
Kernel Methods
in

Machine Learning and Statistics

Nikolas Nüsken
Marina Riabiz

King’s College London
Department of Mathematics

February 20, 2023

2

Contents

1 Kernels and RKHSs 1
1.1 Motivation . 1

1.2 Positive definite kernels . 1

1.3 Reproducing kernel Hilbert spaces (RKHSs) . 4

1.4 Function evaluations, and the interpretation of ∥ · ∥Hk
. 6

1.4.1 The norm ∥ · ∥Hk
as a measure of complexity. 9

2 Kernel Ridge Regression 11
2.1 Extensions . 14

3 Kernel Embeddings 16
3.1 Motivation . 16

3.2 Feature maps . 18

3.2.1 Review of connections and equivalences . 20

3.3 Algorithm kernelization . 20

3.3.1 Kernel PCA . 21

3.3.2 Other kernelizable algorithms . 24

3.4 Extensions . 25

3.4.1 Kernel mean embeddings . 25

3.4.2 Discrepancies based on kernel mean embeddings 27

4 Gaussian Processes 32
4.1 Motivation . 32

4.2 Gaussian processes . 33

4.3 GP-regression . 34

4.3.1 Relationship between KRR and GP regression 35

4.3.2 GP interpolation . 36

5 The Neural Tangent Kernel 38
5.1 Differentiable learning . 38

5.2 The neural tangent kernel . 39

5.3 Kernel machines . 41

5.4 Lazy training in neural networks . 42

1

These notes are based on material developed by Dr. Nikolas Nüsken and Dr. Marina Riabiz. We would
appreciate if you point out any typos to:
nikolas.nusken@kcl.ac.uk
marina.riabiz@kcl.ac.uk.

Disclaimer: These notes closely follow the material in the textbooks cited in the bibliography, with
some additions by the authors, and represent a guide for the lectures. These notes should not be dis-
tributed or used for commercial purposes.

Chapter 1

Kernels and RKHSs

1.1 Motivation

Let us consider the following situation (‘regression problem’): We are given data (xi, yi)N
i=1 ⊂ X × R

and aim to find a function f : X → R that ‘explains’ it. Importantly, we would also like f to give rea-
sonable predictions on unseen data. A central topic is the dichotomy between overfitting and underfitting.

Complexity. If f is too simple, it will underfit, if f is too complex, it will overfit.

Deterministic vs. stochastic effects. If we underestimate the noise in the data, it will lead to overfitting.
If we underestimate the noise, it will lead to underfitting.

Training vs prediction. Overfitting means performing well on training data, and badly on test data. Un-
derfitting means performing badly on training data, but ok on test data.

Finding a ‘sweat spot’ between over- and underfitting is a key problem in machine learning and statis-
tics. Typical approach: Specify a function class F in advance (e.g. F = {polynomials}, F =
{neural networks}), and find f ∈ F . We would also like a map c : F → R≥0 that measures the
‘complexity’ of f ∈ F .

This course:

• F = RKHSk (reproducing kernel Hilbert space associated to the kernel k,

• c = ∥ · ∥Hk
, norm on this space.

We will take the regression problem as a starting point, but touch on various other topics.

Further reading: In this course, we will not discuss background in the (beautiful!) theory of statisti-
cal learning (overfitting vs underfitting) very much. Have a look at the classic paper [5] or the modern
treatment in [2, Chapter 2].

1.2 Positive definite kernels

In this section, we give the notion of positive definite kernels, as well as a few examples. Take this
section as a prelude to Section 1.3; we will use positive definite kernels as the building blocks for the
associated reproducing kernel Hilbert spaces.

Definition 1 (Positive definite kernels). Let X ̸= ∅ be a set. A function k : X × X → R is called a
positive definite kernel if

1

1. k is symmetric, that is,

k(x, y) = k(y, x) for all x, y ∈ X, (1.2.1)

2. k is positive semi-definite: For all n ∈ N, α1, . . . , αn ∈ R and x1, . . . , xn ∈ X , we have

n∑

i,j=1
αiαjk(xi, xj) ≥ 0. (1.2.2)

Remark 1.2.1. A few remarks:

1. Positive definiteness of kernels in the sense of Definition 1 is equivalent to the following statement:
All matrices of the form

k(x1, x1) . . . k(x1, xn)

...
. . .

...
k(xn, x1) . . . k(xn, xn)

 (1.2.3)

are positive semi-definite, for arbitrary choices of x1, . . . , xn ∈ X and ‘sizes’ n ∈ N. It is
therefore reasonable to think of positive definite kernels as positive semi-definite matrices ‘of
arbitrary dimension’. The matrices in (1.2.3) are commonly referred to as Gram matrices.

2. Intuition: Sometimes (not always) it is useful to think of k(x, y) as a measure of similarity between
x and y.

3. The property k(x, y) ≥ 0 for all x, y ∈ X is neither necessary nor sufficient for the second
statement in Definition 1 to hold (this follows from the equivalent statement in 1. above – think
about matrices!)

4. There is no structural assumption on X (allowing for its elements to be strings, images...), but
often we will have X = Rd.

5. k : X ×X → C is interesting, but not in this course.

6. Verifying the first condition in Definition 1 is usually straightforward, proving the second condition
may be difficult.

Example 1.2.1. We will often use the following positive definite kernels:

1. Squared-exponential (or Gaussian) kernel:

k(x, y) = exp
(

−|x− y|2
σ2

)
, x, y ∈ Rd. (1.2.4)

Here, σ > 0 specifies the width of the kernel.

2. Laplace kernel:

k(x, y) = exp
(|x− y|

σ

)
, x, y ∈ Rd. (1.2.5)

3. More generally, we can consider the family of p-kernels,

k(x, y) = exp
(|x− y|p

σp

)
, x, y ∈ Rd, (1.2.6)

where p ∈ [1, 2] is necessary to guarantee positive definiteness.

2

4. Polynomial kernels:
k(x, y) =

(
x⊤y + c

)m
, x, y ∈ Rd, (1.2.7)

with c > 0 and m ∈ N.

5. Sums and products: Given two positive definite kernels k1, k2 : X × X → R, their sum and
product

(k1 + k2)(x, y) := k1(x, y) + k2(x, y) (1.2.8a)

(k1 · k2)(x, y) := k1(x, y) · k2(x, y) (1.2.8b)

are also positive definite. While this statement is straightforward to show for the sum kernel, to
prove it for the product kernel we need the Schur product theorem (if you don’t know it, look it
up on wikipedia).

6. Scalings: Given a positive definite kernel k : X × X → R and a function f : X → R, the
rescaled kernel

kf (x, y) = f(x)k(x, y)f(y). (1.2.9)

is positive definite as well.

Exercise 1. Show that the Gaussian kernel in (1.2.4) is indeed positive definite. Hint: you may find it
useful to write

k(x, y) = exp
(

−|x|2
σ2

)
exp

(2
σ2x · y

)
exp

(
−|y|2
σ2

)
, (1.2.10)

use the power series expansion for the exponential function, as well as the properties in (1.2.8).

The following lemma gives some further information on possible ‘shapes’ of positive definite kernels.

Lemma 1. For a positive definite kernel k : X ×X → R the following hold:

1. The kernel k is nonnegative on the diagonal:

k(x, x) ≥ 0, for all x ∈ X. (1.2.11)

2. The kernel k is ‘diagonally dominant’:

k(x, y)2 ≤ k(x, x)k(y, y), for all x, y ∈ X. (1.2.12)

Proof. The first statement follows from the second item in Definition 1, with n = 1. For the second
statement consider the same item with n = 2. We obtain that the matrices

(
k(x, x) k(x, y)
k(y, x) k(y, y)

)
(1.2.13)

are positive semidefinite, therefore, have nonnegative determinant, k(x, x)k(y, y) − k(x, y)2 ≥ 0. This
implies the statement.

Remark 1.2.2. We will later see that k(x, y) encodes an inner product between (transformed versions
of) x and y. Then, (1.2.12) is precisely the Chauchy-Schwarz inequality.

3

1.3 Reproducing kernel Hilbert spaces (RKHSs)

In this section we construct reproducing kernel Hilbert spaces, using positive definite kernels as building
blocks. We follow [10, Section 2.3].

Given a positive definite kernel k : X × X → R, the reproducing kernel Hilbert space (RKHS) Hk

is a Hilbert space1 of functions on X , associated to k in a canonical way. Notice that for any x ∈ X ,
we obtain a function k(x, ·) : X → R. This family of functions (varying x ∈ X) provides the building
blocks for Hk:

′′Hk = {limits of linear combinations of functions of the form k(x, ·), for x ∈ X}′′ . (1.3.1)

In the remainder of this section, we will make the heuristic (1.3.1) precise. Notice that it is not yet clear
in which sense the limit in (1.3.1) should be taken, and that in order to obtain a Hilbert space, we will
also need to construct an inner product. These two remarks are connected: we will take the limits with
respect to the norm induced by the inner product.

Remark 1.3.1. Functions of the form k(x, ·) are particularly intuitive if the kernel is translation-
invariant, such as those in (1.2.4)-(1.2.6); in this case, those are translates by x of a basic kernel (centred
at the origin).

Construction. Step 1: Let us fix a positive definite kernel k : X ×X → R and define

H0
k := span {k(x, ·) : x ∈ X} (1.3.2a)

:=
{
f =

n∑

i=1
cik(x, ·) : n ∈ N, c1, . . . , cn ∈ R, x1, . . . , xn ∈ X

}
. (1.3.2b)

Clearly, H0
k is a vector space over R: it is closed under summation and scalar multiplication.

Step 2: We now construct an inner product ⟨·, ·⟩Hk
(and induced norm ∥ · ∥Hk

) on H0
k. To do this, we

demand that ⟨·, ·⟩Hk
satisfies the reproducing property

f(x) = ⟨f, k(x, ·)⟩Hk
, for all f ∈ H0

k, x ∈ X. (1.3.3)

It is hard to overstate the significance of the key relation (1.3.3) for the whole subject! We will discuss its
full meaning further below, but for now note that k(x, ·) plays a similar role as the Dirac delta distribution
(for the inner product ⟨·, ·⟩Hk

).

The reproducing property (1.3.3) determines ⟨·, ·⟩Hk
on H0. Indeed, for f, g ∈ H0

k given in the form

f =
n∑

i=1
aik(xi, ·), g =

m∑

j=1
bjk(yj , ·), (1.3.4)

we can compute

⟨f, g⟩Hk
=

n∑

i=1

m∑

j=1
aibj⟨k(xi, ·), k(yj , ·)⟩Hk

=
n∑

i=1

m∑

j=1
aibjk(xi, yj), (1.3.5)

which from now on serves as our definition of ⟨·, ·⟩Hk
. Note that in the first equality, we have used the

(assumed) linearity of ⟨·, ·⟩Hk
, and in the second equality we have used the reproducing property (1.3.3)

with f = k(y, ·). As usual, the inner product ⟨·, ·⟩Hk
induces a corresponding norm

∥f∥2
Hk

= ⟨f, f⟩Hk
, f ∈ H0

k. (1.3.6)

But before proceeding, we need to check that the definition of the inner product is valid:
1Recall that a Hilbert space is a vector space equipped with an inner product, complete with respect to the induced norm,

see Wikipedia.

4

Lemma 2. The pairing ⟨·, ·⟩Hk
is indeed an inner product on H0

k.

Proof. First, we need to check linearity and symmetry, that is,

(linearity) ⟨f + g, h⟩Hk
= ⟨f, h⟩Hk

+ ⟨g, h⟩Hk
, (1.3.7a)

⟨λf, g⟩Hk
= λ⟨f, g⟩Hk

, f, g, h ∈ H0
k, λ ∈ R, (1.3.7b)

and

(symmetry) ⟨f, g⟩Hk
= ⟨g, f⟩Hk

, g, f ∈ H0
k. (1.3.8a)

These two properties are straightforward to check from the definition (1.3.5), and we leave it as a (sim-
ple) exercise. We hence turn to positive-definiteness and non-degeneracy of ⟨·, ·⟩Hk

. Recall that we need
to show that

(positivity) ∥f∥2
Hk

:= ⟨f, f⟩Hk
≥ 0, for all f ∈ H0

k, (1.3.9)

as well as
(nondegeneracy) ⟨f, f⟩Hk

= 0 if and only if f = 0. (1.3.10)

To show (1.3.9), take f = ∑n
i=1 aik(xi, ·). By definition,

⟨f, f⟩Hk
=

n∑

i,j=1
aiajk(xi, xj) ≥ 0, (1.3.11)

where the inequality follows from the fact that k is positive definite (see Definition 1). To show (1.3.10),
assume that f ∈ H0

k is such that ⟨f, f⟩Hk
= 0. Then

|f(x)|2 = |⟨f, k(x, ·)⟩Hk
|2 ≤ ∥f∥H2

k
∥k(x, ·)∥2

Hk
= 0, (1.3.12)

for all x ∈ X , so that indeed, f = 0.2

Remark 1.3.2. We have cheated a little bit. Defining the inner product in (1.3.5), we should convince
ourselves that ⟨f, g⟩Hk

does not depend on the representations of f and g. This means the following.
Suppose that

f =
n∑

i=1
aik(xi, ·) =

ñ∑

i=1
ãik(x̃i, ·), g =

m∑

j=1
bjk(yj , ·) =

m̃∑

j=1
b̃jk(ỹj , ·), (1.3.13)

that is, f and g admit alternative representations in terms of coefficients ãi, b̃j and points x̃i, ỹj . Then,
we should have that

n∑

i=1

m∑

j=1
aibjk(xi, yj) =

ñ∑

i=1

m̃∑

j=1
ãib̃jk(x̃i, ỹj), (1.3.14)

in order for ⟨f, g⟩Hk
to be well defined (this is true, but we skip the proof).

