to do both of these at once.

Let us take f = εαF where F is strictly ord(1), and x = a + εβz with z also
strictly ord(1). Then a derivative scales like d/dx ∼ ε−βd/dz and we can look
at the scalings of all our terms:

d2f

dx2
+ εf(x)

df

dx
+ f2(x) = 0

εαε−2β εε2αε−β ε2α

As always with three terms in the equation, there are three possible balances.

• For terms I and II to balance, we need α − 2β = 2α + 1 − β. This gives
α+β+1 = 0, so that terms I and II scale as ε2+3α, and term III scales as
ε2α. We need the balancing terms to dominate, so we also need 2α > 2+3α
which gives α < −2.

• For terms I and III to balance, we need α−2β = 2α. This gives α = −2β,
so that terms I and III scale as ε2α and term II scales as ε1+5α/2. Again,
we need the non-balancing term to be smaller than the others, so we need
1 + 5α/2 > 2α, i.e. α > −2.

• Finally, to balance terms II and III, we need 2α− β +1 = 2α which gives
β = 1. Then terms II and III scale as ε2α and term I scales as εα−2, so to
make term I smaller than the others we need α− 2 > 2α, giving α < −2.

We can plot the lines in the α–β plane where these balances occur, and in the
regions between, which term (I, II or III) dominates:
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We can see that there is a distinguished scaling α = −2, β = 1 where all three
terms balance. If we apply this scaling to have z = (x− a)/ε and F = ε2f then
the governing ODE for F (z) (after multiplication of the whole equation by ε4)
becomes

d2F

dz2
+ F

dF

dz
+ F 2 = 0.

This is very nice: but it may not always be appropriate: the boundary conditions
may fix the size of either f or x, in which case the best you can do may be one
of the simple balance points (i.e. a point (α, β) lying on one of the lines in the
diagram).

5.4 Scale and stretch with linear differential equations

Scaling might not seem useful in a linear equation: but if the equation is ex-
pressed in terms of more than one physical variable, the relative scales of the
different variables are not necessarily obvious beforehand. To give an example
I’m using the ODEs which result from a particular linear stability problem I’ve
studied4: I’ve thrown away a few terms to make it less daunting, but there’s
still plenty to worry about!

There are 7 variables: a streamfunction ψ, three stress components s1, s2 and
s3, the pressure p, and two polymer stresses t1 and t2.

There are also two physical parameters: k (a wavenumber) and l (a diffusion
lengthscale). Either of them can be small.

ks1 + s′2 = 0 ks2 + s′3 = 0

s1 = −p+ 2kψ′ + t1

s2 = ψ′′ + t2

s3 = −p− 2kψ′ − t1

t1 − l2t′′1 = 2kψ′ + 2(ψ′′ + k2ψ)

t2 − l2t′′2 = ψ′′ − k2ψ

4H J Wilson & S M Fielding. J. Non-Newtonian Fluid Mech., 138, 181–196, (2006)
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Small k: regular expansion

Physical understanding allows us to predict that the expansion for small k will
be regular: this is because small k means we’re studying long waves, and we
don’t expect anything to happen on a very short lengthscale for long waves.

Since the whole system is linear, there’s no amplitude, so we can freely choose
one variable to make strictly order 1. Here we’ll choose the streamfunction, ψ:

ψ ∼ ψ0 + kψ1 + · · ·

Now looking at the last two equations, and assuming that t1 and t2 are the same
size, the dominant terms on their right hand sides are ψ′′ in both cases: so we
can take t1 and t2 to be order 1 as well.

The tricky part comes in deciding the size of the si terms and p. They could all
be order 1; then the first two equations would give us, at leading order,

s′2 = s′3 = 0;

in fact this is a “second-best” scaling and we can do better by allowing s1, s3
and p to have singular scalings:

s1 = k−1s1 +O(1) s3 = k−1s3 +O(1) p = k−1p+O(1).

Then our set of ODEs at leading order is

s1 + s′2 = 0 s′3 = 0 s1 = s3 = −p

s2,0 = ψ′′
0 + t2

t1 − l2t′′1 = 2ψ′′
0

t2 − l2t′′2 = ψ′′
0

Small l: regular expansion

When the lengthscale l is small, there are two expansions. The first is regular
and in fact does not need any scaling at all: the leading order equations are
simply

ks1 + s′2 = 0 ks2 + s′3 = 0

s1 = −p+ 2kψ′ + t1

s2 = ψ′′ + t2

s3 = −p− 2kψ′ − t1

t1 = 2kψ′ + 2(ψ′′ + k2ψ)

t2 = ψ′′ − k2ψ

However, we have thrown away our highest-order derivatives of t1 and t2 in
making this expansion, so we know there must be a singular expansion as well.
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Small l: stretching coordinate

Because our equations are linear, t1 will always be larger than l2t′′1 no matter
how we scale t1; in order to bring back the highest derivatives we will have to
stretch the underlying coordinate.

The terms we are concerned about are l2t′′1 and l2t′′2 , and they appear in equa-
tions with terms t1 and t2. Balancing these two types of term immediately
suggests a stretch x = a+ lz (where x is our original coordinate). Applying this
to the original equations, and using prime now to represent derivatives w.r.t. z,
we have

ks1 + l−1s′2 = 0 ks2 + l−1s′3 = 0

s1 = −p+ 2kl−1ψ′ + t1

s2 = l−2ψ′′ + t2

s3 = −p− 2kl−1ψ′ − t1

t1 − t′′1 = 2kl−1ψ′ + 2(l−2ψ′′ + k2ψ)

t2 − t′′2 = l−2ψ′′ − k2ψ

Again, we will start by fixing ψ strictly order 1: then it appears from the last
two equations that t1 and t2 will be order l−2 and (following through) so will
all the stresses si. The leading-order equations (in the new scaled variables) in
this case are:

s′2 = s′3 = 0 t1 − t′′1 = 2ψ′′ t2 − t′′2 = ψ′′

s1 = −p+ t1 s2 = ψ′′ + t2 s3 = −p− t1

But that’s not the only scaling that works.

If we continue with ψ being strictly order 1, but consider the possibility that its
leading-order term is a constant, then the forcing terms in the t equations are
order 1, and we can use the same trick as for the small-k case to get s1 involved
in the first equation: put p order l−1, then s1 and s3 are also order l−1 and the
leading-order equations are:

s1 = s3 = −p s2 = l−2ψ′′ + t2

ks1 + s′2 = s′3 = 0 t1 − t′′1 = 2k2ψ t2 − t′′2 = −k2ψ

This seems less obvious and perhaps even less convincing than the straighfor-
ward scaling above: but in the real problem I was solving, this scaling gave the
balances we needed.
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6 Matching: Boundary Layers

Consider the following equation (rather similar to the example we used in sec-
tion 5.1):

ε
d2f

dx2
+

df

dx
+ f = 0

There are two solutions. One is regular:

f = f0(x) + εf1(x) + · · ·

Substituting gives, at order 1,

f ′0 + f0 = 0 =⇒ f0 = a0e
−x.

At order ε we have

f ′1 + f1 + f ′′0 = 0 =⇒ f1 = [a1 − a0x]e
−x.

The second solution is singular, and the distinguished scaling (to balance the
first two terms) is δ = ε. We introduce a new variable z = (x− a)/ε to have

d2f

dz2
+

df

dz
+ εf = 0

with solution
f = F0(z) + εF1(z) + · · ·

At order 1 we have

F ′′
0 + F ′

0 = 0 =⇒ F ′
0 = −B0e

−z

F0(z) = A0 +B0e
−z.

At order ε we have

F ′′
1 + F ′

1 + F0 = 0 =⇒ F ′
1 = −A0 −B0ze

−z −B1e
−z

F1 = A1 −A0z +B0[ze
−z + e−z] +B1e

−z.

We now have two possible solutions:

f(x) ∼ a0e
−x + ε[a1 − a0x]e

−x + · · ·
F (z) ∼ A0 +B0e

−z + ε[A1 −A0z +B0(ze
−z + e−z) +B1e

−z] + · · ·

Question: Will we ever need to use both of these in the same problem?

Answer: The short answer is yes. This is a second-order differential equation,
so we are entitled to demand that the solution satisfies two boundary conditions.

Suppose, with the differential equation above, the boundary conditions are

f = e−1 at x = 1 and
df

dx
= 0 at x = 0.

We will start by assuming that the unstretched form will do, and apply the
boundary condition at x = 1 to it:

f(x) ∼ a0e
−x + ε[a1 − a0x]e

−x + · · ·
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e−1 = a0e
−1 + ε[a1 − a0]e

−1 + · · ·

which immediately yields the conditions a0 = 1, a1 = 1. If we had continued to
higher orders we would be able to find the constants there as well.

Now what about the other boundary condition? We have no more disposable
constants so we’d be very lucky if it worked! In fact we have

f ′(x) = −a0e−x + ε[−a1 − a0 + a0x]e
−x + · · ·

so at x = 0,
f ′(0) = −1− 2ε+ · · ·

This is where we have to use the other solution. If we fix a = 0 in the scaling
for z, then the strained region is near x = 0. We can re-express the boundary
condition in terms of z:

df

dz
= 0 at z = 0.