Remark 1.3.3 (Terminology and definiteness). Notice that in Definition 1, the condition (1.2.2) only
asks for positive semi-definiteness (and still the kernel is called positive-definite). This is because,
maybe surprisingly, the condition (1.2.2) suffices for the strict posite-definiteness of ⟨·, ·⟩Hk

, as we have
just proved.

2In (1.3.12), we have used the Cauchy-Schwarz inequality. Note, however, that at this stage we do not yet know that
(H0

k, ⟨·, ·⟩Hk) is an inner product space, so is Cauchy-Schwarz valid? Luckily, Cauchy-Schwarz does not require the non-
degeneracy condition (1.3.10), see, for instance, https://math.stackexchange.com/questions/2548494/does-cauchy-schwarz-
inequality-depend-on-positive-definiteness.

5

https://math.stackexchange.com/questions/2548494/does-cauchy-schwarz-inequality-depend-on-positive-definiteness
https://math.stackexchange.com/questions/2548494/does-cauchy-schwarz-inequality-depend-on-positive-definiteness

Step 3: Lemma 2 shows that (H0
k, ⟨·, ·⟩Hk

) is a pre-Hilbert space: It satisfies all the axioms for Hilbert
spaces, except for completeness. We can now employ a standard technique in analysis, and pass to the
completion

Hk := H0
k. (1.3.15)

The completion construction (heuristically3) includes limit points: for example, the real numbers R
can be constructed by completing the rationals Q. In our setting, the completion amounts to taking
n,m → ∞ in (1.3.2b) and (1.3.5). For more details on completions, we refer to [11, Section 1.6,
Theorem 3.2-3].

Remark 1.3.4. The construction of Hk from k makes it intuitive that the functions f ∈ Hk inherit many
properties from k (consider again the heuristic (1.3.1)). Indeed, the following statements are true:

k is bounded ⇐⇒ ∀f ∈ Hk, f is bounded. (1.3.16a)

k is bounded, continuous ⇐⇒ ∀f ∈ Hk, f is bounded and continuous. (1.3.16b)

Similar results hold for differentiability, measurability, etc, see, for example, [19, Section 4.3].

Here is another important result about Gaussian RKHSs that can be understood ‘intuitively’ using the
construction from this section:

Lemma 3 (Comparison of Gaussian RKHSs). Recall the Gaussian kernel from (1.2.4), here denoted by
kσ. For two different widths σ2 > σ1 > 0, the following (continuous)4 inclusion holds,

Hkσ2
⊂ Hkσ1

. (1.3.17)

Proof. See [19, Proposition 4.46]. Instead of a proof, we discuss an intuition: The kernel kσ1 is more
flexible (because it has a smaller width), and so more functions can be built with it.

A word of CAUTION! We have introduced the inner product/norm as in (1.3.5). It is a very common
mistake to write the RKHS-norm between f, g ∈ Hk as

∫

X

∫

X
f(x)k(x, y)g(y)ρ(dx)ρ(dy), (1.3.18)

for some measure ρ on X (equipped with an appropriate σ-algebra). This is wrong! In fact, it is usually
very difficult to compute the RKHS-norm or inner product for f and g explicitly given in functional
form. This is because we would need to find the coefficients ai in f = ∑

aik(xi, ·) first.

Remark 1.3.5. The expression (1.3.18) does have a role to play in the subject and using integrals of this
form is often useful. This is because (1.3.18) is the dual norm associated to ∥ · ∥Hk

, under identification
through L2(ρ). More on this (perhaps/probably) in later chapters.

1.4 Function evaluations, and the interpretation of ∥ · ∥Hk

The reproducing property (1.3.3) connects function evaluations with the inner product ⟨·, ·⟩Hk
, and hence

with the norm ∥ · ∥Hk
. We have the following heuristic:

If two functions are close with respect to ∥ · ∥Hk
, then they are close pointwise.

The precise statement is as follows:
3Rigorously, the completion is a space of equivalence classes of Cauchy sequences, capturing the notion of limits.
4In fact, we have ∥f∥Hkσ1

≤
(

σ2
σ1

)d ∥f∥Hkσ2
, for all f ∈ Hkσ2

.

6

Lemma 4 (Continuity of point evaluations). For all x ∈ X , there exists a constant Cx > 0 such that

|f(x) − g(x)| ≤ Cx∥f − g∥Hk
, (1.4.1)

for all f, g ∈ Hk.

Remark 1.4.1. As a corollary, we see that if a sequence of functions fn converges in Hk, then it also
converges pointwise. If k is bounded, then we can choose the constant Cx in (1.4.1) independently of x.
In this case, convergence of fn in Hk even implies uniform convergence.

Proof. Similar to (1.3.12), we write

|f(x) − g(x)|2 = |⟨f − g, k(x, ·)⟩Hk
|2 ≤ ∥k(x, ·)︸ ︷︷ ︸

C2
x

∥2
Hk

∥f − g∥2
Hk
, (1.4.2)

using the reproducing property (1.3.3) as well as Cauchy-Schwarz.

We say that function evaluations are continuous with respect to ∥ · ∥2
Hk

. Indeed, for x ∈ X , we can
define the evaluation functional

δx :Hk → R, (1.4.3a)

f 7→ f(x). (1.4.3b)

It follows directly from the definition that δx is linear (for all x ∈ X), and, by Lemma 4, δx is continuous.

Counterexample 1. Consider the L2-norm, defined by

∥f∥2
L2([0,1]) =

∫ 1

0
f2 dx, (1.4.4)

as well as the sequence of functions (qn)n∈N, defined by

qn(x) = xn, x ∈ [0, 1]. (1.4.5)

We see that qn → 0 in L2([0, 1]), that is,

lim
n→∞

∥qn − 0∥L2([0,1]) = 0. (1.4.6)

However, we also have that qn(1) = 1, for all n ∈ N. Therefore, an estimate of the form

|f(x) − 0| ≤ C∥f − 0∥L2([0,1]) (1.4.7)

cannot hold (for a fixed constant C): function evaluation is not continuous with respect to L2([0, 1]).5

We have seen now that point evaluations (evaluation functionals) are continuous in RKHSs (to reiter-
ate, this is mainly a property of the norm ∥ · ∥Hk

). Perhaps surprisingly, this property characterises the
class of RKHSs:

Theorem 1.4.1. Let X ̸= ∅ be a set, and (H, ⟨·, ·⟩H) be a Hilbert space of functions f : X → R. Then
(H, ⟨·, ·⟩H) is an RKHS6 if and only if all point evaluations are continuous.

5Strictly speaking, function evaluation is not allowed in L2([0, 1]), see Section ??.
6We say that (H, ⟨·, ·⟩H) is an RKHS if there exists a positive definite kernel k : X × X → R such that the construction

from Section 1.3 gives rise to (H, ⟨·, ·⟩H) (more precisely, if (Hk, ⟨·, ·⟩Hk) constructed this way is isometrically isomorphic
to (H, ⟨·, ·⟩H)).

7

Proof. (Sketch). We have already established ” =⇒ ”. For the other direction, assume that (Hk, ⟨·, ·⟩Hk
)

is a Hilbert space of functions on X so that all function evaluations are continuous. We now construct
a kernel k : X × X → R as follows: For x ∈ X , the evaluation functional δx defined in (1.4.3) is
continuous by assumption. From the Riesz’ representation theorem7, there exist unique gx ∈ H such
that

δx(f) = f(x) = ⟨gx, f⟩H , (1.4.8)

for all f ∈ H . Using these representers gx, we define

k(x, y) := ⟨gx, gy⟩H , x, y ∈ X. (1.4.9)

Is k defined in this way a positive definite kernel (see Definition 1)? First, it is clear that k is symmetric.
To check positive (semi-)definiteness, choose x1, . . . , xn ∈ X and α1, . . . , αn ∈ R and compute

n∑

i,j=1
αiαjk(xi, xj) =

n∑

i,j=1

〈
αigxi , αjgxj

〉
H

=
〈

n∑

i=1
αigxi ,

n∑

j=1
αjgxj

〉

H

≥ 0, (1.4.10)

by positivity of ⟨·, ·⟩H . Therefore, k is indeed a positive definite kernel.

We now claim that if we proceed with the construction from Section 1.3 to construct Hk, ⟨·, ·, ⟩Hk
,

we will get back to (H, ⟨·, ·⟩H). Notice that the ‘only choice’ in this construction is the reproducing
property (1.3.3), everything else is determined from that. It is thus sufficient to check that (1.3.3) holds.
For this, we observe that the representers gx can be written in terms of the kernel,

gx = k(x, ·), x ∈ X. (1.4.11)

Indeed, we have
k(x, y) = ⟨gx, gy⟩H = δy(gx) = gx(y), x, y ∈ X, (1.4.12)

proving (1.4.11). We can now use (1.4.11) to check (1.3.3),

⟨f, k(x, ·)⟩H = ⟨f, gx⟩H = δx(f) = f(x). (1.4.13)

Therefore, ⟨·, ·⟩H satisfies the reproducing property for k, and the result follows.

Remark 1.4.2. Recall Section 1.1. When designing machine learning/statistical methodology, we often
need to chose a function class F . It is reasonable to ask for continuous point evaluations. After all, we
will be interested in predictions (= point evaluations), and if there is no continuity, the method will not
be robust. It is also convenient to work with Hilbert spaces: the inner product will allow us to calculate
a lot explicitly. Theorem 1.4.1 shows that these two desiderata con only be satisfied by reproducing
kernel Hilbert spaces, that is, we are automatically forced to use the construction in Section 1.3!

Let us take stock for a moment and summarise what we have seen so far in definitions. If you look at
textbooks, you may find any of the following:

Definition 2 (RKHS 1). A reproducing kernel Hilbert space is one that can be obtained from a positive
definite kernel k : X ×X → R by the construction in Section 1.3.

Definition 3 (RKHS 2). Given a positive definite kernel k : X ×X → R on a set X , the corresponding
reproducing kernel Hilbert space Hk is characterised by the following two properties:

1. For all x ∈ X , we have k(x, ·) ∈ Hk.

2. The reproducing property holds:

f(x) = ⟨f, k(x, ·)⟩Hk
, for allx ∈ X, f ∈ Hk. (1.4.14)

7Note that the Riesz representation theorem crucially requires δx to be continuous!

8

Definition 4 (RKHS 3). A Hilbert space of functions is an RKHS if all point evaluations are continuous.

Of these, clearly the last definition is the most succinct, but also the most mysterious. When we
discuss the kernel trick, we will encounter another equivalent definition (and viewpoint).

Remark 1.4.3. It is an intriguing question whether there can be a Hilbert space of functions where
point evaluations are not continuous. Apparently, the Counterexample 1 suggests that L2((0, 1)) would
be such an example. Recall, however, that this is in fact a Hilbert space of equivalence classes of
functions (we need to factor out almost everywhere equivalence). In that sense, L2 is neither an example
nor a counterexample for a function space with discontiuous point evaluations. Indeed, it can be shown
that the construction of a Hilbert space of functions with discontinuous point evaluations requires the
Axiom of Choice!8 In this sense, there is no ‘counterexample’.

1.4.1 The norm ∥ · ∥Hk
as a measure of complexity.

In Section 1.1, we promised that ∥f∥Hk
would measure the ‘complexity’ of f ∈ Hk, in an appropriate

sense. Here, we make this statement (a bit) more precise. We are going to argue that the fact that
∥ · ∥Hk

makes point evaluations continuous (see Theorem 1.4.1) expresses the idea that ∥ · ∥Hk
measures

complexity.

Back to Counterexample 1: What goes wrong? The L2-norm (which does not make point eval-
uations continuous, hence is not an RKHS norm) defined in (1.4.4) only measures the magnitude of
function values. This is not sufficient to prevent the wild behaviour close to the boundary of the interval
of the sequence qn. The ‘complexity’ of qn, for n large is not appropriately taken into account. We get
the feeling that a proper measure of complexity should involve both function values and derivatives.

Indeed, the following heuristic is often9 true:

The norm ∥f∥Hk
measures both the magnitude of f , as well as (some) of its derivatives.

To discuss this a little bit, recall the definition of Sobolev spaces,

Hs(Rd) :=

f ∈ L2(Rd) : ∥f∥2

Hs(Rd) :=
∑

α∈Nd
0,|α|≤s

∥Dαf∥2
L2(Rd) < ∞

, (1.4.15)

that is, ∥f∥2
Hs(Rd) is sensitive to the magnitude of both f and its derivatives. The Sobolev embedding

theorem tells us that Hs(Rd) is a space of continuous10 functions (in particular, with continuous point
evaluations!) if and only if s > d

2 . From this, we deduce the following:

1. By definition 4, the (classical) spaces Hs(Rd) are reproducing kernel Hilbert spaces if s is large
enough (in comparison with the dimension). Indeed, their reproducing kernels are given by the
Matérn kernels (see [10, Example 2.2] or Wikipedia).

2. Folklore wisdom: Reproducing kernel Hilbert spaces necessarily become ‘small’ in high dimen-
sions. Indeed, for Hs(Rd) to be an RKHS for large d, its members have to be very smooth. This
is a concern for kernel methods in high-dimensional settings. More on this later (neural networks,
etc.).

8More precisely, the existence of a Hilbert space of functions with discontinuous point evaluations is independent of the
ZF axiomatic system without the axiom of choice. See https://math.stackexchange.com/questions/2689457/example-of-an-
infinite-dimensional-hilbert-space-that-is-not-an-rkhs.

9This claim mainly makes sense for X = Rd

10Note that Dα in (1.4.15) refers to the weak derivative. In particular, f does not need to be continuous a priori.

9

https://math.stackexchange.com/questions/2689457/example-of-an-infinite-dimensional-hilbert-space-that-is-not-an-rkhs
https://math.stackexchange.com/questions/2689457/example-of-an-infinite-dimensional-hilbert-space-that-is-not-an-rkhs

Remark 1.4.4 (The size of the Gaussian RKHS). It is interesting to know that the Gaussian RKHS
is ‘very small’. Indeed, it does not contain constant functions (apart from the zero function), and all
members are real-analytic.