Now applying this boundary condition to our strained expansion gives:

F (z) ∼ A0 +B0e
−z + ε[A1 −A0z +B0(ze

−z + e−z) +B1e
−z] + · · ·

F ′(z) = −B0e
−z + ε[−A0 −B0ze

−z −B1e
−z] + · · ·

and at z = 0,
F ′(0) = −B0 + ε[−A0 −B1] + · · ·

Imposing F ′(0) = 0 fixes B0 = 0, B1 = −A0 but does not determine A0, B1 or
A1. The solution which matches the x = 0 boundary condition is

F (z) ∼ A0 + ε[A1 −A0z −A0e
−z] + · · ·

We now have two perturbation expansions, one valid at x = 1 and for most
of our region, the other valid near x = 0. We have not determined all our
parameters. How will we do this? The answer is matching.

6.1 Intermediate variable

Suppose (as in the example above) we have two asymptotic solutions to a given
problem.

• One scales normally and satisfies a boundary condition somewhere away
from the tricky region: we will call this the outer solution.

• The other is expressed in terms of a scaled variable, and is valid in a
narrow region, (probably) near the other boundary. We will call this the
inner solution.

In order to make sure that these two expressions both belong to the same real
(physical) solution to the problem, we need to match them.

In the case where the outer solution is

f(x) = f0(x) + εf1(x) + ε2f2(x) + · · ·
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and the inner
F (z) = F0(z) + εF1(z) + ε2F2(z) + · · ·

with scalings z = x/ε, we will match the two expressions using an intermediate
variable. This is a new variable, ξ, intermediate in size between x and z, so
that when ξ is order 1, x is small and z is large. We can define it as

x = εαξ =⇒ z = εα−1ξ,

for α between 0 and 1. It is best to keep α symbolic5.

The procedure is to substitute ξ into both f(x) and F (z) and then collect orders
of ε and force the two expressions to be equal. This is best seen by revisiting
the previous example.

Example continued

We had
f(x) = e−x + ε(1− x)e−x + · · ·

and
F (z) = A0 + ε[A1 −A0z −A0e

−z] + · · ·

with z = x/ε. Defining x = εαξ, we look first at f(x):

f(x) = e−εαξ + ε(1− εαξ)e−εαξ + · · ·

Since εα ≪ 1 we can expand the exponential terms to give

f(x) = 1− εαξ − 1

2
ε2αξ2 + ε− 2εα+1ξ +O(ε2, ε1+2α, ε3α)

Now we look at F (z). Note that z = εα−1ξ, which is large.

F (z) = A0 + ε[A1 −A0ε
α−1ξ −A0e

−εα−1ξ] + · · ·

Here the exponential terms become very small indeed so we neglect them and
have

F (z) = A0 −A0ε
αξ + εA1 + · · ·

Comparing terms of the two expansions, at order 1 we have

1 = A0

and at order εα,
−ξ = −A0ξ

which is automatically satisfied if A0 = 1. If we fix α > 1/2 then the next term
is order ε, giving

1 = A1.

The next term in the outer expansion is order ε2α, but to match that we would
have to go to order ε2 in the inner expansion.

5However, occasionally you may find it quicker to pick a value of α = 1/2, say. Be warned:
sometimes there is only a specific range of α which works.
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We have now determined all the constants to this order: so in the outer we have

f(x) = e−x + ε(1− x)e−x + · · ·

and in the inner x = εz,

F (z) = 1 + ε[1− z − e−z] + · · ·

Note: The beauty of the intermediate variable method for matching is that it
has so much structure. If you have made any mistakes in solving either inner
or outer equation, or if (by chance) you have put the inner region next to the
wrong boundary, the structure of the two solutions won’t match and you will
know something is wrong!

6.2 Where is the boundary layer?

In the last example we assumed the boundary layer would be next to the lower
boundary.

If we didn’t know, how would we work it out?

Let’s start by trying the previous example, but attempting to put the boundary
layer near x = 1.

Recall we had an outer solution:

f(x) ∼ a0e
−x + ε[a1 − a0x]e

−x + · · ·

and an inner solution

F (z) ∼ A0 +B0e
−z + ε[A1 −A0z +B0(ze

−z + e−z) +B1e
−z] + · · ·

with z = (x− a)/ε.

This time we will try to fit the outer solution to the boundary condition at
x = 0. We have

df

dx
∼ −a0e−x + ε[a0x− a0 − a1]e

−x + · · ·

so the condition is
df

dx
= 0 at x = 0.

0 = −a0 + ε[−a1 − a0] + · · ·

which gives a0 = 0, a1 = 0 and so on. It is clear that we’re not going to get a
solution this way!

However, there is another problem, which appears when we try to fit the inner
solution at the other boundary. We are setting a = 1 and trying to fit F (z) =
e−1 at z = 0. This gives:

e−1 = A0 +B0 + ε[A1 +B0 +B1] + · · ·

so A0 = e−1−B0 and A1 = −B0−B1. This seems fine, but look at the solution
we get:

F (z) ∼ e−1+B0(e
−z−1)+ε[−e−1z+B0(z−1+(z+1)e−z)+B1(e

−z−1)]+ · · ·
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Remember that, now the boundary layer is at the top, the outer limit of the inner
solution will be for large negative z: in other words, all of these exponentials
will be growing! This can never match onto a well-behaved outer solution.

Key fact: The boundary layer is always positioned so that any exponentials in
the inner solution decay as you move towards the outer.

6.3 Linear example

This comes from Hinch (and originally, Friedricks). Consider:

ε
d2f

dx2
+

df

dx
= 1 + 2x in 0 < x < 1

with boundary conditions f(0) = 0 and f(1) = 1.

First we look for stretches that work (note that because the equation is linear,
there is no mileage in scaling f). The right hand side of the equation is always
strictly order 1 in our range of x, so if we stretch x as x = a+ δX we have three
terms to compare:

[A] εδ−2 [B] δ−1 [C] 1.

For very small δ we have [A] ≫ [B] ≫ [C], and [B] catches [A] when δ = ε.
Then [C] catches [B] at δ = 1 (which is the largest value of δ we can use, given
that the range of x is only order 1).

Thus there are two distnguished stretches: the original variable x and a stretched
variable x = a + εz. Let us look at the regular, outer, solution first. Since we
don’t yet know where to put the boundary layer we won’t use any boundary
conditions on it yet.

We pose an expansion
f ∼ f0 + εf1 + ε2f2 + · · ·

and have
f ′0 = 1 + 2x

εf ′′0 + εf ′1 = 0
ε2f ′′1 + ε2f ′2 = 0

Integrating these in turn gives:

Order 1 f ′0 = 1 + 2x so f0 = x+ x2 + a0.

Order ε f ′1 = −2 so f1 = −2x+ a1.

Order ε2 f ′2 = 0 so f2 = a2.

Our regular expansion is

f ∼ a0 + x+ x2 + ε(a1 − 2x) + ε2a2 + · · ·

Now we move onto the inner, stretched solution. Recasting the ODE in terms
of z gives

d2f

dz2
+

df

dz
= ε(1 + 2a) + 2ε2z.
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We pose our expansion:

f ∼ F0 + εF1 + ε2F2 + · · ·

to have
F ′′
0 + F ′

0 = 0
εF ′′

1 + εF ′
1 = ε(1 + 2a)

ε2F ′′
2 + ε2F ′

2 = 2ε2z

Solving the leading-order equation gives

F ′′
0 + F ′

0 = 0 F0 = A0 +B0e
−z.

Immediately our condition that any exponentials must decay outside the bound-
ary layer tells us that the boundary layer is positioned near x = 0 (so that z is
positive towards the interior of the domain) and thus a = 0. That means that
we can apply to our inner solution the boundary condition f(0) = 0.

Order 1 We know F0 = A0 + B0e
−z, and applying the boundary condition

gives F0 = A0(1− e−z).

Order ε F ′′
1 + F ′

1 = 1 gives F1 = A1 +B1e
−z + z, and the boundary condition

forces F1 = A1(1− e−z) + z.

Order ε2 F ′′
2 + F ′

2 = 2z gives F2 = A2 + B2e
−z + z2 − 2z, and the boundary

condition forces F2 = A2(1− e−z) + z2 − 2z.

Now we return to the outer solution, to which we can now apply the other
boundary condition f(1) = 1:

1 ∼ a0 + 2 + ε(a1 − 2) + ε2a2 + · · ·

which fixes a0 = −1, a1 = 2 and a2 = 0. We now have our two expansions:

fouter ∼ −1 + x+ x2 + ε(2− 2x) +O(ε3)

finner ∼ A0(1− e−z) + ε[A1(1− e−z) + z] + ε2[A2(1− e−z) + z2 − 2z] + · · ·

linked by the variables x = εz.

To match the expansions, we introduce η = ε−αx = ε1−αz and substitute in
each:

fouter = −1 + εαη + ε2αη2 + 2ε− 2ε1+αη +O(ε3)

finner = A0 + εαη + ε2αη2 + εA1 − 2ε1+αη + ε2A2 + · · ·

Comparing terms at each order, we can immediately see that our expansions
are succeeding in that some of the terms have already matched each other. To
complete the match we need A0 = −1, A1 = 2 and A2 = 0. Thus our two
expansions are

fouter ∼ −1 + x+ x2 + ε(2− 2x) +O(ε3)

finner ∼ e−z − 1 + ε[2(1− e−z) + z] + ε2[z2 − 2z] + · · ·

linked via x = εz.
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Plotting these expansions for ε = 0.1, ε = 0.03 and ε = 0.01 shows the power
of the method:

Here the outer expansions are the solid curves and the inner, the dashed curves.
As ε gets smaller, the outer is a good approximation for a larger and larger
proportion of the range, but the inner expansion is still needed near x = 0.

6.4 Another Example

This is a simplified version of an advection-diffusion problem that arose in my
own research6. Solve

x

y

∂f

∂x
− ∂f

∂y
+
f

y
− ε∇2f = 0

with boundary conditions

f + ε
∂f

∂y
= 0 at y = 1, f = 2 at y = 2

The boundary condition at y = 1 corresponds to a condition of no flux of f
through the boundary y = 1.

Outer solution

We expand the PDE:

x

y

∂f

∂x
− ∂f

∂y
+
f

y
− ε

∂2f

∂x2
− ε

∂2f

∂y2
= 0

and look for the first term of an outer solution by considering the case ε = 0:

x

y

∂f

∂x
− ∂f

∂y
+
f

y
= 0 x

∂f

∂x
− y

∂f

∂y
+ f = 0

Because this is a first-order PDE we can apply the method of characteristics,
solving:

dx

dt
= x

dy

dt
= −y

which gives us the parametric curves

x = x0e
t y = e−t x = x0/y

along which
df

dt
=

dx

dt

∂f

∂x
+

dy

dt

∂f

∂y
= x

∂f

∂x
− y

∂f

∂y
= −f

so
f = A(x0)e

−t = A(xy)y.

We’ll stay at one term for the outer solution.

6JFM, 534, 97–114, 2005
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Scaling for the inner

We’re expecting a boundary layer somewhere, because all the highest derivatives
were neglected when we put ε = 0. In fact the type of the boundary condition
at y = 1 gives us the hint: if f + ε∂f/∂y = 0 then ∂f/∂y must be an order
of magnitude larger than f . So we look to scale y rather than x. (Another
motivation for this choice is that, usually, boundary layers live near boundaries:
and there are no boundaries on x.)

So we set y = a+ εbz and substitute in to the PDE:

x

[a+O(εb)]

∂f

∂x
− ε−b ∂f

∂z
+

f

[a+O(εb)]
− ε

∂2f

∂x2
− ε1−2b ∂

2f

∂z2
= 0

Clearly the two terms which may be larger than O(1) if b > 0 are the second and
last terms: ε−b and ε1−2b. Balancing the two fixes b = 1 (which we expected
from the boundary condition). Thus:

−∂f
∂z

− ∂2f

∂z2
+ ε

x

a

∂f

∂x
+ ε

f

a
= O(ε2).

Let’s just look at the leading-order term first: f = f0 + εf1 + · · · gives

−∂f0
∂z

− ∂2f0
∂z2

= 0 f0 = A0(x) +B0(x)e
−z.

The exponential in z tells us that the boundary layer must be located at the
lower boundary so a = 1 and y = 1 + εz. Then we expect the outer to satisfy
the upper boundary condition at y = 2; now we can return to the outer and
complete it.

Full outer solution

We now have the outer solution

f = A(xy)y + εf1(x, y) + · · ·

which we need to satisfy the boundary condition f(x, 2) = 2. Applying this at
leading order gives

2 = 2A(2x) A(η) = 1 f = y + εf1(x, y) + · · ·

Now we can continue with the expansion: the original equation was

x
∂f

∂x
− y

∂f

∂y
+ f − yε

∂2f

∂x2
− yε

∂2f

∂y2
= 0

so we have

x∂f0/∂x − y∂f0/∂y + f = 0
x∂f1/∂x − y∂f1/∂y + f1 − y∂2f0/∂x

2 − y∂2f0/∂y
2 = 0

x∂f2/∂x − y∂f2/∂y + f2 − y∂2f1/∂x
2 − y∂2f1/∂y

2 = 0

with boundary conditions

f0(x, 2) = 2 f1(x, 2) = 0 f2(x, 2) = 0
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At order 1 we know this is satisfied by f0 = y. At order ε we have

x
∂f1
∂x

− y
∂f1
∂y

+ f1 = 0

which is the same equation we had for f0, so has solution f1 = A1(xy)y. This
time the boundary condition gives f1 = 0. We can see that this pattern will
continue, and in fact fn = 0 for n ≥ 1: the full outer solution is

fouter = y.

Full inner solution

We now return to the inner solution:

∂2f

∂z2
+
∂f

∂z
= ε

x

[1 + εz]

∂f

∂x
+ ε

f

[1 + εz]
− ε2

∂2f

∂x2

Keeping terms up to order ε gives

∂2f0
∂z2

+
∂f0
∂z

= 0

∂2f1
∂z2

+
∂f1
∂z

= x
∂f0
∂x

+ f0

with boundary conditions (true at each order)

f + ∂f/∂z = 0 at z = 0

At order 1 we have
f0 = A0(x) +B0(x)e

−z

and the boundary condition gives A0(x) = 0: f0 = B0(x)e
−z.

At order ε we have
∂2f1
∂z2

+
∂f1
∂z

= [xB′
0 +B0]e

−z

which gives
f1 = A1(x) +B1(x)e

−z − [xB′
0 +B0]ze

−z.

Applying the boundary condition fixes A1(x) = [xB′
0 + B0]. Thus our solution

(to order ε) is

f = B0(x)e
−z + ε[(xB′

0(x) +B0(x))(1− ze−z) +B1(x)e
−z] +O(ε2).

Matching

Our two solutions are:
fouter = y.

finner = B0(x)e
−z + ε[(xB′

0(x) +B0(x))(1− ze−z) +B1(x)e
−z] +O(ε2).

Using an intermediate variable y = 1 + εαη, z = εα−1η, the outer becomes

fouter = 1 + εαη
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and the inner (neglecting decaying exponentials)

finner = ε(xB′
0(x) +B0(x)) +O(ε2).

There is nothing in the inner large enough to match onto the 1 in the outer.

However, remember we started from a linear equation. Along with the fact
that the inner boundary condition was homogeneous, that means that if finner
is a solution, so is ε−1finner. So we try that:

finner,new = ε−1B0(x)e
−z + (xB′

0(x) +B0(x))(1− ze−z) +B1(x)e
−z +O(ε)

∼ (xB′
0(x) +B0(x)) +O(ε) as z → ∞.

Now we can match the two functions if

xB′
0(x) +B0(x) = 1

which is just an ODE. Solving gives B0(x) = 1 + C/x and since the line x = 0
is within our domain, we require C = 0 for regularity. Thus:

fouter = y

finner = ε−1e−z + (1− ze−z) +B1(x)e
−z +O(ε)

with y = 1 + εz. To determine B1 we would have to calculate the f2 term of
the inner expansion.

F Laplace’s equation: Complex variables

Let’s look at Laplace’s equation in 2D, using Cartesian coordinates:

∂2f

∂x2
+
∂2f

∂y2
= 0.

It has no real characteristics because its discriminant is negative (B2 − 4AC =
−4). But if we ignore this technicality and allow ourselves a complex change
of variables, we can benefit from the same structure of solution that worked for
the wave equation. Introduce

η = x+ iy x = (η + ξ)/2
ξ = x− iy y = (η − ξ)/2i.

Then the chain rule gives

∂

∂x
=

∂

∂η
+

∂

∂ξ

∂

∂y
= i

(
∂

∂η
− ∂

∂ξ

)
and the PDE becomes

4
∂

∂η

∂f

∂ξ
= 0

whose solution is straightforward:

f = p(η) + q(ξ) = p(x+ iy) + q(x− iy).
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Here p and q are differentiable complex functions; and assuming we wanted a
real solution to the original (real) PDE, we have an additional constraint that
the sum of the two functions must have no imaginary part.

We can formalise this in more standard notation: if we use the (x, y) plane to
represent the complex plane in the usual way, we introduce the complex variable
z = x+ iy. Then its complex conjugate is z = x− iy and the solution we have
just found is

f = p(z) + q(z).

F.1 Cauchy-Riemann Equations

Let’s look at our function p(η) = p(z), which forms half of our “characteristics”-
style solution. It is obvious that

∂p

∂ξ
=
∂p

∂z
= 0

and using the chain rule, this tells us that

1

2

∂p

∂x
− 1

2i

∂p

∂y
= 0

∂p

∂x
= −i ∂p

∂y
.

Now if we divide the function into its real and imaginary parts:

p(z) = u(x, y) + iv(x, y)

where u and v are real functions, we have

∂u

∂x
+ i

∂v

∂x
= −i∂u

∂y
+
∂v

∂y

This complex equation is equivalent to the pair of real equations:

∂u

∂x
=
∂v

∂y

∂v

∂x
= −∂u

∂y
.

These are the Cauchy-Riemann equations, and are satisfied by the real and
imaginary parts of any differentiable function of a complex variable z = x+ iy.

In fact in a given domain, u and v (continuously differentiable) satisfy the
Cauchy-Riemann equations if and only if p is an analytic function of z. We
will not prove this here.

(Recall f(z) is analytic ≡ holomorphic within a domain D if, in every circle
|z − z1| < ρ lying in D, f can be represented as a power series in z − z1.)

F.2 General solution of Laplace’s equation

We had the solution
f = p(z) + q(z)

in which p(z) is analytic; but we can go further: remember that Laplace’s
equation in 2D can be written in polar coordinates as

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
= 0
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and we showed by separating variables that in the whole plane (except the
origin) it has solutions

f(r, θ) = A+B ln r +

∫
rλ(a(λ) cos [λθ] + b(λ) sin [λθ]) dλ

+

∫
eµθ(c(µ) cos [µ ln r] + d(µ) sin [µ ln r]) dµ. (7)

Now in these variables, z = r exp [iθ] so we can also write the solution we found
as

f = Real

(
A+B ln z +

∫
a(λ)zλ dλ+

∫
c(µ)ziµ dµ

)
meaning that our solution is the real part of a function of z only:

f = Real (g(z)).