Remark 1.4.5 (Very small RKHSs: the finite-dimensional case). It is a common misconception that
RKHSs have to be infinite-dimensional, since they are spaces of functions. This is not true. Consider for
example the kernel

k(x, y) = f(x)f(y), (1.4.16)

for some function f : X → R. All of the functions k(x, ·) are the same, up to a multiplicative constant!
Therefore, the RKHS associated to (1.4.16) is one-dimensional,

Hk = {αf : α ∈ R} . (1.4.17)

We can build RKHSs of arbitrary (finite dimension) by

k(x, y) =
N∑

i=1
fi(x)fi(y), (1.4.18)

for an appropriate collection of functions (fi)N
i=1. In fact, in some sense, any positive definite kernel can

be represented in the form (1.4.18), with N → ∞. This is the content of Mercer’s theorem. Maybe we
will come back to that later.

Remark 1.4.6 (Generalised Sobolev spaces). In some sense, all RKHSs on Rd with translation-invariant
kernels are Sobolev space, if we allow ourselves to generalise the notion of derivative in (1.4.15), as well
as consider infinitely many terms in the sum. This is the content of [7].

10

Chapter 2

Kernel Ridge Regression

In this chapter (like in Section 1.1), we assume that data (xi, yi)N
i=1 is given, with xi ∈ X (for some set

X , but typically X = Rd) and yi ∈ R. We will use the notation

D = {x1, . . . , xN } (2.0.1)

for the set of data points (more precisely, for their x-coordinates).

Our goal is to find a function f : X → R thats ‘learns’ the relationship between x and y,

f(xi) ≈ yi, i = 1, . . . , N, (2.0.2)

on the training data, but also, we would like f to generalise in an appropriate way to unseen data (see
Section 1.1). Recall the challenge of balancing over- and underfitting from Section 1.1. The following
problem formulation is inspired by this.

Problem 1 (Kernel ridge regression). Fix λ > 0 and a positive definite kernel k : X × X → R with
associated RKHS Hk, and solve

min
f∈Hk

(
1
N

N∑

i=1
(f(xi) − yi)2

︸ ︷︷ ︸
data term

+λ∥f∥2
H2

k︸ ︷︷ ︸
regulariser

)
(2.0.3)

Remark 2.0.1. The data term encodes (2.0.2), while the parameter λ is related to regularisation. More
precisely, it aims at avoiding overfitting by controlling the complexity of f , as measured by ∥ · ∥2

H2
k
. The

regime λ → 0 corresponds to overfitting, and λ → ∞ to underfitting. Judicious choice of λ is important,
but somewhat beyond the scope of these lectures.

Notice that for λ > 0, the objective in (2.0.3) is strictly convex in f , and therefore we expect there
to be a unique minimiser f∗. However, the optimisation problem in (2.0.3) is posed over the potentially
infinite-dimensional space of functions Hk, and so it might seem that it is computationally difficult to
obtain a solution. The following key result establishes that the solution is located in an a priori1 known
finite-dimensional subspace.

Theorem 2.0.1 (Representer theorem). Let l : R×R → R (in the following referred to as loss function),
λ > 0, and

f∗ ∈ arg min
f∈Hk

(
1
N

N∑

i=1
l(f(xi), yi) + λ∥f∥2

H2
k

)
. (2.0.4)

1As we will see below, this subspace only depends on (xi)N
i=1, and not on the ‘observations’ (yi)N

i=1

11

Then f∗ is of the form

f∗ =
N∑

i=1
αik(xi, ·), (2.0.5)

for appropriate α1, . . . , αN ∈ R.

Remark 2.0.2. The formulation in (2.0.4) is as slight generalisation; setting l(z, y) = (z−y)2 recovers
(2.0.3).

Remark 2.0.3 (Geometrical interpretation). Let us define the finite-dimensional subspace2

UD = span {k(x, ·), x ∈ D} (2.0.6a)

=
{

N∑

i=1
αik(xi, ·), α1, . . . , αN ∈ R, xi ∈ D

}
⊆ Hk, (2.0.6b)

depending only on (xi)N
i=1, but not on (yi)N

i=1. The representer theorem equivalently states that the
solution f∗ to (2.0.3) necessarily belongs to UD. In other words, the problem (2.0.3) does not change if
we replace Hk by UD, dramatically reducing the dimensionality of the optimisation problem.

Proof of Theorem 2.0.1. Recall the data subspace UD defined in (2.0.6), and consider its orthogonal
complement

U⊥
D := {f ∈ Hk : ⟨f, g⟩Hk

= 0, for all g ∈ UD} . (2.0.7)

Note that UD is finite-dimensional, hence closed3, and so we have the decomposition

Hk = UD ⊕ U⊥
D . (2.0.8)

This means that any f ∈ Hk can written in the form

f = g + h, (2.0.9)

with g ∈ UD and U⊥
D uniquely determined. The idea now is to show that for a minimiser f∗ of (2.0.3),

we necessarily have h = 0 in the decomposition (2.0.9). For this, we use the fact that U⊥
D can be written

as follows,
U⊥

D = {f ∈ Hk : f(x) = 0, for all x ∈ D} , (2.0.10)

see Lemma 5 below (here we proceed assuming that this is true). We use the decomposition (2.0.9) and
write the objective in (2.0.4) in terms of g and h,

1
N

N∑

i=1
l(g(xi) + h(xi)︸ ︷︷ ︸

=0

, yi) + λ∥g + h∥2
Hk

= 1
N

N∑

i=1
l(g(xi), yi) + λ

(
∥g∥2

Hk
+ ∥h∥2

Hk

)
, (2.0.11)

using the ‘Pythogarean theorem’

∥g + h∥2
H2

k
= ∥g∥2

Hk
+ 2⟨g, h⟩Hk︸ ︷︷ ︸

=0

+∥h∥2
Hk

= 0, (2.0.12)

which holds due to the orthogonality of the decomposition (2.0.8). Now observe that in the reformulation
(2.0.11), the components g and h can be varied independently, and that (2.0.9) is minimised for h = 0.
This proves the claim.

We proceed by giving the proof for the representation (2.0.10):
2Convince yourself that UD is closed under linear combinations!
3Closedness is crucial for the decomposition (2.0.8). To see why, think about dense subspaces.

12

Lemma 5. The orthogonal complement of UD as defined in (2.0.6) can be written in the form (2.0.10).

Proof. If f ∈ U⊥
D , then in particular

⟨f, k(xi, ·)⟩Hk
= 0, for all i = 1, . . . , N. (2.0.13)

Using the reproducing property (1.3.3), it is indeed the case that f(xi) = 0, for all i = 1, . . . , N .
Conversely, if f(xi) = 0, for all i = 1, . . . , N , then (2.0.13) holds. We then have ⟨f, g⟩Hk

= 0 for all
g ∈ UD by extending this relation linearly.

Remark 2.0.4. It is clear from the proof that the representer theorem crucially relies on the Hilbert
space structure of Hk (orthogonality, etc...).

Solving the kernel ridge regression problem (2.0.3) explicitly. We can now use the representer
Theorem 2.0.1 to solve (2.0.3) explicitly, up to the inversion of the Gram matrix (1.2.3). According to
the representer theorem, we are permitted to write f = ∑N

j=1 αjk(xj , ·), the objective now being to
determine the coefficients α = (α1, . . . , αN) ∈ RN .

We calculate

Ψ(α) := 1
N

N∑

i=1

N∑

j=1
αjk(xi, xj)

︸ ︷︷ ︸
=f(xi)

−yi

2

+ λ∥
N∑

j=1
αjk(xj , ·)∥2

Hk
(2.0.14a)

= 1
N

N∑

i=1

N∑

j=1
αjk(xi, xj) − yi

2

+ λ
N∑

i,j=1
αiαjk(xi, xj), (2.0.14b)

as well as the derivatives
∂Ψ(α)
∂αl

= (2.0.14c)

Setting ∂Ψ(α)
∂αl

= 0 gives the following result.

Theorem 2.0.2. The solution f∗ to (2.0.3) takes the form

f∗ =
N∑

j=1
αjk(xj , ·), (2.0.15)

where α = (α1, . . . , αN) solves the linear system

(K + λIN×N)α = y. (2.0.16)

Here, IN×N ∈ RN×N refers to the identity matrix, K ∈ RN×N is given by Kij = k(xi, xj) and
y = (y1, . . . , yn)⊤.

Remark 2.0.5. Since k is positive definite and λ > 0, the matrixK+λIN×N is strictly positive definite,
and hence (2.0.16) admits a unique solution.

The limit as λ → 0. If the Gram matrix K is invertible, then we can (at first, formally) take λ = 0 in
(2.0.16). The function f∗ from (2.0.15) then solves the following problem (sometimes called ‘ridgeless
regression’, notice that overfitting is still somewhat prevented by looking for a minimum-norm solution):

f∗ ∈ arg min
f∈Hk

{∥f∥Hk
: f(xi) = yi, i = 1, . . . , N} . (2.0.17)

Furthermore, we have f∗
λ → f∗

0 in Hk, where we have used the notation f∗
λ for the solution to (2.0.3) as

a function of λ.

13

2.1 Extensions

The representer theorem can be generalised in a number of ways:

1. The term 1
N

∑N
i=1 l(f(xi), yi) may be replaced by a general cost c((x1, y1, f(x1), . . . (xN , yN , f(xN)),

even attaining the value ∞. This allows us to encode hard constraints.

2. The regularisation term ∥v∥H2
k

may be replaced by g(∥v∥H2
k
), with g : R+ → R+ strictly mono-

tonically increasing.

Here, we discuss another quite far-reaching generalisation. Note that we can write

1
N

N∑

i=1
l(f(xi), yi) = 1

N

N∑

i=1
l(δxi(f), yi), (2.1.1)

using the evaluation functionals (1.4.8). Abstractly, we can view

{u′
1, . . . , u

′
N } := {δx1 , . . . , δxN } ⊂ H′

k

as a subset of the (continuous) dual of Hk. By the Riesz representation theorem, there exist u1, . . . , uN ∈
Hk such that

⟨ui, v⟩Hk
= u′

i(v), for all v ∈ Hk, (2.1.2)

and in fact we know from the reproducing property (1.3.3) that ui = k(xi, ·). The representer theorem
states that f∗ ∈ span(u1, . . . , uN). In fact, this is true in general (see [20]):

Theorem 2.1.1. Let (H, ⟨·, ·⟩H) be a Hilbert space over R and denote its continuous dual by (H ′, ⟨·, ·⟩H′).
Let U ′ = {u′

1, . . . , u
′
N } ⊂ H ′ be a collection of continuous linear functionals on H . Denote the set of

associated Riesz representers by U = {u1, . . . , uN } ⊂ H , that is, we have that

u′
j(v) = ⟨uj , v⟩H , (2.1.3)

for all v ∈ H and j = 1, . . . , N . Furthermore, let {y1, . . . , yN } ⊂ R be a collection of real numbers,
λ > 0 a regularisation parameter, and consider the regression problem

f∗ ∈ arg min
v∈H

 1
N

N∑

j=1

(
u′

j(f) − yj

)2
+ λ∥f∥2

H

 . (2.1.4)

Then, (2.1.4) admits a unique solution f∗. Moreover, f∗ belongs to the linear span of U , that is,

f∗ =
N∑

i=1
αiui, (2.1.5)

for appropriate coefficients αi ∈ R. The coefficient vector (αi)N
i=1 = α ∈ RN can be obtained as the

unique solution to the linear system
(ξ + λIN×N)α = y, (2.1.6)

where y = (y1, . . . , yN)⊤ ∈ RN , and the matrix ξ ∈ RN×N is given by ξij = ⟨ui, uj⟩H .

Proof. The proof of Theorem 2.0.1 can be copied, with appropriate (more or less obvious) modifications.

14

Derivative reproducing property. How can the generalisation provided by Theorem ?? be useful?
Imagine our aim is to solve a linear PDE, for example

∆f = g in Ω, (2.1.7a)

f = 0 on ∂Ω, (2.1.7b)

on a compact domain Ω. We could do the following: Choose {x1, . . . , xN } ⊂ Ω, and define

u′
i(f) = ∆f(xi), (2.1.8)

and do something similar for the boundary constraint (2.1.7b). If we can find a positive definite kernel k
with associated RKHS Hk such that the functionals u′

i are continuous, then we can use Theorem 2.0.1
to produce an approximate solution. Indeed, we have the following result:

Proposition 2.1.1. Let s ∈ N and k : X × X → R, with X ⊂ Rd compact. Assume that k ∈
C2s(X ×X). For a multiindex α ∈ Nd with |α| ≤ s the following holds:

1. We have Dα
xk(x, ·) ∈ Hk, for all x ∈ X .

2. The derivative reproducing property holds:

Dαf(x) = ⟨Dα
xk(x, ·), f⟩Hk

, f ∈ Hk, x ∈ X. (2.1.9)

3. For all x ∈ X , the mapping Hk ∋ f 7→ Dα
xf(x) ∈ R is continuous.

Proof. (Sketch). The continuity follows from (2.1.9) via

|Dαf(x)| = |⟨Dα
xk(x, ·), f⟩Hk

| ≤ ∥Dα
xk(x, ·)∥∥f∥Hk

(2.1.10)

as in the proof of Lemma 4. We only sketch the proof of (2.1.9), for d = 1 and α = 1. For this, notice
that

f(x+ h) − f(x)
h

=
〈
f,
k(x+ h, ·) − k(x, ·)

h

〉

Hk

, (2.1.11)

for f ∈ Hk. Now (carefully), take the limit h → 0.

15

Chapter 3

Kernel Embeddings

3.1 Motivation

In this chapter we study the kernel trick, a machine-learning method that allows to use ‘linear’ algorithms
for ‘non-linear’ situations. This concept is referred to as algorithm kernelization. To explain it we use
the following example of a linear algorithm.

Principal Component Analysis (PCA). We assume data (xi)N
i=1 is given, with xi ∈ RD. In this section

we will use the notation

X =

xT

1
...
xT

N

 ∈ RN×D (3.1.1)

for the set of data points, so that Xij = x
(j)
i is the jth component of the ith data point. Our goal is

to reduce the dimensionality of the data to Rd, with d ≪ D, such that information loss is minimized
for any fixed d. The PCA algorithm can be used either as a data pre-processing step, followed by other
algorithms, or in its own right, as a pattern recognition technique in unsupervised learning1, to identify
which part of the information contained in the data is relevant.
For a fixed target dimension d < D onto which we would like to project the data, we want to determine
a projection (subspace of dimension d) such that the information loss is minimal. This is equivalent to
requiring that the variance of the projected data is maximal. The algorithm is as follows:

Step 1: Without loss of generality, we can assume that the data is centered, so that x̄ = 1
N

∑N
i=1 xi =

0, otherwise we apply the algorithm to the centered data (x̃i)N
i=1 = (xi)N

i=1 − x̄.

Step 2: In order to define the projection, we need to compute the covariance matrix associated with
the data:

C = 1
N

N∑

i=1
(xi − x̄)(xi − x̄)T = 1

N
XTX ∈ RD×D. (3.1.2)

It is simple to prove that:

Lemma 6. The covariance matrix C defined in (3.1.2) is symmetric and positive semidefinite.

Proof.

(Symmetry) CT =
(1
N
XTX

)T

= 1
N
XT

(
XT

)T
= C, (3.1.3)

1Meaning that the data could have some categories associated to it, but we do not know them.

16

and

(Positive semidefiniteness) aTCa = 1
N
aTXTXa = 1

N

N∑

i=1

(
(aTXT)i

)2
∀a ∈ RD. (3.1.4)

Step 3: Any symmetric matrix can be diagonalized. We can find an orthonormal basis {u1, . . . , uD} ⊂ RD,
uT

i uj = 0, if i ̸= j and uT
i uj = 1, if i = j, such that ∥ui∥ = 1, i = 1, . . . , D. Then

Cui = λiui, λi > 0, i = 1, . . . , D, (3.1.5)

and
C = UΛUT , (3.1.6)

where

Λ =

λ1 . . . 0
...

. . .
...

0 . . . λD

 , U =

(
u1 . . . uD

)
. (3.1.7)

We assume that the eigenvalues (and corresponding eigenvectors) are sorted in decreasing order:

λ1 ≥ λ2 ≥ . . . ≥ λD ≥ 0. (3.1.8)

Step 4: Equation (3.1.6) can be interpreted as a change of basis for the covariance matrix C, but we
can equivalently write C in terms of scalings and projections

C =
D∑

i=1
λiuiu

T
i . (3.1.9)

In fact, the mapping x 7→ ui(uT
i x) is a projection of x onto the direction of ui, for any x ∈ RD. This

holds more generally for orthogonal projections, so that, for example, u1u
T
1 + u2u

T
2 is the orthogonal

projection onto the subspace spanned by {u1, u2}. In (3.1.9) the scaling factor λi is the variance of the
data in direction ui, and because we assumed the eigenvalues are sorted (3.1.8), then u1 is the direction
with largest variance, u2 is the direction with second largest variance and so on. It is therefore sensible
to chose the following rank-d projection

P =
d∑

i=1
uiu

T
i , d < D, (3.1.10)

as output to the algorithm for projecting the data onto the subspace spanned by {u1, . . . , ud}.

It is possible to prove that:

Lemma 7. The projection P in (3.1.10) has the following optimality properties

P ∈ arg max
P ∈P

Var(P{xi}N
i=1), (3.1.11a)

P ∈ arg min
P ∈P

1
N

N∑

i=1
|xi − Pxi|2 , (3.1.11b)

where P is the set of projections onto d-dimensional subspaces, and in (3.1.11a) P{xi}N
i=1 is the pro-

jected dataset, and the maximum should be interpreted in terms of positive definite matrices (Loewner
order).2

2That is xT (P − Q)x > 0 for any Q ∈ Rd×d positive definite matrix and x ∈ Rd.

17

Figure 3.1.1: Left: linear data; The projection onto the linear sub-space identified by the PCA algorithm
captures the pattern (direction of highest variability) in the data. Right: nonlinear data; any projection
on a linear subspace fails to efficiently identify patterns in the data.

Remark 3.1.1. (New coordinates). The dimensionality reduced dataset is

Y =

yT

1
...
yT

N

 ∈ RN×d, (3.1.12)

where
ys

i = xT
i us, i = 1, . . . , N, s = 1, . . . , d. (3.1.13)

Remark 3.1.2. (Computational bottleneck). The most expensive operation in the PCA algorithm is the
eigendecomposition of the matrixC in Step 3. This can be challenging ifD, the original data dimension,
is large.

Remark 3.1.3. (When PCA does not work).Given that the PCA is based on the eigendecomposition of
the sample covariance matrix C, the algorithm works well when this captures the data distribution, i.e.
when the data directions are linearly correlated. When, on the other hand, the data has a nonlinear
structure, PCA is not able to identify it. See figure 3.1.1.

In order to find a suitable pattern in the data in situations like that in the left-hand side of Figure 3.1.1,
a possible solution is to embed the data in a higher (infinite) dimensional feature space. The idea is that
a richer representation of the data enables to efficiently use linear algorithms.

3.2 Feature maps

Before introducing the specific feature space that we will operate with, we define the general concept
of features, beyond kernel methods. Real-data (be this text, pictures, molecules etc.) can be thought as
belonging to a generic set X . Computational methods based on data manipulation require a numerical
representation of the data, called feature map. For example we can have a vector valued feauture map

ϕ : X → RD, (3.2.1)

were elements in RD corresponding to ϕ(x), x ∈ X are called features. For example we can think of
X = {people in a certain group} and ϕ(x) = (height) ∈ R, or ϕ(x) = (height, age,weight)T ∈ R3.
We would like to be able to do numerical computations on the set of features. For example we would
like to be able to compute the scalar product, for x, y ∈ X:

ϕ(x) · ϕ(y) = ⟨ϕ(x), ϕ(y)⟩RD =
D∑

i=1
ϕ(i)(x)ϕ(i)(y), (3.2.2)

18

<latexit sha1_base64="jqylwcxBagMhesCQ8VFOWEkScmo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOknjQU=</latexit>x

<latexit sha1_base64="FlE3LMQGS9uBxRXAeaZjOz9lig8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2k3bpZhN2N0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4NvPbT6g0j+WjmSToR3QoecgZNVZ66JT65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8KVWGM4GzUi/VmFA2pkPsWipphNqfzi+dkTOrDEgYK1vSkLn6e2JKI60nUWA7I2pGetnLxP+8bmrCa3/KZZIalGyxKEwFMTHJ3iYDrpAZMbGEMsXtrYSNqKLM2HCyELzll1dJ66LqXVZr97VK/SaPowgncArn4MEV1OEOGtAEBiE8wyu8OWPnxXl3PhatBSefOYY/cD5/AO0LjPk=</latexit>

X
<latexit sha1_base64="G2omMaWptEZ+94qv8Iw4txnDa2k=">AAAB+XicbVBNS8NAFHypX7V+RT16WWwFTyUpoh6LXnqsYGuhDWGz3bRLN5uwuymU0H/ixYMiXv0n3vw3btoctHVgYZh5jzc7QcKZ0o7zbZU2Nre2d8q7lb39g8Mj+/ikq+JUEtohMY9lL8CKciZoRzPNaS+RFEcBp0/B5D73n6ZUKhaLRz1LqBfhkWAhI1gbybft2iDCekwwz1pzf1Kr+HbVqTsLoHXiFqQKBdq+/TUYxiSNqNCEY6X6rpNoL8NSM8LpvDJIFU0wmeAR7RsqcESVly2Sz9GFUYYojKV5QqOF+nsjw5FSsygwk3lMterl4n9eP9XhrZcxkaSaCrI8FKYc6RjlNaAhk5RoPjMEE8lMVkTGWGKiTVl5Ce7ql9dJt1F3r+tXD41q866oowxncA6X4MINNKEFbegAgSk8wyu8WZn1Yr1bH8vRklXsnMIfWJ8/cqeS5A==</latexit>Hk

<latexit sha1_base64="bYVMHZhcnJKYD5AT+18L0iLPNJs=">AAAB9HicbVBNS8NAEN3Ur1q/qh69LLZCBSlJEfVY9OKxgv2ANpTNZtMu3Wzi7qRYSn+HFw+KePXHePPfuGlz0OqDgcd7M8zM82LBNdj2l5VbWV1b38hvFra2d3b3ivsHLR0lirImjUSkOh7RTHDJmsBBsE6sGAk9wdre6Cb122OmNI/kPUxi5oZkIHnAKQEjueVR5fGsR/0ITsuFfrFkV+058F/iZKSEMjT6xc+eH9EkZBKoIFp3HTsGd0oUcCrYrNBLNIsJHZEB6xoqSci0O50fPcMnRvFxEClTEvBc/TkxJaHWk9AznSGBoV72UvE/r5tAcOVOuYwTYJIuFgWJwBDhNAHsc8UoiIkhhCpubsV0SBShYHJKQ3CWX/5LWrWqc1E9v6uV6tdZHHl0hI5RBTnoEtXRLWqgJqLoAT2hF/Rqja1n6816X7TmrGzmEP2C9fENqO2Quw==</latexit>

k(x, ·)
<latexit sha1_base64="du0eUOEaC9B1WhPSwwzk03nceZ0=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq5eMeH/cL1e8qjcHXiV+TiqQo9Evf/UGiqYxk5YKYkzX9xIbZERbTgWblnqpYQmhYzJkXUcliZkJsvm1U3zmlAGOlHYlLZ6rvycyEhsziUPXGRM7MsveTPzP66Y2ug4yLpPUMkkXi6JUYKvw7HU84JpRKyaOEKq5uxXTEdGEWhdQyYXgL7+8SloXVf+yWruvVeo3eRxFOIFTOAcfrqAOd9CAJlB4hGd4hTek0At6Rx+L1gLKZ47hD9DnD5YcjyY=</latexit>

�k

Figure 3.2.1: The canonical feature map contains information about potentially infinitely many numbers
(via the second argument of the kernel). It thus provide a very rich feature representation of the sample
x ∈ X (in fact this is an infinite dimensional embedding of x).

where ϕ(i) denotes the i-th component of the feature.

From features to kernels. Features defined in the way above are related to kernels, in that they naturally
induce a kernel on the underlying set X . In fact:

Proposition 3.2.1. Let ϕ : X → H be any map, where (H, ⟨·, ·⟩H) is a Hilbert space. Then

k(x, y) := ⟨ϕ(x), ϕ(y)⟩H (3.2.3)

defines a positive definite kernel on X .

Proof. Both symmetry and positivity are inherited from the scalar product ⟨·, ·⟩H .

For example, given vector-valued features ϕ : X → RD we could define a kernel using the scalar
product ⟨ϕ(x), ϕ(y)⟩RD defined in (3.2.2) or indeed any other scalar products on RD induced by a
positive definite matrix A:

⟨ϕ(x), ϕ(y)⟩A :=
D∑

i,j=1
ϕi(x)Ai,jϕ

j(y). (3.2.4)

From kernels to features. Kernels also naturally induce features valued in RKHSs. Specifically, let
k : X×X → R be a positive definite kernel and recall the reproducing property that holds for functions
in the associated RKHS:

⟨f, k(x, ·)⟩Hk
= f(x), for all f ∈ Hk, x ∈ X. (3.2.5)

If we take f = k(y, ·) for some y ∈ X , then the above becomes (by symmetry)
〈
k(x, ·)︸ ︷︷ ︸
ϕk(x)

, k(y, ·)︸ ︷︷ ︸
ϕk(y)

〉

Hk

= k(x, y), ∀x, y ∈ X. (3.2.6)

Equation (3.2.6) leads to the definition of the so called canonical feature map:

ϕk :X → Hk, (3.2.7)

x 7→ k(x, ·). (3.2.8)

Thus every positive definite kernel induces a feature map, which is a function in a function space (the
RKHS corresponding to the kernel). This operation is called kernel embedding. See Figure 3.2.1.

Remark 3.2.1. (Non unique mapping features → kernels). From equation (3.2.6), given a kernel k,
we obtain the canonical (function-valued) feature map. However, from proposition 3.2.1 there might be
other (possibly function-valued) features that lead to the same kernel k, so that we can write

⟨ϕ(x), ϕ(y)⟩Hk
= ⟨k(x, ·), k(y, ·)⟩Hk

= k(x, y), ∀x, y ∈ X. (3.2.9)

It is of course possible (in fact more common) that two different feature maps induce different kernels.

19

3.2.1 Review of connections and equivalences

In chapter 1 we provided a first definition of positive definite kernel (see definition 1). An alternative
definition, in light of the idea of feature maps introduced in this chapter, is the following:

Definition 5 (Positive definite kernels - alternative). Let X ̸= ∅ be a set. A function k : X ×X → R is
called a positive definite kernel if there exist a Hilbert space (H, ⟨·, ·⟩H) and a map ϕ : X → H (feature
map) such that

k(x, y) := ⟨ϕ(x), ϕ(y)⟩H , ∀x, y ∈ X. (3.2.10)

In fact:

Theorem 3.2.1. Definitions 1 and 5 are equivalent.

We do not provide a detailed proof, but this would follow the steps performed in section 3.2 to define
kernels from feature maps and vice-versa.

Remark 3.2.2. A few remarks on alternative definitions of positive definite kernels:

1. Definition 1 is related to use of kernels as building blocks for RKHSs, as presented in chapter 1;
on the other hand, definition 5 is related to feature maps and the kernel trick. The equivalence is
reflected in the equivalence we draw between the solution to KRR and the kernelized version of
regularized LS.