Note that g(z) as given here is analytic in any domain that does not encircle the
origin; to make it analytic in a general domain we need the additional constraints
that c(λ) = 0, B = 0 and a(λ) is only nonzero for integer values of λ.

We have shown that the real solution to Laplace’s equation we had found is
the real part of an analytic function of z = x+ iy in our domain; we can show
the converse very quickly from the Cauchy-Riemann equations. Consider an
analytic function

f(z) = u(x, y) + iv(x, y)

Then the Cauchy-Riemann equations give

∂u

∂x
=
∂v

∂y

∂v

∂x
= −∂u

∂y
.

Differentiating the first w.r.t. x and the second w.r.t. y gives:

∂2v

∂x∂y
=
∂2u

∂x2
= −∂

2u

∂y2
∂2u

∂x2
+
∂2u

∂y2
= 0.

We can solve Laplace’s equation in any domain simply by taking the real part
of any analytic function in that domain.

F.3 Composition of Analytic functions

The composition of two analytic functions is analytic (providing, of course, the
relevant domains are correctly specified): if

f : D1 → D2 and g : D2 → D3

are both analytic, then the composed function

g ◦ f : D1 → D3

is also analytic on D1.

This has important ramifications for the solution of Laplace’s equation in odd-
shaped domains or with boundary conditions which are unsuitable for separation
of variables.
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Suppose we are trying to find a real function u satisfying

∇2u = 0 in D1 with u = u(x, y) on ∂D1.

Of course this is equivalent to finding an analytic function f(z) on D1 whose
real part satisfies the boundary condition on ∂D1.

If D1 is an awkward shape, and we can find an analytic function w(z) which
maps it to a more helpful domain D2, then we can define

f = g ◦ w f(z) = g(w(z))

and we are now looking for an analytic function g defined on D2 such that

Real (g(w(z))) = u(z) on ∂D1.

Real (g(w)) = u(z(w)) on ∂D2.

Example

This is taken from an old UCL exam paper.

Find the solution to Laplace’s equation in the domain D1 given by the whole
(x, y)-plane except for two semi-infinite plates |x| ≥ 1, y = 0. The boundary
conditions on these two plates are

u(x, 0) = 0 on x ≥ 1; u(x, 0) = 1 on x ≤ −1.

The domain looks superficially suitable for separation of variables in Cartesian
coordinates, but the boundary conditions are not suitable: we would need u(x, 0)
to be prescribed for all x for separation to work.

Here we use the map w(z) = z +
√
(z2 − 1). Note that the square root means

this map is not analytic over the whole plane; we need a branch cut at each of
z = 1, z = −1. Given the domain we are trying to transform, it makes sense to
put the branch cuts on y = 0 (or z real) and |x| ≥ 1 (or |z| ≥ 1).

The point z = 0 maps to w =
√
(−1) and we can choose which of the possible

values we take for the sign of the square root here: we choose w(0) = i. This
choice, with the positioning of the branch cuts, determines w(z) everywhere in
our domain – in the diagram I’ve marked the result of each of the square roots
at points around it. So when z = x+iε and x > 1, both roots are positive; when
z = x and |x| < 1, the root at z = 1 has argument i and the other is positive;
when z = x − iε with x < −1, both roots have argument i so the product is
negative, and so on:

r r
−i

++ ii
−

In particular:

w(−1) = −1 w(1) = 1

w(x) = x+ i
√
(1− x2) −1 < x < 1

w(x+ iε) = x−
√
(x2 − 1) x < −1

w(x− iε) = x+
√
(x2 − 1) x < −1

w(x+ iε) = x+
√
(x2 − 1) x > 1

w(x− iε) = x−
√
(x2 − 1) x > 1
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Thus the branch cuts in the z-plane map onto the real line in the w-plane: the
left-hand cut maps to (top side) w < −1 and (bottom side) −1 < w < 0, and
the right-hand cut maps to (top side) w > 1 and (bottom side) 0 < w < 1. In
the w-plane we now need to solve Laplace’s equation for a new function v with

v(x, 0) = 1 on x ≤ 0 v(x, 0) = 0 on x ≥ 0.

This new problem is suitable for separation of variables in polar coordinates:
the boundary conditions in terms of r and θ are

v(r, 0) = 0 v(r, π) = 1.

Note that our domain now does not encircle the origin, so we must revisit our
separable solution and include some terms we discarded earlier.

We look for the form v = R(r)T (θ) and derive the coupled ODEs

r2R′′(r) + rR′(r)

R(r)
= A

T ′′(θ)

T (θ)
= −A.

In the three cases A < 0, A > 0 and A = 0 respectively these yield:

v = (Aµ exp [µθ] +Bµ exp [−µθ])(Cµ cos [µ ln r] +Dµ sin [µ ln r])

v = (aλ cos [λθ] + bλ sin [λθ])(cλr
λ + dλr

−λ)

v = (α+ β ln r)(γ + δθ).

Applying the boundary condition T (θ = 0) = 0 gives the three basis functions

v = sinh [µθ](Cµ cos [µ ln r] +Dµ sin [µ ln r])

v = sin [λθ](cλr
λ + dλr

−λ)

v = θ(α+ β ln r),

and the condition that v must be well-behaved at r = 0 (since the origin is in
our domain) fixes further:

v = αθ +
∑
λ

cλr
λ sin [λθ]

The final boundary condition v(r, π) = 1 gives

1 = απ +
∑
λ

cλr
λ sin [λπ]

which is satisfied with α = 1/π and cλ = 0. Thus we have found

v(r, θ) =
θ

π
.

In order to convert this to a solution to our original problem, we first need to
find the analytic function of which it is the real part. In this case the function
is straightforward:

v(r, θ) =
θ

π
= − 1

π
Real (i[ln r + iθ]) = − 1

π
Real (i lnw)
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so the analytic function we need is

g(w) = − i lnw
π

.

Finally we need to convert back to the original variables:

f(z) = g ◦ w(z) = − i

π
ln
{
z +

√
(z2 − 1)

}
and the solution we need is the real part of this:

u(x, y) = Real

(
− i

π
ln
{
z +

√
(z2 − 1)

})
=

1

π
Imag

(
ln
{
z +

√
(z2 − 1)

})
.

In particular, on the “missing line” y = 0, −1 ≤ x ≤ 1, we have

u(x, 0) =
1

π
Arg

({
x+ i

√
(1− x2)

})
=

1

π
arctan

√
(1− x2)

x
.

G Conformal maps

You will sometimes see these analytic functions referred to as conformal maps:
in fact there is a subtle distinction. An analytic function provides a conformal
map only if its derivative is nonzero throughout the domain. The meaning of
conformal map is a map which preserves angles (though not necessarily lengths).

Most of the art of using conformal maps to improve problems involving Laplace’s
equation is in choosing the map to use. Here are a few domains and functions
which improve them (starting with the example we just solved).

Two infinite plates

The geometry we just discussed took the plane with two branch cuts missing:

-

6q q
was transformed under the mapping

w(z) = z +
√
(z2 − 1)

to the upper half plane.

Bilinear mapping

We can take the upper half plane Imag (z) ≥ 0 to the unit disc |w| ≤ 1 using

w(z) =
z − α

z − α

where α is any constant with Imag (α) > 0.
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Zhukovsky transform

In two-dimensional inviscid fluid mechanics with a steady velocity field (u, v),
we can use a complex function

f(z) = ϕ+ iψ z = x+ iy

to represent the velocity:
df

dz
= u+ iv.

The Zhukovsky transform is one of the classics of early aerodynamics. Under
the transformation:

w(z) = z +
1

z
a disc not centred on the origin, whose boundary passes through the point z = 1,
transforms into the Zhukovsky aerofoil:

Cardioid

The cardioid r = 2(1 + cos θ):

can be transformed into the unit disc |w| < 1 using the mapping

w(z) =
√
z − 1

with the branch cut of the square root drawn along the negative x-axis.

G.1 Boundary conditions

Suppose we map domain D1 of z into a more pleasant domain D2 of the w-plane,
using the mapping w(z). Then it is clear that if we have boundary conditions
of the form

u = f(z) on ∂D1

they can be transferred to w simply by using the inverse mapping:

U = f(z(w)) on ∂D2.

However, if our original boundary conditions were formed in terms of the deriva-
tive normal to the boundary:

∂u

∂n
= g(z) on ∂D1

we need to work a little harder. For the details of how to work this out, see
Weinberger p. 243; but in essence, the derivatives normal to the boundary in the
two domains are directly related via the (complex) derivative of the mapping
w(z):

∂u

∂n
=

∣∣∣∣dwdz
∣∣∣∣ ∂U∂n so

∂U

∂n
=

∣∣∣∣dwdz
∣∣∣∣−1

g(z(w)) on ∂D2.
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7 The WKB method

The Wentzel, Kramers & Brillouin (WKB) method is a method for constructing
approximate oscillatory solutions of differential equations that are varying over
a fast and slow timescale. The standard WKB equation in one-dimensional
(1-D) case is of the form

d2ψ

dx2
+ q(x)ψ = 0, (1)

where |q(x)| is “large”. To emphasise that |q(x)| is “large” (and let’s here assume

it is positive), it is convenient to represent it as q(x) = µ2(x)
ε2 , where µ(x) ∼ O(1)

and ε≪ 1 is a small constant parameter. From this we obtain

ε2
d2ψ

dx2
+ µ2(x)ψ = 0. (2)

Now, if µ(x) equals a constant then the solutions would be Ae±iµx/ε, where
A is some arbitrary constant representing the amplitude, which are same as
(1-D) plane time-harmonic waves. The case of small ε thus corresponds to
high frequencies ω = µc/ε or small wavelength λ = 2επ/µ. For this reason,
the WKB method represents a so-called “high-frequency” approximation. The
basic intuition behind the WKB method is that when mu(x) varies “slowly”,
the solution still behaves “microscopically” as a rapidlly oscillating plane wave,
with slowly (macroscopically) varying amplitude and other parameters.

We seek the WKB approximation in the form

ψ(x, ε) ≈ Aeiτ(x)/ε, (3)

with A constant and ε≪ 1. We then obtain from (2)

iε−1τ
′′
(x) − ε−2(τ ′(x))2 + ε−2µ2(x) = 0. (4)

Now seek τ(x) = τ(x, ε) in the so-called regular perturbation form, i.e. as a
series in increasing powers of small parameter ε:

τ(x, ε) = τ0(x) + ετ1(x) + ε2τ2(x) + ... for ω → ∞. (5)

Substituting (5) into (4), to leading order, i.e. O(ε−2), we have −ε−2(τ ′0(x))
2 +

ε−2µ2(x) = 0. Hence

τ0(x) = ±
∫ x

x0

µ(x′)dx′. (6)

The next order terms, O(ε−1) in (4), are then iε−1τ
′′

0 (x)− 2ε−1τ ′0(x)τ
′
1(x) = 0.

This integrates to

τ1(x) =
i

2
ln |τ ′0(x)| + C± =

i

2
ln |µ(x)| + C±,

where C± are arbitrary constants. So we have, to first order, that

τ(x) = ±
∫ x

x0

µ(x′)dx′ + ε

{
i

2
ln |µ(x)| + C±

}
.
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Hence, from (3), our solution (the WKB approximation) is

ψ(x, ε) ≈ A exp

{
± i

ε

∫ x

x0

µ(x′)dx′ − 1

2
ln |µ(x)| + C̃±

}
=

Ã

(µ(x))1/2
e
± i

ε

∫ x
x0

µ(x′)dx′
,

or

ψ(x, ε) ≈ 1

(µ(x))1/2

[
Ae

i
ε

∫ x
x0

µ(x′)dx′
+ B e

− i
ε

∫ x
x0

µ(x′)dx′]
=: ψ̃, (7)

where A and B are arbitrary constants.

This soltion can be interpreted as a superposition of two waves, one travelling in
positive x direction and one travelling in the negative x direction both rapidly
oscillating solutions within the envelope ±Aµ−1/2(x) moving to towards x =
+∞ and x = −∞, respectively for increasing t. For µ constant (7) reproduces
(two) plane time-harmonic waves.

To examine the range of validity of the WKB approximation, we substitute
(7) back into the original equation (2). After some algebraic manipulation we
obtain,

d2ψ̃

dx2
+
µ2(x)

ε2
ψ̃ =

[
3

4

(µ′(x))2

(µ(x))2
− 1

2

µ
′′
(x)

µ(x)

]
ψ̃.

The expression suggests that the approximation remains accurate so long as[
3

4

(µ′(x))2

(µ(x))2
− 1

2

µ
′′
(x)

µ(x)

]
≪ µ2(x)

ε2
,

or equivalently

ε2

[
3

4

(µ′(x))2

(µ(x))4
− 1

2

µ
′′
(x)

(µ(x))3

]
≪ 1. (8)

Thus the wave number µ(x)
ε must be varying slowly enough in x and/or the

frequency large enough for (8) to hold. Also, for (8) to hold µ should not be
too close to zero: WKB solution indeed becomes infinite and the approximation
fails whenever µ(x) = 0. These critical values are called turning points. The
name indicates that a wave fails to propagate beyond these points, “turning
around”, and alternative approximations are required in the neighbourhood of
such points.

8 Integrals and Steepest Descents

8.1 Small parameter in the integration limits

Suppose you need to understand the asymptotic behaviour of

I(ρ) =

∫ ∞

ρ

e−τ

τ2
dτ

for small ρ. How do we determine it? The procedure is actually quite straight-
forward: two steps of integration by parts give

I(ρ) =
e−ρ

ρ
−
∫ ∞

ρ

e−τ

τ
dτ =

e−ρ

ρ
+ e−ρ ln ρ−

∫ ∞

ρ

e−τ ln τ dτ
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and the last integral would now be convergent even if ρ = 0, when the answer
is minus Euler’s constant, γ. So we can move the integration:

I(ρ) =
e−ρ

ρ
+ e−ρ ln ρ+ γ +

∫ ρ

0

e−τ ln τ dτ

Now the last integral is better behaved: τ is small throughout and the integral
is uniformly convergent. That gives us the freedom to expand the exponential
as a power series, and to interchange the order of integration and summation:∫ ρ

0

e−τ ln τ dτ =

∫ ρ

0

ln τ

∞∑
n=0

(−τ)n

n!
dτ =

∞∑
n=0

(−1)n

n!

∫ ρ

0

τn ln τ dτ

We can integrate by parts again, but this time differentiating the log:∫ ρ

0

e−τ ln τ dτ =

∞∑
n=0

(−1)n

n!

([
ln τ

τn+1

(n+ 1)

]ρ
0

−
∫ ρ

0

τn

(n+ 1)
dτ

)
The final integration step gives∫ ρ

0

e−τ ln τ dτ = −
∞∑

n=0

(−ρ)n+1

(n+ 1)!

(
ln ρ− 1

(n+ 1)

)

= ln ρ(1− e−ρ) +

∞∑
n=0

(−ρ)n+1

(n+ 1)!(n+ 1)

and so

I(ρ) =
e−ρ

ρ
+ ln ρ+ γ +

∞∑
n=0

(−ρ)n+1

(n+ 1)!(n+ 1)

Thus expanding the exponential and the sum as power series in ρ we obtain the
asymptotic series we used earlier:

I(ρ) =
1

ρ
+ ln ρ+ γ − 1− ρ

2
+
ρ2

12
− ρ3
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+O(ρ4).

8.2 Small parameter in the integrand

We’ll look now at a specific class of integral, which may seem rather limited:
but these problems crop up in many applications, and particularly in finding
the outer limit of an inner boundary-layer solution. We’ll use an example.

We want to know the asymptotic behaviour as z → ∞ of the real part of the
integral

I(z) =

∫ ∞

−∞
exp [zf(t)]g(t) dt

where f(t) and g(t) are analytic functions of t. Our example integral J has
f(t) = −t2 + 2it+ 1 and g(t) = 1, so that

Real (J(z)) =

∫ ∞

−∞
exp [−z(t2 − 1)] cos [2zt] dt
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The reason I’ve chosen these particular functions is that we can solve:

J(z) =

∫ ∞

−∞
exp [−z(t− i)2] dt =

∫ ∞−i

−∞−i

exp [−zu2] du

and choosing the right integration contour in the u plane:

-6q q
the contribution from the contour ends is exponentially small and we have

J(z) =

∫ ∞

−∞
exp [−zu2] du =

(π
z

)1/2

.

How do we tackle the integral I(z) in general? The obvious estimate would be
to take t0, the place on the integration contour at which Real (f(t)) is maximum
and expand about it:

I(z) ∼
∫ ∞

−∞
exp [z(f(t0) + (t− t0)

2f ′′(t0)/2 + · · · ]g(t) dt

∼ exp [zf(t0)]g(t0)

∫ ∞

−∞
exp [z(t− t0)

2f ′′(t0)/2 + · · · ] dt

∼ exp [zf(t0)]g(t0)(−zf ′′(t0))−1/2

However, this is a massive overestimate. Look at our example. The real part of
f(t) is −t2 + 1, which is maximal at t = 0, giving the estimate

J(z) ∼ (2z)−1/2ez

which is too large by an exponential factor. The reason for this massive over-
estimate is that we have not allowed for the effect of cos [2zt], which oscillates
very rapidly when z is large and causes a large cancellation effect. This cosine
term came from the imaginary part of f(t).

The technique which will save us is fundamentally based on the analyticity of
f(t) and g(t). Because both they and the exponential function are analytic,
we can deform our integration contour in the complex plane without changing
the result. We deform our contour to get the lowest possible estimate for
our function: and because in doing so we will avoid these cancellations which
caused our other estimates to be too large, we will attain the best estimate for
the integral.

We begin by observing that because f(z) is analytic, its real part satisfies
Laplace’s equation, and thus the real part can have no maxima or minima,
but only saddle points. Suppose we contour the real part of f(t) over the whole
t-plane: (these contours are for J(z))

Then we can deform the contour so that it keeps Real (f(t)) as small as possible
throughout: this will involve the contour passing over a saddle point, where the
maximum value of Real (f(t)) will be attained.
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Now we can choose as our contour the route over the saddle point which keeps
Imag (f(t)) constant along it, and “correct” back to the ends of our original
integration contour in the far field, along lines of constant Real (f(t)). The con-
tribution from the correction curves will be asymptotically negligible: not only
will Real (f(t)) be much smaller there than near the saddle, but also Imag (f(t))
is varying rapidly, giving the cancellation which was so troublesome earlier.

On the remaining integration contour, the imaginary part of f(t) is constant so
there will be no cancellation from rapid oscillations. Now it is appropriate to
Taylor-expand f(t) about the saddle point, and we can take as many terms as
necessary to obtain our asymptotic expansion.

The contour which keeps the imaginary part of f constant is the same contour
which makes the real part change most rapidly: thus we have chosen the contour
of steepest descent.

For our example, f(t) = (t − i)2 which has a saddle point at t = i. If we set
t = x+ iy, the imaginary part of f is 2x(y−1) which is zero at the saddle point,
so we choose a contour which keeps it zero: y = 1. In fact this is exactly the
procedure we carried out to calculate the integral – but as a method this works
even when it doesn’t exactly solve the problem.