2. Possible candidates Hilbert spaces in definition 5 are (RD, ⟨·, ·⟩A) with scalar product induced
by a positive definite matrix A, or the Sobolev space 1.4.15, or yet L2(R).3

3. As mentioned in remark 1.2.1, we can often think of k(x, y) as encoding a measure of similarity
between x, y ∈ X (think for example of the squared exponential kernel). In such cases, equation
(3.2.10) in definition 5 means that the kernel k(x, y) encodes also a measure of similarity in the
Hilbert space H: the kernel takes large values when ϕ(x) and ϕ(y) lie in similar directions in H ,
and is vanishing when ϕ(x) and ϕ(y) are orthogonal.

4. For a given positive definite kernel k : X × X → R the unique RKHS associated to it can
serve as a feature space. In fact, applying the reproducing property to ϕ(x) = k(x, ·), we have
⟨k(x, ·), k(y, ·)⟩Hk

= k(x, y). However, as stated in remark 3.2.1, to any kernel we can associate
many feature spaces (one of which is the unique RKHS).

3.3 Algorithm kernelization

The feature space Hk is infinite-dimensional. Algorithms that use features projections, such as PCA4,
have the computational advantage of being able to work with finite dimensional feature spaces. It is in
fact enough to consider U ∈ Hk to be a linear finite dimensional subspace and PU be the corresponding
projection. Then (PU ◦ ϕ)(x) = PU (ϕ(x)) gives a finite dimensional feature map (taking values in U).

However, in the case of general algorithms not involving projections on finite dimensional subspaces,
it is often impossible, or at least inconvenient, to work directly with the canonical (or other function-
valued) features ϕk and the inner product ⟨·, ·⟩Hk

, which is difficult to compute explicitly. Luckily,
equation 3.2.9 tells us that the scalar products of features, which might have an important role in course
of an algorithm, coincides with a kernel evaluation, which is easy to compute. This leads to the following
fundamental concept, used in many many machine learning and statistical applications:

3Hence it is not necessary for the Hilbert space in the image of the feature map to be an RKHS, in order to enable the
definition of a positive definite kernel.

4In the motivating example in section 3.1, PCA was applied to a D-dimensional vector. In general, this will be the set of
features corresponding to a sample in the data, which can here we consider to be the kernel − infinite dimensional embedding.

20

<latexit sha1_base64="KjIxi0mUCuyBNGvmOJ1j9GtMjcQ=">AAACCXicbVC7TsMwFHXKq5RXgJHFokJiqhKEgLGCDowF0YfUhMp2ndaq40S2g1RFWVn4FRYGEGLlD9j4G5w2A7Qc6UpH59yre+/BMWdKO863VVpaXlldK69XNja3tnfs3b22ihJJaItEPJJdjBTlTNCWZprTbiwpCjGnHTy+yv3OA5WKReJOT2Lqh2goWMAI0kbq29ALkR4RxNNGBj2VYEX1TMM4vc3uG3276tScKeAicQtSBQWaffvLG0QkCanQhCOleq4Taz9FUjPCaVbxEkVjRMZoSHuGChRS5afTTzJ4ZJQBDCJpSmg4VX9PpChUahJi05nfqOa9XPzP6yU6uPBTJuJEU0Fmi4KEQx3BPBY4YJISzSeGICKZuRWSEZKIaBNexYTgzr+8SNonNfesdnpzWq1fFnGUwQE4BMfABeegDq5BE7QAAY/gGbyCN+vJerHerY9Za8kqZvbBH1ifP6Lymk4=</latexit>

D ⇢ RD
<latexit sha1_base64="T7iEfpDPd7U90m1ZefTVM94FPBo=">AAACH3icbVDLSsNAFJ3Ud31VXboZLIKrkkipLou6cFnBqtCUMJnetkMnkzBzI5aQP3Hjr7hxoYi46984qUV8HRg4nHMuc+8JEykMuu7EKc3NLywuLa+UV9fWNzYrW9tXJk41hzaPZaxvQmZACgVtFCjhJtHAolDCdTg6LfzrW9BGxOoSxwl0IzZQoi84QysFlYYfMRxyJrOzPMh8hDvMUDNl+rGOoJfn1DdpaADpV/A8D0ZBperW3CnoX+LNSJXM0Aoq734v5mkECrlkxnQ8N8FuxjQKLiEv+6mBhPERG0DHUsUiMN1sel9O963So3Yj+xTSqfp9ImORMeMotMliSfPbK8T/vE6K/eNuJlSSIij++VE/lRRjWpRFe0IDRzm2hHEt7K6UD5lmHG2lZVuC9/vkv+TqsOY1avWLerV5MqtjmeySPXJAPHJEmuSctEibcHJPHskzeXEenCfn1Xn7jJac2cwO+QFn8gH6CaTJ</latexit>Dtransformed ⇢ Hk

<latexit sha1_base64="QRlFKTdZFTH2TZmCLuq5ispBsxg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcOno2p</latexit>x1

<latexit sha1_base64="VgiLg5eBuQxS8uuCn5Hs8PltRyk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BL54konlAsoTZySQZMju7zPSKYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3BbEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSrYAaLoXidRQoeSvWnIaB5M1gdD31m49cGxGpBxzH3A/pQIm+YBStdP/Uve0WS27ZnYEsEy8jJchQ6xa/Or2IJSFXyCQ1pu25Mfop1SiY5JNCJzE8pmxEB7xtqaIhN346O3VCTqzSI/1I21JIZurviZSGxozDwHaGFIdm0ZuK/3ntBPuXfipUnCBXbL6on0iCEZn+TXpCc4ZybAllWthbCRtSTRnadAo2BG/x5WXSOCt75+XKXaVUvcriyMMRHMMpeHABVbiBGtSBwQCe4RXeHOm8OO/Ox7w152Qzh/AHzucPOpKNxg==</latexit>xN

<latexit sha1_base64="wScilturOhUjd1+t/1EKA9Xk3hE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OJJKtgPaZeSTbNtaJJdkqxYlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK6nfuuRKs0ieW/GMfUFHkgWMoKNlR668ZCVn3q3p71iya24M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlW880r1rlqqXWVx5OEIjqEMHlxADW6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AEUaP8A==</latexit>

�(xN)

<latexit sha1_base64="BDr4CEeSzt3T9JYJkKmdQsFEFhQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsqulOqx6MVjBfsh7VKyabYNTbJLkhXL0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLR0litAmiXikOgHWlDNJm4YZTjuxolgEnLaD8c3Mbz9SpVkk780kpr7AQ8lCRrCx0kMvHrHyU9877xdLbsWdA60SLyMlyNDoF796g4gkgkpDONa667mx8VOsDCOcTgu9RNMYkzEe0q6lEguq/XR+8BSdWWWAwkjZkgbN1d8TKRZaT0RgOwU2I73szcT/vG5iwis/ZTJODJVksShMODIRmn2PBkxRYvjEEkwUs7ciMsIKE2MzKtgQvOWXV0nrouLVKtW7aql+ncWRhxM4hTJ4cAl1uIUGNIGAgGd4hTdHOS/Ou/OxaM052cwx/IHz+QPlJo/T</latexit>

�(x1)

<latexit sha1_base64="unEuT7utuAP30hCdIaTdySdTKpg=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuiG5dV7APboWTS2zY0kxmSjFCG/oUbF4q49W/c+Tdm2llo64HA4Zx7ybkniAXXxnW/ncLK6tr6RnGztLW9s7tX3j9o6ihRDBssEpFqB1Sj4BIbhhuB7VghDQOBrWB8k/mtJ1SaR/LBTGL0QzqUfMAZNVZ67IbUjIIgvZ/2yhW36s5AlomXkwrkqPfKX91+xJIQpWGCat3x3Nj4KVWGM4HTUjfRGFM2pkPsWCppiNpPZ4mn5MQqfTKIlH3SkJn6eyOlodaTMLCTWUK96GXif14nMYMrP+UyTgxKNv9okAhiIpKdT/pcITNiYgllitushI2ooszYkkq2BG/x5GXSPKt6F9Xzu/NK7TqvowhHcAyn4MEl1OAW6tAABhKe4RXeHO28OO/Ox3y04OQ7h/AHzucPwE2Q+w==</latexit>

R

<latexit sha1_base64="zS6cO11wctuaQiTYNDu0ITCRCkA=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iEClISKeqy6MZlBfuANpTJZNIOnWTCzESopV/ixoUibv0Ud/6N0zQLbT1wuYdz7mXuHD/hTGnH+bYKa+sbm1vF7dLO7t5+2T44bCuRSkJbRHAhuz5WlLOYtjTTnHYTSXHkc9rxx7dzv/NIpWIiftCThHoRHsYsZARrIw3s8rjaJ4HQ5yhrZwO74tScDGiVuDmpQI7mwP7qB4KkEY014Vipnusk2ptiqRnhdFbqp4ommIzxkPYMjXFElTfNDp+hU6MEKBTSVKxRpv7emOJIqUnkm8kI65Fa9ubif14v1eG1N2Vxkmoak8VDYcqRFmieAgqYpETziSGYSGZuRWSEJSbaZFUyIbjLX14l7Yuae1mr39crjZs8jiIcwwlUwYUraMAdNKEFBFJ4hld4s56sF+vd+liMFqx85wj+wPr8AYa8kl4=</latexit>

k(·, ·) <latexit sha1_base64="KvbqSwn5kx7ja9+iAn/ZPbhXymM=">AAACFXicbVDLSsNAFJ3UV62vqEs3g0VwUUoiRV0W3XRZwT6gCWEymbRDJ5MwMxFK6E+48VfcuFDEreDOv3GSZqGtB4Y5nHMv997jJ4xKZVnfRmVtfWNzq7pd29nd2z8wD4/6Mk4FJj0cs1gMfSQJo5z0FFWMDBNBUOQzMvCnt7k/eCBC0pjfq1lC3AiNOQ0pRkpLntlwGOJjRqCDg1g1Fh90RCF6mRMhNcGIZZ25N517Zt1qWgXgKrFLUgclup755QQxTiPCFWZIypFtJcrNkFAUMzKvOakkCcJTNCYjTTmKiHSz4qo5PNNKAMNY6McVLNTfHRmKpJxFvq7Mt5TLXi7+541SFV67GeVJqgjHi0FhyqCKYR4RDKggWLGZJggLqneFeIIEwkoHWdMh2Msnr5L+RdO+bLbuWvX2TRlHFZyAU3AObHAF2qADuqAHMHgEz+AVvBlPxovxbnwsSitG2XMM/sD4/AHHc58/</latexit>h·, ·iHk

<latexit sha1_base64="hpnySaJh+/CAhHti5mNvHw101yA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOule1b1mvfHQqLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEWdo5I</latexit>

�

Figure 3.3.1: The kernel trick consist of working implicitly with data embeddings, by replacing scalar
products in RKHSs directly with kernel evaluations (if an algorithm only performs this operation on the
data).

Kernel trick. Algorithms that take D-dimensional data D = {x1, . . . , xN } ⊂ RD and only rely on
standard inner products

⟨xi, xj⟩RD =
D∑

l=1
x

(l)
i x

(l)
j (3.3.1)

can be kernelized. The trick is simply:

Choose a kernel k : RD × RD → R and replace every instance of ⟨xi, xj⟩RD by k(xi, xj).

The kernelized algorithm can thus be thought of as working on the transformed data Dtransformed =
{ϕ(x1), . . . , ϕ(xN)} ⊂ Hk corresponding to the kernel embeddings of the original data D, because
of (3.2.9). Notice however that the kernelized algorithm does not explicitly use Dtransformed. Figure 3.3.1
summarizes the kernel trick.

Guideline on kernel choice. When kernelizing an algorithm, kernel evaluations are replacing scalar
products in RD. This provides intuition about how to choose the kernel: k needs to take large values
when two data points xi and xj , i, j = 1, . . . , N are similar, and low values when they are dissimilar.

The most important consequence of using the kernel trick is to transform a linear algorithm into a non-
linear one, so that it can now work efficiently with non-linear data. Notice that not any algorithm can be
expressed in terms of scalar products of the data only, and recognizing weather or not this is the case is
key to applying the kernel trick. We give some examples in the following.

3.3.1 Kernel PCA

We introduce the kernel matrix
K = XXT ∈ RN×N , (3.3.2)

and we relate it to the unnormalized covarince matrix

C̃ = XTX = NC ∈ RD×D. (3.3.3)

The Matrix C̃ is connected to the shape of the D-dimensional distribution of the data in that

C̃ij =
N∑

n=1
x(i)

n x(j)
n , i, j = 1, . . . , D, (3.3.4)

21

quantifies the correlation between the directions i and j in RD. On the other hand, the matrixK describes
the alignment between data points, in that

Kij = xT
i xj , i, j = 1, . . . , N, (3.3.5)

is the scalar product between the i-th and the j-th samples (out of N).

Relationship between the eigendecomposition of K and C̃. The spectra of K and C̃ coincide, up to
possibly a sequence of zeros, so that the following holds:

Lemma 8. If λ ̸= 0 is an eigenvalue of K, then it is also an eigenvalue of C̃ and vice versa.

On the other hand, the respective eigenvectors can be transformed into each other:

Lemma 9. (i) If a ∈ RN is an eigenvector ofK with associated eigenvalue λ ̸= 0, then v = XTa ∈ RD

is the corresponding eigenvector of C̃. Furthermore ∥v∥2 = λ∥a∥2.
(ii) If v ∈ RD is an eigenvector of C̃ with associated eigenvalue λ ̸= 0, then a = Xv ∈ RN is the
corresponding eigenvector of K. Furthermore ∥a∥2 = λ∥v∥2.