Example: Bessel function

The Bessel function Kν(z) can be written

Kν(z) =
1

2

∫ ∞

−∞
exp [νt− z cosh t] dt.

We will take z = 1, double the function and look for an expansion as ν → ∞:

I(ν) =

∫ ∞

−∞
exp [νt− cosh t] dt.

If we generalise slightly to allow f(t) to have ν as a parameter, we can write

I(ν) =

∫ ∞

−∞
exp [ν(t− cosh t/ν)] dt.

Since there is no trigonometric term, we know that the imaginary part of our
function is zero along the real line: so in this case we will not need to find a new
contour, just find the dominant contribution from the contour we started from.

We look at the behaviour of f(t) = t− cosh t/ν. It has a maximum where

d

dt
(t− cosh t/ν) = 0 sinh t = ν

and about that point, we expand:

f(t) ≈ f(arcsinh ν) +
1

2
(t− arcsinh ν)2f ′′(arcsinh ν) + · · ·

= arcsinh ν − (ν2 + 1)1/2

ν
− (t− arcsinh ν)2

(ν2 + 1)1/2

2ν
+ · · ·
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The contributions to the integral become

I(ν) ∼
∫ ∞

−∞
exp

[
ν

(
arcsinh ν − (ν2 + 1)1/2

ν
− (t− arcsinh ν)2

(ν2 + 1)1/2

2ν

)]
dt

I(ν) ∼ (2π)1/2

(ν2 + 1)1/4
exp

[
ν arcsinh ν − (ν2 + 1)1/2

]
.

Steepest descents in practice

Although we’ve used a contour which keeps the imaginary part of f constant,
and thereby makes the real part decrease as fast as possible away from the
contour, this level of detail is not necessary for the leading-order term of an
asymptotic expansion. In practice, any contour which crosses the saddle and
descends on both sides of it will do a decent job. Numerically, it is often less
expensive to carry out the integration with smaller step sizes to catch the oscil-
lation terms than it is to find the steepest descent contour exactly. So the key
point is to find the saddle (or the highest saddle) over which your contour must
pass: beyond that point you have much more flexibility.

9 More matching!

In section 6 we looked at matched asymptotic expansions in the situation where
we found all the possible underlying scalings first, located where to put the
boundary later from the direction of the exponential decay, applied all sets of
boundary conditions and finally matched our two expansions. That’s a good
generic picture but there are more possibilities.

9.1 Another way to find scalings: breakdown of ordering

Way back when we looked at regular expansions, I mentioned that one possi-
ble warning sign was that the ordering of terms in our expansion could break
down. This can be used as an alternative method of seeking out new scalings
and stretches, particularly for complex problems and when the outer scale and
stretch are fixed by the boundary conditions.

This example comes from Hinch exercise 5.12 (and originally Van Dyke):

x3
dy

dx
= ε((1 + ε)x+ 2ε2)y2 in 0 < x < 1

with boundary condition y(1) = 1− ε.

We start with the obvious expansion:

y ∼ y0 + εy1 + ε2y2 + · · ·

and substitute to have

x3y′0 = 0
εx3y′1 = εxy20
ε2x3y′2 = 2ε2xy0y1 + ε2xy20
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We will be applying the boundary condition to this solution: y0(1) = 1, y1(1) =
−1, y2(1) = 0, and so on.

Order 1 y′0 = 0 gives y0 = a0 and hence y0 = 1.

Order ε x3y′1 = x gives y1 = a1 − 1/x and hence y1 = −1/x.

Order ε2 x3y′2 = x− 2 gives y2 = a2 − 1/x+1/x2 and hence y2 = 1/x2 − 1/x.

Our outer solution begins

y ∼ 1− ε

x
+ ε2

(
1

x2
− 1

x

)
+ · · ·

Now both the (nominally) order ε and order ε2 terms become order 1 when
x ∼ ε. The function value is still order 1 (pick, for instance, x = 2ε to see this)
and so we look for an inner expansion with x = εz and put

y = f0(z) + εf1(z) + ε2f2(z) + · · ·

The differential equation transforms to

z3
dy

dz
= ((1 + ε)z + 2ε)y2

which then gives

z3f ′0 = zf20
εz3f ′1 = 2εzf0f1 + ε(z + 2)f20
ε2z3f ′2 = ε2z(f21 + 2f0f2) + 2ε2(z + 2)f0f1

We will solve for two terms before matching with the outer.

Order 1 z3f ′0 = zf20 gives 1/f0 = A0 + 1/z and f0 = z/(1 +A0z).

Order ε z3f ′1 − 2zf0f1 = (z + 2)f20 becomes

f ′1 − 2f1/z(1 +A0z) = (z + 2)/z(1 +A0z)
2

and hence (using an integrating factor of (1 +A0z)
2/z2) we obtain

d

dz

(
(1 +A0z)

2

z2
f1

)
=

1

z2
+

2

z3

f1 =
A1z

2

(1 +A0z)2
− 1 + z

(1 +A0z)2
.

So now our two solutions are

youter = 1− ε

x
+ ε2

(
1

x2
− 1

x

)
+ · · ·

yinner =
z

(1 +A0z)
+ ε

(
A1z

2

(1 +A0z)2
− 1 + z

(1 +A0z)2

)
+ · · ·
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related by x = εz. Introducing x = εαη and z = εα−1η and expanding (noting
that z is large and so z−1 is small) gives

youter ∼ 1− ε1−α 1

η
+ ε2−2α 1

η2
− ε2−α 1

η
+ · · ·

yinner =
1

A0
− ε1−α

A2
0η

+
ε2−2α

η2A3
0

+ · · ·

+ ε

(
A1

A2
0(1 + (A0εα−1η)−1)2

− 1 + εα−1η

(1 +A0(εα−1η))2

)
+ · · ·

Clearly to match the order 1 term we need A0 = 1; then the comparison becomes

youter ∼ 1− ε1−α 1

η
+ ε2−2α 1

η2
− ε2−α 1

η
+ · · ·

yinner = 1− ε1−α 1

η
+ ε2−2α 1

η2
− ε3−3α 1

η3
+ · · ·

+ εA1(1 + ε1−αη−1)−2 − ε2−αη−1(1 + ε1−αη−1)−1 + · · ·

= 1− ε1−α 1

η
+ ε2−2α 1

η2
− ε3−3α 1

η3
+ · · ·

+ (A1ε− 2A1ε
2−αη−1 + · · · )− ε2−αη−1(1− ε1−αη−1 + · · · )

There is nothing in the outer solution to match the A1ε term so we need A1 = 0;
the other unmatched terms all have powers like ε3−nα so would match the third
term of the outer, which we have not calculated. Our inner solution is therefore

yinner =
z

(1 + z)
− ε

(1 + z)
+ · · ·

with x = εz.

This problem has hidden depths though: the first two terms of our inner ex-
pansion break order when z is order ε. At that point the function value is also
order ε, so we look for an inner-inner expansion y = εF (X) with z = εX. The
governing equation:

z3
dy

dz
= ((1 + ε)z + 2ε)y2

becomes:

X3 dF

dX
= ((1 + ε)X + 2)F 2.

Here we will only look for the leading order term:

X3 dF0

dX
= (X + 2)F 2

0

∫
dF0

F 2
0

=

∫
1

X2
+

2

X3
dX

−1

F0
=

−1

X
− 1

X2
− C0 F0 =

X2

C0X2 +X + 1
.

Now we need to compare the inner and double-inner expansions:

yinner =
z

(1 + z)
− ε

(1 + z)
+ · · ·

ydouble ∼ ε
X2

C0X2 +X + 1
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with z = εX. We set z = εαξ and X = εα−1ξ to have

yinner = εαξ(1− εαξ + · · · )− ε(1 + · · · )

ydouble ∼ ε

C0
(1 + ε1−αC−1

0 ξ−1 + ε2−2αC−1
0 ξ−2)−1

∼ ε

C0
(1− ε1−αC−1

0 ξ−1 + · · · )

The leading order terms here simply don’t balance. There is nothing in the
double-inner that gets as large as the εαξ term in the inner. However, in ex-
panding our double-inner solution, we did assume that C0 was nonzero. If we
try the case where it is zero, we get:

ydouble = ε
X2

X + 1
+ · · · = εX

1

1 +X−1
+ · · ·

∼ εαξ(1− ε1−αξ−1 + · · · )

which now matches the leading term from the inner. To match any more terms
we would need to go to higher order in both expansions.

In summary, this ODE has three layers of asymptotic solution:

youter = 1− ε

x
+ ε2

(
1

x2
− 1

x

)
+ · · ·

yinner =
z

(1 + z)
− ε

(1 + z)
+ · · · with x = εz

ydouble = ε
X2

X + 1
+ · · · with z = εX.

This three-layered structure is known as a triple-deck problem.

9.2 A worse example

This example comes from the book by Cole. The governing equation is

ε
d2f

dx2
+ f

df

dx
− f = 0

with boundary conditions f(0) = −1, f(1) = 1.

These boundary conditions fix f to be strictly order 1, so we cannot scale f and
can only consider stretching x. Note that you have seen this equation before
in exercise 4 of sheet 3. In the case of no scaling (α = 0) you should have
found two possible stretches: x ∼ 1 and x ∼ ε. You will also have found all
the possible leading-order outer and inner solutions, but I didn’t give you any
boundary conditions and you hadn’t learnt about matching yet, so you couldn’t
determine any of the constants.