Proof. We prove (i), and (ii) can be proved in a similar way. Assume that, for λ ̸= 0 and a ̸= 0

Ka = λa. (3.3.6)

This is equivalent to
XXTa = λa (3.3.7)

and left-multiplying each side with XT we get

XTXXTa = λXTa (3.3.8)

which can be re-written
Cv = λv, v = XTa. (3.3.9)

We know that v = XTa ̸= 0 because equation (3.3.7) holds for λ ̸= 0. Furthemore,

∥v∥2 = vT v = aTXXTa = aTKa (3.3.10)

= aTλa (3.3.11)

= λ∥a∥2 (3.3.12)

Computational advantage. As a consequence, to address remark 3.1.2, if D ≫ N we can compute the
eigendecomposition of K and accordingly transform the eigenvectors and eigenvalues to obtain those
of C̃. In particular, if we determine the sorted eigenvalues-eigenvectors of K

Kai = λai, i = 1, . . . , N, (3.3.13)

λ1 ≥ λ2 ≥ λN ≥ 0 (3.3.14)

aT
i aj =

{
0, if i ̸= j

1, if i = j
(3.3.15)

then we can compute the eigenvectors of C̃ as

ui = 1√
λi
XTai, i = 1, . . . , D, (3.3.16)

22

where the scaling by
√
λi is applied to ensure that ∥ui∥2 = 1, as required in the PCA algorithm for the

eigendecomposition of C.5

PCA kernelization. The relationship between the matrices K and C̃ is also essential to recognize that
the PCA algorithm can be kernelized and to tackle remark 3.1.3. In fact, the elements ofK can be written
in terms of scalar products (3.3.5), whilst this is not possible for the elements of C̃ (3.3.4). Notice that
the data XT also enters the formula for computing the eigenvectors of C̃ (3.3.16), and this dependence
alone cannot be expressed in terms of scalar products. However, the eigenvectors ui are consequently
used in the algorithm for projections, see equation (3.1.13), which in turn depend only on scalar products
of the data. In fact, for any i = 1, . . . , N, and s = 1, . . . , d ≤ D, the new projected coordinates are

ys
i = xT

i us = 1√
λs
xT

i

(
XTas

)
(3.3.17)

= 1√
λs

(Xxi)T as (3.3.18)

= 1√
λs

xT

1 xi
...

xT
Nxi

T

as (3.3.19)

= 1√
λs

N∑

l=1
(xT

l xi)a(l)
s , (3.3.20)

that clearly depend only on scalar products of the data points. Dimensionality reduction is achieved by
choosing d ≪ D.

Thus the PCA algorithm can be kernelized by replacing every instance of scalar products with a chosen
positive definite kernel. In practice, this is equivalent to replacing the kernel matrix K = XXT by the
Gram matrix

k(x1, x1) . . . k(x1, xn)

...
. . .

...
k(xn, x1) . . . k(xn, xn)

 . (3.3.21)

In kernel PCA, the new projected coordinates are for i = 1, . . . , N, and s = 1, . . . , n ≤ N

ys
i = 1√

λs

N∑

l=1
k(xi, xl)a(l)

s , (3.3.22)

and dimensionality reduction is now achieved if n ≪ N . Recall that, by replacing the scalar products
with kernel evaluations it is as if we worked with transformed data made by infinite dimensional features.
And whilst the matrixK has at mostD non-zero eigenvalues, the Gram matrix (3.3.21) can have a larger
non vanising spectrum.

Example 3.3.1. We continue the example on the right-hand side in Figure 3.1.1, for which the regular
PCA algorithm was not able to efficiently identify directions of data variation, and hence to efficently
reduce the dimension of the data. Following our previous recommendation on kernel choice, we select
a Gaussian kernel (1.2.4) with scale σ = 2 and perform kernel PCA.6 The left-hand side of figure 3.3.2
shows the first three new data coordinates ys

i , i = 1, . . . , N and s = 1, . . . , 3, computed as in equa-
tion (3.3.22). These coordinates are visibly able to identify the principal directions of variation in the

5Notice that Lemma 9 relates the eigendecomposition of K and C̃, but it is easy to prove that C has the same eigenvectors
as C̃. Furthermore, if λC̃ is an eigenvalue of C̃, then λC = 1

N
λC̃ is the corresponding eigenvalue of C. However, only the

eigenvectors play a role in determining the projection matrix used in PCA.
6Other choices of σ (and in fact kernel) are possible, as long as the corresponding kernel sees the data on the two circles as

orthogonal, when embedded in the feature space. That is the kernel centered at a point on one of the two circles is nearly zero
when evaluated on the other circle.

23

<latexit sha1_base64="YgfPiCszHxLe9mn4919tgqmzevk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaWDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WDGSfoR3QgecgZNVa6Hz96vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcOn42p</latexit>

y1

<latexit sha1_base64="eKdyWyASbCTTFCY+2vKdT7m8GIU=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbBU9ktRT0WvXisaD+gXUs2zbahSXZJssKy9Cd48aCIV3+RN/+NabsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcjPzO09UaRbJB5PG1Bd4JFnICDZWuk8fa4Nyxa26c6BV4uWkAjmag/JXfxiRRFBpCMda9zw3Nn6GlWGE02mpn2gaYzLBI9qzVGJBtZ/NT52iM6sMURgpW9Kgufp7IsNC61QEtlNgM9bL3kz8z+slJrzyMybjxFBJFovChCMTodnfaMgUJYanlmCimL0VkTFWmBibTsmG4C2/vEratap3Ua3f1SuN6zyOIpzAKZyDB5fQgFtoQgsIjOAZXuHN4c6L8+58LFoLTj5zDH/gfP4AECONqg==</latexit>

y2

<latexit sha1_base64="jtsneiocL1yAHPBI/RhTIwYu++E=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbBU9nVoh6LXjxWtB/QriWbZtvQJLskWWFZ+hO8eFDEq7/Im//GtN2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEEdokEY9UJ8CaciZp0zDDaSdWFIuA03Ywvpn67SeqNIvkg0lj6gs8lCxkBBsr3aeP5/1yxa26M6Bl4uWkAjka/fJXbxCRRFBpCMdadz03Nn6GlWGE00mpl2gaYzLGQ9q1VGJBtZ/NTp2gE6sMUBgpW9Kgmfp7IsNC61QEtlNgM9KL3lT8z+smJrzyMybjxFBJ5ovChCMToenfaMAUJYanlmCimL0VkRFWmBibTsmG4C2+vExaZ1Xvolq7q1Xq13kcRTiCYzgFDy6hDrfQgCYQGMIzvMKbw50X5935mLcWnHzmEP7A+fwBEaeNqw==</latexit>

y3

Figure 3.3.2: Kernel PCA for the example on the right-hand side in Figure 3.1.1. Left: three-dimensional
visualization of the projected coordinates, colour-coded based on belonging to inner/outer circle in the
original data; right: boxplot of each projected coordinate, grouped by inner/outer circle association.

Figure 3.3.3: Representation of the SVM algorithm. Left: linear SVM finds the maximum-margin
hyperplane; Right: kernel SVM in the original coordinates can be thought of as linear SVM in the
RKHS feature space. Image credit: Wikipedia.

data. In fact, in the new coordinates we are able to separate the two circles around which the data lie.
The boxplot on the righ-hand side shows how the main source of variability is captured by the first
coordinate.

3.3.2 Other kernelizable algorithms

Here we give examples of other machine learning and statistics algorithms that can be kernelized, with-
out entering the details.

Support vector machine (SVM). This is historically the first algorithms to be kernelized, see for exam-
ple [19]. SVM is a (without loss of generality) binary classification algorithm for supervised learning.
Data is given in the form D = {(xi, yi)}N

i=1, with xi ∈ RD and yi ∈ {−1, 1}. The linear SVM algo-
rithm finds an optimal separating hyperplane, so as to maximise the width of the gap between the two
categories. This is showed on the left-hand side of Figure 3.3.3. New data points can then be classified
according to the side on which the lie, in relation to the hyperplane.
The kernel trick helps to separate non-linearly separable data, by lifting the data through a feature map
to a high-dimensional space, where the data can now be linearly separated. This is illustrated on the
right-hand side of figure 3.3.3, where the non-linear separating curve represents the projection in the
original space of the hyperplane in the infinite dimensional feature space (RKHS).

Regularized least squares (LS) regression. We assume to have data D = {(xi, yi)}N
i=1, with covariates

xi ∈ RD and regressed variables yi ∈ R. The aim is to find an optimal linear fit to the data, of the form

f(xi) = wTxi ≈ yi, i = 1, . . . , N, (3.3.23)

24

wherew ∈ RD is vector of weights of the linear function f . In regularized LS regressionw is determined
by finding the unique minimum of the quadratic loss function

L(w) =
N∑

i=1

(
yi − wTxi

)2
+ λ∥w∥2 λ ≥ 0. (3.3.24)

where the first term measures the distance of the estimated linear function from the data, whilst the
second term constrains the weights assigned coordinates of the covariates. It is possible to prove that

w∗ ∈ arg min
w∈RD

L(w) =
(
XTX + λIN×N

)−1
XT y, (3.3.25)

where the matrixFurthermore, X is defined as in (3.1.1), y = {y1, . . . , yN }, and it is possible to notice
how the regularizing term in the loss function also stabilizes the algorithm for λ ̸= 0.
However, as in our motivating example in section 1.1 and chapter 2, the regressed variables might not be
a linear function of the covariates. It is possible to prove that regularized LS regression can be kernelized
following similar steps to those used in kernel PCA. Furthermore, The solution to the resulting algorithm
coincides with the KRR optimal solution provided in theorem 2.0.2.

Remark 3.3.1. (Connection between SVM and KRR). Given the connection between regression and
classification problems, it is possible to establish a link also between SVM and KRR, but we do not
provide details here.

3.4 Extensions

We conclude this chapter presenting the ideas of RKHS-embeddings of probability distributions. These
can be thought of as the generalization of kernel feature maps, and they allow to define meaningful and
computable metrics (and discrepancies) between distributions. We follow the presentation in [13] and
references therein.

3.4.1 Kernel mean embeddings

Let X ̸= ∅ and k : X × X → R be a positive definite kernel with associated RKHS Hk. Throughout
this chapter, we studied how the map

ϕk :X → Hk, (3.4.1)

x 7→ k(x, ·) (3.4.2)

can be thought of (i) as a high (infinite)-dimensional representer of x, for any x ∈ X , in the sense of
canonical feature map; (ii) as the representer of evaluations of any function in Hk at the point x, in the
sense that the reproducing property holds:

f(x) = ⟨f, k(x, ·)⟩Hk
, for allx ∈ X, f ∈ Hk. (3.4.3)

These interpretations can be generalized to probability measures7 P on a measurable space (X,Σ),
where Σ is a σ-algebra of subsets of X . We start with the simple case of Dirac measure and we then
extend to general probability measures.

Kernel mean embedding of Dirac measures. Let δx be a Dirac measure, defined for any x ∈ X and
A ∈ Σ as

δx(A) =
{

1, if x ∈ A

0, if x /∈ A,
(3.4.4)

7In most practical applications these will be of interest, but we could also work with signed measures.

25

3.1. From Data Point to Probability Measure 27

(a) x !→ k(x, ·) (b) δx !→
∫

k(y, ·) dδx(y) (c) P !→
∫

k(x, ·) dP(x)

Figure 3.1: From data points to probability measures: (a) An illustration of a typi-
cal application of the kernel as a high-dimensional feature map of an individual data
point. (b) A measure-theoretic view of high-dimensional feature map. An embed-
ding of data point into a high-dimensional feature space can be equivalently viewed
as an embedding of a Dirac measure assigning the mass 1 to each data point. (c)
Generalizing the Dirac measure point of view, we can generally extend the concept
of a high-dimensional feature map to the class of probability measures.

are imperative in practical applications because if an algorithm can be
formulated in terms of an inner product 〈x,y〉, one can construct an al-
ternative algorithm by replacing the inner product by a positive definite
kernel k(x,y) without building the mapping of x and y explicitly (a.k.a.
the kernel trick). Well-known examples of kernelizable learning algo-
rithms include the support vector machine (SVM) (Cortes and Vapnik
1995) and principle component analysis (PCA) (Hotelling 1933).

We can generalize the concept of a high-dimensional feature map
of data points x ∈ X to measures on a measurable space (X ,Σ) where
Σ is a σ-algebra of subsets of X . The simplest example of a measure is
the Dirac measure δx defined for x in X by

δx(A) =

1 if x ∈ A

0 if x /∈ A,
(3.2)

where A ∈ Σ. Since any measurable function f on X is integrable
w.r.t. δx, we have ∫

f(t) dδx(t) = f(x). (3.3)

When f belongs to the Hilbert space H of functions on X with repro-
ducing kernel k, we can rewrite (3.3) using the reproducing property
of H as∫

f(t) dδx(t) =
∫
〈f, k(t, ·)〉H dδx(t)

=
〈
f,

∫
k(t, ·) dδx(t)

〉

H
= 〈f, k(x, ·)〉H . (3.4)

Figure 3.4.1: From data points to probability measures: a) Illustration of an application of a positive
definite kernel as high-dimensional feature map of individual points. b) Measure theoretic view of a
high-dimensional feature map. An embedding of data points into a high-dimensional feature space can
be seen as embedding of a Dirac measure assigning mass 1 to each data point. c) Extension of b) to
embeddings of general probability distributions. Image credit: [13].

Any measurable function f on X can be integrated with respect to δx and it holds that
∫
f(t) dδx(t) = f(x). (3.4.5)

When f also belongs to a given RKHS Hk, we can rewrite equation (3.4.5) as:
∫
f(t) dδx(t) =

∫
⟨f, k(t, ·)⟩Hk

dδx(t) =
〈
f,

∫
k(t, ·) dδx(t)

︸ ︷︷ ︸
µδx

〉

Hk

= ⟨f, µδx⟩Hk
, (3.4.6)

where in the first equality we used the reproducing property, and the second equality trivially holds
because we integrate functions with respect to the Dirac measure.

Definition 6. The map8

µδx :P → Hk, (3.4.7)

δx 7→
∫
k(t, ·) dδx(t) = k(x, ·) (3.4.8)

is the kernel mean embedding of the Dirac measure δx.

Remark 3.4.1. (Measure theoretic interpretation). By analogy to the canonical feature map and its
interpretation in the reproducing property, µδx acts (i) as a representer of the measure δx in the RKHS
Hk; (ii) as a representer of evaluations of the functional expected value of f with respect δx. For
the simple Dirac measure the kernel mean embedding coincides with the canonical feature map and
equation (3.4.6) coincides with the reproducing property in the RKHS Hk. However, (3.4.6) needs to be
interpreted as a measure-theoretic point of view of the reproducing property, in that the map µδx does
not act on x, but on δx, a probability measure assigning mass 1 to the set {x} ⊂ Σ. Figure 3.4.1 shows
this interpretation.

Kernel mean embedding of general probability measures. If we consider a probability measure
P ∈ P , its kernel mean embedding is given by the map

µP :P → Hk, (3.4.9)

P 7→
∫
k(x, ·) dP (x) (3.4.10)

and the following provides conditions under which the embedding µP exists and belongs to Hk:
8To be intended as Bochner integral.

26

Lemma 10. If
∫ √

k(x, x) dP (x) < ∞ then µP ∈ Hk and
∫
f(x) dP (x) = ⟨f, µP ⟩Hk

.

Proof. Consider the linear operator Lf =
∫
f(x) dP (x). Then

|Lf | =
∣∣∣∣
∫
f(x) dP (x)

∣∣∣∣ ≤
∫

|f(x)| dP (x) (3.4.11)

=
∫

|⟨f, k(x, ·)⟩Hk
| dP (x) (3.4.12)

≤
∫

∥f∥Hk
∥k(x, ·)∥H(k)dP (x) (3.4.13)

= ∥f∥H(k)

∫ √
k(x, x)dP (x) (3.4.14)

where (3.4.11) is Jensen’s inequality, (3.4.12) is the reproducing property, (3.4.13) is Cauchy-Schwarz
and (3.4.14) is again the reproducing property. This shows that L is a bounded linear operator from Hk

to R. Thus, from the Riesz representation theorem, there exists h ∈ Hk such that Lf = ⟨f, h⟩Hk
.

Taking f = k(y, ·) for some y ∈ X and using the reproducing property leads to
∫
k(y, x) dP (x) =

Lf = ⟨f, h⟩H(k) = h(y), so that h =
∫
k(x, ·) dP (x), and so µP = h ∈ H(k) with Lf = ⟨f, µP ⟩Hk

,
as claimed.

Remark 3.4.2. (Reproducing property of the expectation operation in the RKHS). As for the Dirac
measure, Lemma 10 states that it is possible to compute EP [f] =

∫
f(x) dP (x), the expectation with

respect to P of any function f ∈ Hk, as the scalar product ⟨f, µP ⟩Hk
= ⟨f,EP [k(x, ·)]⟩Hk

.

Remark 3.4.3. (Information retained and characteristic kernels). The information retained by the ker-
nel mean embedding of a distribution depends on the choice of kernel k. For example (inhomogeneous)
polynomial kernels of degree m encode information up to the m-th moment of P . The Fourier kernel al-
lows µP to incorporate full information about the characteristic function of P .9 In particular, a kernel k
is said to be characteristic if the map P 7→ µP is injective. This ensures that

∥µP − µQ∥Hk
= 0 if and only P = Q, (3.4.15)

and there is no information loss when mapping the distribution P into the RKHS Hk, because this
contains a sufficiently rich class of functions to represent all higher moments of P . For example, Gaus-
sian, Laplace and Matérn kernels are characteristic, while polynomial kernels are not characteristic on
X = Rd.

Remark 3.4.4. (Mean embedding estimation). It is often not possible to compute the kernel mean
embedding µP =

∫
k(x, ·)dP (x) because this is a high-dimensional intractable integral. However, if

we have i.i.d. samples x1, . . . , xn ∼ P , then the empirical mean embedding estimator

µ̂P = 1
n

n∑

i=1
k(xi, ·) (3.4.16)

is unbiased and it converges to µP by the law of large numbers. A wide range of alternative estimators
is also available, aimed at improving certain characteristics of the estimate.

3.4.2 Discrepancies based on kernel mean embeddings

The kernel mean embedding can be used to define a metric for probability distributions which is an
important tool for problems in statistics and machine learning. The metric defined in terms of mean
embeddings can be considered as a particular instance of an integral probability metric [14].

9The Fourier kernel is not positive definite, but the mean embedding is well defined.

27

Definition 7. (Integral probability metric). Given two probability measures P and Q on a measurable
space X , and a class of real-valued measurable and functions F ⊂ L1(P) ∩ L1(Q), an integral proba-
bility metric (IPM) is defined as

IPMF (P,Q) = sup
f∈F

∣∣∣∣
∫
f(x)dP (x) −

∫
f(y)dQ(y)

∣∣∣∣ . (3.4.17)

Remark 3.4.5. (Choice of F). The function class F fully characterizes the IPMF (P,Q), and its choice
is subject to a trade-off. On one hand, F must be rich enough so that IPMF (P,Q) = 0 if and only
if P = Q.10 On the other hand, the larger the function class F , the more difficult it is to compute
or even estimate IPMF (P,Q). It is thus important to work with a class F that provides meaningful
and computable IPMs. Examples of choices of F lead the IPM to be the total variation distance, the
Kolmogorov distance and the Wasserstein distance, all widely used in machine learning and statistics.

Maximum mean discrepancy. We give the following definition and alternative expression of metric
based on choosing the class of test functions F to be an RKHS.

Definition 8. (Maximum mean discrepancy). When the supremum in (3.4.17) is taken over functions
in the unit ball of an RKHS Hk, i.e., F := {f ∈ Hk : ∥f∥Hk

≤ 1}, the resulting IPM is known as the
maximum mean discrepancy (MMD), which we denote by MMD(P,Q).

Proposition 3.4.1. The MMD between two probability distributions P and Q can be expressed as the
distance in Hk between the respective mean embeddings:

MMD(P,Q) = ∥µP − µQ∥Hk
. (3.4.18)

Proof. In fact:

MMD(P,Q) = sup
∥f∥Hk

≤1

∣∣∣∣
∫
f(x)dP (x) −

∫
f(y)dQ(y)

∣∣∣∣ (3.4.19)

= sup
∥f∥Hk

≤1

∣∣∣⟨f, µP − µQ⟩Hk

∣∣∣ (3.4.20)

= ∥µP − µQ∥Hk
, (3.4.21)

where in (3.4.20) we used the definition of mean embedding and the linearity of the scalar product, while
(3.4.21) follows from Cauchy-Schwarz and the supremum is obtained by f = (µP − µQ)/ ∥µP − µQ∥.

Corollary 3.4.1. The MMD between two probability distributions P and Q can thus be expressed in
terms of the kernel function k corresponding to the RKHS Hk as

MMD2(P,Q) =
x

k(x, y)dP (x)dP (y) − 2
x

k(x, y)dP (x)dQ(y) +
x

k(x, y)dQ(x)dQ(y).
(3.4.22)

Proof. The proof is based on computing terms of the form ⟨µP , µQ⟩Hk
. Using lemma 10,

⟨µP , µQ⟩Hk
= EP [µQ] = EP

[∫
k(y, ·)dQ(x)

]
=

x
k(x, y)dP (x)dQ(y). (3.4.23)

The use of the MMD as probability metric depends both both on its ability to separate probability
distributions and its computability (or ease to estimate). This is specified in the following remarks.

10In this case F is called measure determining.

28

Remark 3.4.6. (Relationship to other IPMs). It is possible to prove that the MMD between two prob-
ability measures P and Q is upper bounded by the Wesserstein distance and by the total variation
distance.11 As a consequence, if P and Q are close in these distances, they are also close in the MMD
metric.

Remark 3.4.7. (Empirical estimate). To compute the MMD, we need to be able to calculate the integrals
in (3.4.22). If this is not possible in closed form, but we can get i.i.d. samples x = {xi}n

i=1 ∼ P and
y = {yj}n

j=1 ∼ Q, then it is possible to construct estimators M̂MD(x, y)12 of MMD(P,Q) that are
unbiased and enjoy fast convergence rate when compared to estimators of other IPMs. For example,
when X = Rd, the MMD estimator based on so called ‘U-statistics’ is such that

|M̂MD
2
(x, y) − MMD2(P,Q)| ≤ cd(n−1/2), (3.4.24)

where cd is a constant possibly depending on the dimension. This can be contrasted with estimators of
the Wasserstein distance, where the bound is O(n−d/2). MMD estimators have thus faster asymptotic
convergence rate (although they might perform worse in the small sample size regime).

Remark 3.4.8. (Applications). Some application of MMD include

• Two-sample testing for equality of samples: given two i.i.d. samples {xi}m
i=1 ∼ P and {yj}n

j=1 ∼
Q, we want to test the null hypothesisH0 : ∥µP − µQ∥Hk

= 0 against the alternative hypothesis
H1 : ∥µP − µQ∥Hk

̸= 0;

• Goodness-of-fit testing: we want to test if a sample is drawn from a given distribution P (this can
be cast in terms of two-sample testing if we can sample from P);

• Optimal quantization of a probability measure P : we want to construct an empirical measure
Qn = 1

n

∑n
i=1 xi using as few states xi as possible for a given approximation quality, as measured

by MMD(P,Qn).

Remark 3.4.9. (Measure determining MMD). If the kernel k corresponding to the RKHS Hk used in
the definition of MMD is characteristic, then Hk is measure determining:

MMD(P,Q) = 0 ⇔ P = Q. (3.4.25)

Remark 3.4.10. (Convergence controlling MMD). The use of measure determining MMDs is desirable,
but not a strong enough property to justify its use to measure discrepancy between two probability
distributions. A stronger property is weak convergence control, namely

MMD(P,Qn) → 0 implies that Qn ⇒ P, (3.4.26)

where Qn ⇒ P means that
∫
fdQn → ∫

fdP for any bounded continuous function f . Certain choices
of X and k guarantee convergence control, see [18].

Kernel Stein discrepancy (KSD). In the previous remarks on computation and use of the MMD between
two probability distributions P and Q (or Qn), we often think of P as the reference distribution, to test
against (in two-sample and goodness-of-fit testing) or to try to approximate (in optimal quantization).
Sometimes P admits density13

p(x) = p̃(x)/Z, (3.4.27)

where Z is an intractable normalizing constant (think for example of the case when P is the posterior
distribution of a Bayesian parametric model). In this case, it is often both not possible to compute the
integrals against P in (3.4.22) and to get samples from P , hence empirical estimators of the MMD. In
this situation, Stein discrepancy proves to be useful, and it turns out that it is possible to kernelize it.
See [1] for a recent review. We start with:

11The latter under the condition that supx∈X k(x, x) < C.
12This is a shorthand notation to express the MMD estimator as a function of the samples.
13We now assume P to be continuous, but similar considerations can be done for discrete P .

29

Definition 9. (Stein characterization of a probability measure P). A distribution P is characterised by
the pair (AP ,G), consisting of a Stein Operator AP and a Stein Class G, if it holds that (Stein identity)

X ∼ P iff
∫

AP g(x)dP (x) = 0 ∀g ∈ G. (3.4.28)

Based on this definition, it is possible to define a measure of discrepancy:

Definition 10. (Stein discrepancy). Given a Stein characterisation (AP ,G) of a probability measure P ,
the Stein discrepancy between a distribution P and Q is defined as the maximum deviation from the
Stein identity

SD(Q,P) = sup
g∈G

∣∣∣∣
∫

AP g(x)dQ(x)
∣∣∣∣ . (3.4.29)

We can rewrite SD(Q,P) as

SD(Q,P) = sup
f∈FP =AP G

∣∣∣∣
∫
f(x)dQ(x)

∣∣∣∣ (3.4.30)

= sup
f∈FP =AP G

∣∣∣∣
∫
f(x)dQ(x) −

∫
f(x)dP (x)

∣∣∣∣ , (3.4.31)

where the last identity holds because the chosen Stein operator and class characterizeP . Equation (3.4.31)
resembles the general definition of IPM (3.4.17), but notice that SD(Q,P) is not a metric, because it
is not symmetric in its arguments. It is thus natural to wonder whether it is possible to compute Stein
discrepancies that result in FP = AP G being an RKHS, so that the corresponding Stein discrepancy
resembles an MMD. This is indeed possible, and it follows from the following two theorems, proved
in [4] and [15] respectively:14

Theorem 3.4.1. (Stein characterization in RKHS). Let k : X × X → R be the reproducing kernel of
a RKHS Hk of functions from X to R. Suppose that k is bounded, symmetric, universal15 and satisfies
EP [(∆k(x, x))2] < ∞. Then P has Stein characterisation (AP ,G), consisting of

AP g = ∇(gp)
p

, G = {g ∈ Hk : ∥g∥Hk
≤ 1}. (3.4.32)

Theorem 3.4.2. (Stein discrepancy in RKHS). The functions AP g just defined are precisely the elements
of the unit ball in the RKHS HkP

:= AP Hk with kernel

kP (x, y) = ∇x∇yk(x, y) + ∇xp(x)
p(x) ∇yk(x, y)

+∇yp(y)
p(y) ∇xk(x, y) + ∇xp(x)

p(x)
∇yp(y)
p(y) k(x, y) (3.4.33)

In particular, under regularity conditions,
∫
fdP = 0, ∀f ∈ HkP

.

We can thus define:

Definition 11. (Kernel Stein discrepancy). The kernel Stein discrepancy between two probability mea-
sures P and Q is the Stein discrepancy SD(Q,P) with choice of Stein operator and class as in (3.4.32),
and we write

KSD(Q,P) = sup
f∈HkP

=AP Hk

∣∣∣∣
∫
f(x)dQ(x)

∣∣∣∣ (3.4.34)

14We state these for X = R, but similar theorems hold for X = Rd.
15See e.g. [18] for a definition. For example, when X is compact, a kernel is universal if the corresponding RKHS Hk is

dense in the space of bounded continuous functions.