Outer

Let us look first at the outer solution. We pose f = f0(x)+εf1(x)+ε
2f2(x)+· · · .

The leading-order equation is

f0
df0
dx

− f0 = 0 =⇒ f0

(
df0
dx

− 1

)
= 0
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which has two solutions, f0(x) ≡ 0 and f0(x) = x + C. Note that for both
of these, d2f0/dx

2 = 0 and so f0 is an exact solution of the equation, and
f1 = f2 = · · · = 0.

Clearly the branch f0 = 0 can’t match either of the boundary conditions, so we
know our outer solution must be

f(x) = x+ C.

We have not yet found where the boundary layer will be; since the outer is so
simple, we might as well work out the constant for both possibilities now.

If the outer meets x = 1 then we have C = 0 and so fouter,1(x) = x.
If the outer meets x = 0 then instead we have C = −1 and fouter,0(x) = x− 1.

Inner

What stretch do we expect for the inner? Note that the boundary conditions
mean we can’t scale f , we can only stretch x. We found in your exercise that
we should stretch x = a+ εz.

We introduce z = (x− a)/ε and rewrite our differential equation:

d2f

dz2
+ f

df

dz
− εf = 0

Now we pose an inner expansion: f ∼ F0(z) + εF1(z) + ε2F2(z) + · · · , and at
leading order the governing equation is

d2F0

dz2
+ F0

dF0

dz
= 0.

We can integrate this directly once:

dF0

dz
+

1

2
F 2
0 = C.

Now remember that for a boundary layer solution, we are going to need solutions
which decay to some fixed value out of the layer. This means that as z → ±∞
(but not necessarily both), we need dF0/dz → 0 and so C ≥ 0. (This already
eliminates some of the possible solutions you found.) Let us set C = 2k2 for
convenience.

This ODE for F0 has three different possible forms of solution. If k = 0 the
solution is

F0 =
2

z +D
,

with arbitrary constant D. If we are to use this solution the point z = −D must
not lie within our domain.

For k > 0 there are three solutions, two of which work.

First we look at the possibility that |F0| = 2k. In that case

dF0

dz
= 0 F0 = ±2k.
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This is not a true inner solution: it does not depend on z, so it doesn’t vary
quickly w.r.t. x. In fact, it is just a regular outer solution expanded in terms
of the inner variable. So we move on to the two other cases: |F0| < 2k and
|F0| > 2k.

In both of these cases we can solve the ODE by partial fractions:

2
dF0

dz
= 4k2 − F 2

0 .∫
2k dz =

∫
4k

4k2 − F 2
0

dF0 =

∫ (
1

2k − F0
+

1

2k + F0

)
dF0

2kz + 2B = − ln |2k − F0|+ ln |2k + F0| = ln

∣∣∣∣2k + F0

2k − F0

∣∣∣∣
2k + F0

2k − F0
= ± exp [2(kz +B)]

F0 = 2k
exp [(kz +B)]∓ exp [−(kz +B)]

exp [(kz +B)]± exp [−(kz +B)]

which has two solutions,

F0 = 2k tanh [(kz +B)] F0 = 2k coth [(kz +B)],

both of which decay exponentially to some limit as z → ∞.

Look at the forms of the tanh and coth curves:

We can see that the tanh solution moves smoothly from one value to another
over the width of the boundary layer, whereas the coth profile cannot be given a
value z = 0. This means that the coth profile can only be used if the boundary
layer is at one end or other of the region, whereas the tanh profile can be used
anywhere.

Matching with a single boundary layer

Let us try first to put the boundary layer near x = 0. The outer solution must
match the boundary condition at x = 1 so

fouter = x.

Now in the inner region we can either have

F (z) = 2k tanh [kz +B] or F (z) = 2k coth [kz +B] or F (z) = 2/(z+D).

In each case we need F (z = 0) = −1 and F (z → ∞) = 0. The second of
these gives k = 0 both the first two cases, and then we cannot match the other
boundary condition for any B. For the third function, we have the right result
as z → ∞, but to match the condition at z = 0 gives D = −2 and the forbidden
point z = −D = 2 lies within our domain. FAILED.
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Now we try with a boundary layer near x = 1. This time the outer solution
must match the boundary condition at x = 0 so

fouter = x− 1.

In the inner region the possibilities are

F (z) = 2k tanh [kz +B] or F (z) = 2k coth [kz +B] or F (z) = 2/(z+D).

The boundary conditions are F (z = 0) = 1 and F (z → −∞) = 0. We have the
same problem again: we need both k ̸= 0 and k = 0, or z = −D lies within our
domain. FAILED.

Finally, let us try having the “boundary layer” in the middle, at some general
position a between 0 and 1. This time we have two different branches of the
outer solution:

fouter,1(x) = x fouter,1(a) = a.

fouter,0(x) = x− 1 fouter,0(a) = a− 1.

Our inner solution will then have boundary conditions

F (z → −∞) = a− 1 F (z → ∞) = a.

The only profile we are allowed is the tanh profile, which goes from −2k to 2k
over the width of the layer. This fixes

a− 1 = −2k a = 2k =⇒ a = 1/2, k = 1/4.

Our leading-order inner solution is

F (z) =
1

2
tanh [z/4]

and z = (x− 1
2 )/ε. The complete solution looks like this:

Note: It is also possible to construct a solution having more than one boundary
layer: for example, try putting a tanh boundary layer at each end. However, a
single localised region of “failure” is more physically realistic.

Further expansion

Since the solution we have found in the inner is not an exact solution, we could
continue to higher orders. Often you will find that the later equations are easier
to solve than the first because the new terms come in linearly. Although the
equation becomes linear, it’s not really easier in this case; but let us try calculate
one more term. Recall we had

d2f

dz2
+ f

df

dz
− εf = 0

with

f ∼ 1

2
tanh [z/4] + εF1(z) + · · ·
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At order ε this gives

d2F1

dz2
+ F0

dF1

dz
+ F1

dF0

dz
− F0 = 0

d2F1

dz2
+

1

2
tanh

[z
4

]dF1

dz
+

1

8
sech2

[z
4

]
F1 =

1

2
tanh

[z
4

]
d

dz

{
dF1

dz
+

1

2
tanh

[z
4

]
F1

}
=

1

2
tanh

[z
4

]
dF1

dz
+

1

2
tanh

[z
4

]
F1 = 2 ln cosh

[z
4

]
+ C1

d

dz

{
cosh2

[z
4

]
F1

}
= 2 cosh2

[z
4

]
ln cosh

[z
4

]
+ C1 cosh

2
[z
4

]
which may be integrated to give the solution:

F1 = C1

(z
4
+ sinh

[z
4

])
sech2

[z
4

]
+ C2sech

2
[z
4

]
+ 2sech2

[z
4

] ∫
cosh2

[z
4

]
ln cosh

[z
4

]
dz

Unfortunately the final integral is only available in terms of the polylogarithm
function:∫

cosh2
[z
4

]
ln cosh

[z
4

]
dz =

z

4
− z2

16
− 1

2
sinh

[z
2

]
− z

2
ln
(
1 + exp

[
−z
2

])
+ Li2

(
−e−z/2

)
+ ln cosh

[z
4

] (z
2
+ sinh

[z
2

])
in which

Li2(x) =

∞∑
k=1

xk

k2
,

but if we had been able to find F1 in terms of more useful functions, the matching
procedure would have continued as before.
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Analytical Methods: Exercises 1

1. Try a regular perturbation expansion in the following differential equation:

y′′ + 2εy′ + (1 + ε2)y = 1, y(0) = 0, y(π/2) = 0.

Calculate the first three terms, that is, up to order ε2. Apply the boundary
conditions at each order.

2. Calculate the first two nonzero terms of a regular expansion in ε for the
following integral:

I =

∫ ε

0

dx

(ε2 − x2 + cos ε− cosx)1/2
.

[Hint: you will need to keep terms of order ε4 initially.]

3. Find the general solution to the PDE for f(θ, ϕ):

1

a sin θ

∂

∂θ
(sin θvθf) +

1

a sin θ

∂

∂ϕ
(vϕf) + sin2 θ cos 2ϕ = 0

in which

vθ = a sin θ cos θ cos 2ϕ

vϕ = −a sin θ sin 2ϕ

4. Consider the problem
∂u

∂t
+ u2

∂u

∂x
= 0

in x ≥ 0, t ≥ 0, with initial and boundary conditions

u(x, 0) =
√
x u(0, t) = 0.

Find the general solution implicitly and hence the specific solution in this
case.

5. How would you expect the diameter of a spider’s web to scale with L, the
bodylength of the spider? Be clear about any assumptions you make.

Answers

1. y = 1− cosx− sinx+ ε[(x− π/2) sinx+ x cosx]
− ε2[1 + (x2/2− πx/2− 1 + π2/8) sinx+ (x2/2− 1) cosx].

2. I =
π√
2

(
1− ε2

16
+O(ε4)

)
.

3. f(θ, ϕ) = F (sin 2ϕ tan2 θ) sec3 θ +
1

3
.

4. Implicit solution u = F (x− u2t), particular solution u(x, t) =

√
x

(1 + t)
.

5. If we assume that two quantities: the thickness of the spun fibre, and the
hole-size in the finished web, are both independent of spider size, then the
diameter scales as L3/2.
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1. Try a dilation transformation on the Burger’s equation: ut + uux = 0.
Find the specific solution for initial conditions

u(x, 1) =
x+ (x2 − 1)1/2

2

and show it matches that obtained by the method of characteristics.

2. Find the distinguished scalings, and the first two terms in the expansion
of each root, for the following equation:

εx3 + x2 + (2− ε)x+ 1 = 0.

3. Find the first two terms of all four roots of εx4 − x2 − x+ 2 = 0.

4. Work out the first two terms in an expansion of each solution to xe−x = ε.

5. Verify that the function

u =
1

2c

∫ t

0

∫ x+c(t−t′)

x−c(t−t′)

F (x′, t′) dx′ dt′

satisfies the inhomogeneous wave equation utt − c2uxx = F (x, t).

6. [Weinberger p.40] Find the characteristics through (0, 1) for the equation

∂2u

∂t2
− e2x

∂2u

∂x2
= 0.

7. Find two terms of a regular perturbation expansion for f(x, t) in:

∂2f

∂t2
− ∂2f

∂x2
− ε cosxf = x

with boundary conditions f(x, 0) = ∂f/∂t(x, 0) = 0. This particular
problem can be solved in the same way even if ε = 1: this is the method
of successive approximations. [Ref: Weinberger p. 384.]

Answers

1. u = tm−1f(ξ) with ξ = t−mx and (f(ξ)−mξ)f ′(ξ) + (m− 1)f(ξ) = 0.

Specific solution u = (x/t+ [(x/t)2 − t−1]1/2)/2.

2. Scalings x ∼ 1 and x ∼ ε−1; roots x = −1−2ε+O(ε2), x = −ε−1+2+O(ε),
x = −1 (exact solution, no further terms).

3. x ∼ 1 + ε/3; x ∼ −2− 16ε/3; x ∼ ε−1/2 + 1/2; x ∼ −ε−1/2 + 1/2.

4. xe−x = ε. There are two roots: x ∼ ε+ ε2 and x ∼ ln (1/ε)− ln (ln (1/ε)).

6. t = ex and t = 2− ex.

7. f(x, t) = 1
2xt

2 + ε
[
1
2 t

2(x cosx− 2 sinx)− x cosx+ 4 sinx

+ 1
2 (x+ t) cos (x+ t) + 1

2 (x− t) cos (x− t)− 2 sin (x+ t)− 2 sin (x− t)
]
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1. Find where the following operators are hyperbolic, parabolic, and elliptic:

(a)
∂2u

∂t2
+ t

∂2u

∂x∂t
+ x

∂2u

∂x2
(b) t

∂2u

∂t2
+ 2

∂2u

∂x∂t
+ x

∂2u

∂x2
+
∂u

∂x
.

2. Solve the following PDE with the boundary conditions given:

∂2u

∂t2
− x2

(t+ 1)2
∂2u

∂x2
= 0 u(x, 0) = u(1, t) = u(2, t) = 0.

3. Find the distinguished stretches, and the leading term of each solution:

ε3
d3f

dx3
+ ε

d2f

dx2
+

df

dx
+ f = 0.

4. ε
d2f

dx2
+ f

df

dx
− f = 0.

(a) Find the scalings f = εαF and stretches x = a + εβz at which two
dominant terms balance, and sketch these scalings in the α–β plane.

(b) Hence determine the critical α and β for all three terms to balance.

(c) Give also the possible values of β if the boundary conditions fix α = 0.
Find the leading term in an expansion for f in each case.

5. Consider the following equation and boundary conditions:

ε
∂2u

∂x2
+ ε

∂2u

∂y2
+
∂u

∂y
= 0

u(−1, y) = u(1, y) = 0 u(x, 1) = 1− x2 ε
∂u

∂y
(x, 0) + u(x, 0) = 0.

(a) Calculate the first two terms of a regular perturbation expansion,
ignoring the boundary condition at y = 0. Satisfy the other three
boundary conditions at leading order only.

(b) What scaling can be applied to y to find another solution? Calculate
two terms of this solution, using only the y = 0 boundary condition.

(c) Taking ε as a normal parameter (i.e. forgetting that it is small), find
the full solution to the problem by separating variables. You need
not determine all the coefficients in the sum; but find the general
solution satisfying the x-boundary conditions.

(d) Comment on the structure of your general solution when ε is small.

Answers [Note: questions 1 & 2 are from Weinberger]

1. (a) H t2 > 4x; P t2 = 4x; E t2 < 4x. (b) H xt < 1; P xt = 1; E xt > 1.

2. u(x, t) =
∑
n

αnx
1/2(t+ 1)1/2 sin

(
nπ lnx

ln 2

)
sin

(
nπ ln (t+ 1)

ln 2

)
.

3. 1, ε, ε2. f = be−x; f = be−(x−a)/ε + c; f = be−(x−a)/ε2 + c(x− a)/ε2 + d.

4. (a) α+β = 1, α < β; β = 1/2, α > β; α = β, β < 1/2. (b) α = β = 1/2.

(c) β = 0: f0 = a + x. β = 1: any of F0 = constant, F0 = 2(z + b)−1,
F0 = −2k tan [k(z + b)], 2k tanh [k(z + b)], or 2k coth [k(z + b)].

5. (a) u ∼ 1− x2 + ε(2y + f1(x)) + · · ·
(b) The scaling is y = a+ εY giving f ∼ A0(x)e

−Y + εA1(x)e
−Y + · · · .

(c) u =
∑
n

an cos

[
(2n+ 1)πx

2

]
(cn exp [m1y] + dn exp [m2y]) with

m1, m2 = [−1±
√
1 + (2n+ 1)2π2ε2]/2ε.
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Analytical Methods: Exercises 4

1. Look at the problem

ε
d2f

dx2
+

df

dx
= cosx

with boundary conditions f(0) = 0, f(π) = 1. Find the two distinguished
stretches for this equation. Calculate the first three terms of the regu-
lar expansion, and apply the boundary condition at π to determine the
constants.

Now apply your stretch near x = 0. Find the first three terms of the inner
solution, and apply the boundary condition at x = 0 to determine some
of the constants in this expansion.

Finally use an intermediate variable to match your two expressions and
determine the remaining constants.

2. Calculate three terms of the outer solution of

(1 + ε)x2y′ = ε((1− ε)xy2 − (1 + ε)x+ y3 + 2εy2) in 0 < x < 1

with y(1) = 1. Locate the non-uniformity of the asymptoticness, and
hence the rescaling for an inner region. Thence find two terms for this
inner solution.

3. Find the image of the unit disc |z − 1| ≤ 1 under the mapping w = 1/z.

4. Find the image of −π/2 < x < π/2, 0 < y < 1 under w = sin z.

5. Find the image of −π/4 < x < π/4, −1 < y < 1 under w = sin z.

6. Solve the problem ∇2u = 0 for 1 < r < eα, 0 < α < π with boundary
conditions

∂u/∂r(1, θ) = 0 ∂u/∂r(eα, θ) = sin θ u(r, 0) = 0 u(r, π) = 0

(a) by separation of variables, and

(b) using the transformation w = ln z.

Answers [Note: question 2 is from Hinch; 3–6 are from Weinberger]

1. δ = 1, δ = ε. Outer: f = 1 + sinx− ε[1 + cosx]− ε2 sinx+ · · ·
Inner (x = εz): f = a0 − a0e

−z + ε[a1 − a1e
−z + z] + ε2[a2 − a2e

−z] + · · ·
After matching: f(z) = 1− e−z + ε[2e−z − 2 + z] +O(ε3).

2. Outer y ∼ 1 + ε[1− 1/x] + ε2[1/2− 2/x+ 3/(2x2)] + · · · .
Inner (with x = εz): y ∼ (1 + 2/z)−1/2 + ε[(1 + 1/z)(1 + 2/z)−3/2] + · · ·

3. Real (w) ≥ 1/2.

4. Putting w = η + iξ, the image is (η/ cosh 1)2 + (ξ/ sinh 1)2 ≤ 1, ξ ≥ 0.

5. Putting w = η+ iξ, the image is the curvilinear rectangle bounded by the
hyperbola η2 − ξ2 = 1/2 and the ellipse (η/ cosh 1)2 + (ξ/ sinh 1)2 = 1.

6. u(r, θ) = (r + r−1) sin θ/(1− e−2α).
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1. [Blasius boundary layer] Consider the steady Navier-Stokes equations:

∇ · u = 0 u · ∇u = −∇p+∇2u,

here made dimensionless using a typical velocity U , the fluid density ρ
and the viscous lengthscale L = η/ρU .

Investigate flow past a semi-infinite flat plate (no natural lengthscale):

u→ ex at ∞; u = 0 on x ≥ 0, y = 0.

A dilation transformation is appropriate; expect the vertical velocity to
be a smaller scale than the horizontal. You may find it easiest to work
with a streamfunction u = ∂ψ/∂y. The ODE which results can only be
solved numerically.

2. Find the asymptotic behaviour of

Jν(νz) =
1

2πi

∫ ∞+iπ

∞−iπ

exp [νz sinh t− νt] dt

for fixed real z with 0 < z < 1 as ν → ∞.

Answers

1. The leading-order scalings are u = U(ξ), v = x−1/2V (ξ) and p = P0 (a
constant), in which ξ = x−1/2y. A streamfunction gives

ψ = x1/2f(ξ) with U(ξ) = f ′(ξ), V (ξ) =
1

2
[ξf ′(ξ)− f(ξ)].

and the resulting ODE is 2f ′′′(ξ) + f(ξ)f ′′(ξ) = 0, with f(0) = f ′(0) = 0
and f ′(ξ) → 1 as ξ → ∞.

2. Jν(νz) ∼
(

1

2πν(1− z2)1/2

)1/2

exp
[
ν
(
(1− z2)1/2 − arccosh (1/z)

)]
.
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