30

Remark 3.4.11. (Alternative expression KSD). Using a similar argument as in corollary 3.4.1 and the
fact that

∫
fdP = 0, ∀f ∈ HkP

, we can write

KSD2(Q,P) =
x

kP (x, y)dQ(x)dQ(y) (3.4.35)

Remark 3.4.12. (Computable KSD). Notice that the kernel kP in (3.4.33) depends only on evaluations of
the base kernel k and its derivatives, and on ∇p

p = ∇ log p = ∇ log p̃, so it does not require evaluations
of the normalizing constant Z in (3.4.27). We are thus often in a setting where we can evaluate kP . For
computing the KSD we also need to be able to compute the integral of this new kernel (3.4.35). This
might not be possible in closed form, but in common applications of the KSD (such as quantization of
P) we have that Q is an empirical measure Q = Qn = 1

n

∑n
i=1 xi, so that

KSD2(Qn, P) = 1
n2

n∑

i,j=1
kP (xi, xj). (3.4.36)

Remark 3.4.13. (Convergence controlling KSD). Under conditions on the measure P (that is P is
distantly dissipative - a relaxation of log-concavity) and for certain choices of the base kernel k (e.g.
when k is the inverse multi-quadric kernel), the KSD is convergence controlling:

KSD(P,Qn) → 0 implies that Qn ⇒ P, (3.4.37)

and it is thus suitable for machine learning and statistics tasks such as assessing quality of a sample or
optimal quantization of P .

31

Chapter 4

Gaussian Processes

4.1 Motivation

In chapters 1 and 2 our goal was to fit a function to data while limiting complexity to avoid overfit-
ting. We showed that the representer theorem provides the unique and deterministic optimal solution f∗

to KRR. In this chapter we aim at incorporating a measure of uncertainty in the solution to a regression
problem: this is an important shift of paradigm, based on recognizing that there might be many nearly
as optimal solutions as f∗1. In particular, we present Gaussian process (GP) regression, a tool for mod-
elling random functions via the Bayes’ update: a prior belief on a function is updated to a posterior belief
through observations. In this setting, uncertainty corresponds to the posterior covariance function, and
we will draw some connections between the solution to GP and KRR regression, following the excellent
review in [10]. We start with a simple example of Bayes’ update, where the quantity treated as random
is a parameter in a parametric family.

Bayesian parameter inference Let x = x1, . . . , xn be realizations of the real-valued random variables
X1, . . . , Xn

i.i.d.∼ N (µ, σ2). We assume that the variance σ2 is known and our goal is to infer µ. In
the frequentist framework µ is assumed to be a fixed but unknown quantity and inference is solved by
producing point estimators. For example, the sample mean is the maximum likelihood estimator µ̂ = x̄,
which maximizes the likelihood p(x|µ), that is, the joint probability density function of the sample
studied as a function of µ,

p(x|µ) =
n∏

i=1
p(xi|µ). (4.1.1)

In the Bayesian framework we instead assume that the parameter µ is unknown but random, so we can
assign a probability distribution to it. Uncertainty about µ can be formulated before and after observing
the realizations x. The former corresponds to assigning to µ a prior distribution p(µ), which encodes
our belief about the parameter, for example elicited from experts in a certain applied domain.2 Once an
experiment is performed and the sample x is obtained, the prior belief can be updated through Bayes’
theorem, to obtain the posterior distribution p(µ|x),

p(µ|x) = p(x|µ)p(µ)
p(x) ∝ p(x|µ)p(µ), (4.1.2)

where p(x|µ) is the likelihood defined in (4.1.1) and p(x) =
∫
p(x|µ)p(µ)dµ is the marginal likelihood,

a normalizing constant that can (often) be omitted because it does not depend on µ. The shape of
the posterior distribution represents uncertainty on µ after observing the data. Point estimators can

1This is even more important for non-convex problems that might not have a unique minimizer.
2There is a degree of freedom in setting the prior distribution. A sensible choice is required especially in a small data

regime, because it affects the inference, while the effect of prior choice becomes negligible as n → ∞.

32

be obtained also in the Bayesian framework by taking a decision theoretic approach and minimizing
expected loss functions (where expectations are computed against the posterior). The posterior mode,
also called maximum a posteriori (MAP) is

µMAP ∈ arg max
µ∈R

p(µ|x) = arg max
µ∈R

(log p(x|µ) + log p(µ)) (4.1.3)

and it can be considered as a regularized maximum likelihood estimator, where the prior acts as as reg-
ularizer.

In our example we can choose p(µ) = N (µ0, σ
2
0), 3 where e.g. µ0 and σ2

0 are the mean and variance
hyperparameters of the prior. Then by rearranging the terms and completing the square it is possible to
prove that

p(µ|x) = N (µpost, σ
2
post) = N (nτx̄+ τ0µ0, (nτ + τ0)−2), (4.1.4)

where we defined the precision parameters τ = 1/σ and τ0 = 1/σ0. The posterior mean is a weighted
average of prior mean and sample mean (the maximum likelihood estimate), and the posterior precision
is the sum of prior and data precisions, so that uncertainty about µ, quantified by the posterior variance,
has decreased after observing the data. In this example posterior mean, mode and median coincide.

4.2 Gaussian processes

We can extend the motivating example to a more ambitious task: perform Bayesian inference on a
function, rather then just a parameter, thus setting the target of inference to be an infinite-dimensional
stochastic process. Gaussian processes (GPs) extend the definition of a Gaussian random variables to
random functions, as follows.

Definition 12 (Gaussian process). Let X ̸= ∅ be a set and consider the functions m : X → R and
k : X × X → R, called mean and covariance function, respectively. A random function f : X → R
is called Gaussian process with mean m and covariance k, and we write GP(m, k), if, for any n ∈ N
and for any choice of points D = {x1, . . . , xn}, xi ∈ X, i = 1, . . . n, the vector of function evaluations
(f(x1), . . . , f(xn))T ∈ Rn is Gaussian distributed with mean

mD = (m(x1), . . . ,m(xn))T ∈ Rn, (4.2.1)

and covariance matrix

kDD =

k(x1, x1) . . . k(x1, xn)

...
. . .

...
k(xn, x1) . . . k(xn, xn)

 ∈ Rn×n. (4.2.2)

Remark 4.2.1. (Abstract view on definition of Gaussian process). Definition 12 can be viewed as an
extension of the characterization of finite-dimensional Gaussianity to functions. In fact, recall that if Y is
a random variable in Rd, then Y is multivariate Gaussian if and only if all one-dimensional projections
of Y are scalar Gaussian random variables, that is iff

⟨Y, v⟩Rd = Y T v ∼ N (µv, σ
2
v) for any v ∈ Rd. (4.2.3)

Then, given that we can view functions f : X → R as infinite-dimensional vectors, the evaluation of f
at a finite number of points x1, . . . , xn ∈ X amounts to projecting an infinite-dimensional vector on a
subspace of dimension n.

Remark 4.2.2. (One-to-one correspondence with kernels). Since the covariance matrix kDD has to be
symmetric and positive semi-definite for any choice of D, it follows that the function k : X × X → R

3This is a shorthand notation to indicate that µ is random variable a priori Gaussian distributed.

33

in definition 12 ought to be a positive definite kernel, recall remark 1.2.1. Conversely, it is possible to
prove4 that for every function m : X → R and positive definite kernel k : X × X → R there exists a
unique Gaussian process GP(m, k), so we can in fact establish a one-to-one correspondence between
positive definite kernels and Gaussian processes. For this reason the function k in definition 12 is often
called ‘covariance kernel’. 5

Remark 4.2.3. (Properties of GP sample paths). The GP mean function and covariance kernel induce
certain properties, such as smoothness of sample realizations of the GP. In particular, it is natural
to wonder whether GP realizations lie in the RKHS Hk corresponding to the covariance kernel k if
m ∈ Hk. It turns out that this is not the case if Hk is infinite dimensional, and GP sample paths fall
outside of Hk almost surely, even if the mean function belongs to it. However, it is possible to prove that
they actually lie on certain RKHSs Hθ

k, θ ∈ (0, 1), defined as powers of Hk. The characterization of Hθ
k

goes through Mercer’s theorem characterization of Hk. Here it will be sufficient to notice that that the
following inclusion holds

Hk = H1
k ⊂ Hθ

k ⊂ Hθ′
k ⊂ L2(ν), for all 1 > θ > θ′ > 0, (4.2.4)

where ν is a finite Borel measure with support X and L2(ν) = {f : X → R :
∫
f(x)2dν(x) < ∞}.

Thus Hθ
k gets larger (less smooth) as θ decreases, where θ needs to satisfy summability criteria related

to Mercer’s theorem for Hk. In certain cases (e.g when k is a square-exponential kernel) Hθ′
k is only

infinitesimally larger than Hk and it is possible to take θ → 1; in other cases (e.g. when k is a Matérn
kernel) there is a sharp gap between the two spaces (for example GP realizations when the RKHS of the
covariance kernel is the Sobolev space of order 1 coincide with Brownian motion sample paths). See
[10, Chapter 4].

4.3 GP-regression

As in the KRR setting, we assume to be given data (xi, yi)N
i=1, with xi ∈ X and yi ∈ R. Our goal

is to give a description of the data by means of a function f : X → R. In chapter 2 we studied how
a solution to this problem can be found by setting an optimization problem that trades off data-fidelity
and function complexity, by imposing f to belong to an RKHS and have finite norm. We now take a
Bayesian approach and model f as a random function (stochastic process). In particular we need to
specify

Prior distribution for f : a natural choice is given by modelling f ∼ GP(m, k) a priori, for some mean
function m : X → R and covariance kernel k : X × X → R. This allows to incorporate certain
properties assumed a prior on f , such as periodicity and (non-)smoothness, see remarks 4.2.3 and 4.3.6.

Likelihood. We assume that the data generating process is the function f observed in zero-mean Gaus-
sian additive noise, so that for any i = 1, . . . , N

yi = f(xi) + ξi, ξi
i.i.d.∼ N (0, σ2). (4.3.1)

We assume that σ2 is known. The one-point data likelihood is thus given by

p(yi|f) = N (yi|f(xi), σ2) ∝ exp
(

−(yi − f(xi))2

2σ2

)
, (4.3.2)

4This is not trivial (and in fact somewhat surprising: an infinite dimensional object is characterised by finite dimensional
projections), and it goes through the Kolmogorov extension theorem, that guarantees existence of stochastic process with given
consistent finite dimensional projections.

5Notice that the matrix kDD can be singular, in which case the corresponding finite dimensional Gaussian distribution is
well defined, but it does not have a density function (with respect to the Lebesgue measure).

34

and the complete likelihood is

p(y1, . . . , yN |f) =
N∏

i=1
N (yi|f(xi), σ2). (4.3.3)

Following Bayes theorem (applied to distributions with infinite dimensional support) we have that the
chosen prior and likelihood are conjugate. In fact the following holds:

Theorem 4.3.1. (Posterior in GP regression). The posterior in the Bayesian learning problem specified
above is the Gaussian process fy,

fy ∼ GP(m̄, k̄), (4.3.4)

with updated mean function m̄ : X → R and covariance kernel k̄ : X ×X → R, where

m̄(x) = m(x) + kxD(kDD + σ2INN)−1(y −mD), x ∈ X (4.3.5)

k̄(x, x′) = k(x, x′) − kxD(kDD + σ2INN)−1kDx′ , x, x′ ∈ X (4.3.6)

and
kDx = kT

xD = (k(x1, x), . . . , k(xN , x))T ∈ RN , (4.3.7)

and kDD as in (4.2.2), mD as in (4.2.1), y = (y1, . . . , yN)T and σ2 is the noise level assumed in the
likelihood.

Remark 4.3.1. (Proof without Bayes’ theorem). Theorem 4.3.1 can be proved also without Bayes’
theorem, relying only on the properties of conditional distributions in a Gaussian random vector,6 Kol-
mogorov extension theorem and the definition of a GP. In fact applying Bayes’ theorem to stochastic pro-
cesses is involved and it requires working with the Radon-Nikodym derivative for performing a change
of measure from prior to posterior.

Remark 4.3.2. (Connection to the Kalman Filter). In the case when the underlying set X is finite, the
GP posterior coincides with the Kalman update.

Remark 4.3.3. (Predictions). The posterior mean and covariance kernel can be used for predictions at
a new data point x̃. In fact, the prediction at the new point is ỹ = m̄(x̃) = E

[
fy(x)|(xi, yi)N

i=1

]
, while

the variance of fy(x̃) = k̄(x̃, x̃) quantifies uncertainty about the prediction. See Figure 4.3.2.

Remark 4.3.4. (Hyperparameter tuning). The GP regression setting requires choosing the values of the
hyperparameters appearing in the prior mean m and covariance k, as well as the noise variance σ2.
A common approach is selecting values that maximize the marginal likelihood of the data (this is the
denominator of Bayes’ theorem, which we did not write explicitly for GPs, but conceptually corresponds
to the term p(x) in (4.1.2)). The importance of hyper-parameter turning can be seen in the light of
remarks 4.2.3 and 4.3.6.

4.3.1 Relationship between KRR and GP regression

From inspection of (4.3.5) we see the following:

Theorem 4.3.2. If we choose m(x) = 0 and the same kernel for both KRR and GP regression, then the
solution to the KRR problem coincides with the posterior mean m̄ (4.3.5) if

σ2 = Nλ, (4.3.8)

where σ2 is the noise in the observations, N is the number of datapoints, and λ is the regularization
parameter in KRR (balancing overfitting and underfitting).

6In a way similar to the closed form computations in the motivating example (4.1.4).

35

Figure 4.3.1: Left: GP samples drawn from the prior distribution. Right: GP samples drawn from the
posterior distribution after three datapoints have been observed. The prior and posterior mean are shown
as solid lines and the shaded regions denotes twice the standard prior and posterior deviation at each
input value. Image credit: [10].

Remark 4.3.5. (Trade off data-regularization). Condition (4.3.8) is intuitive in that it represents the
equivalence between data noise variance σ2 in GP regression and regularization level λ in KRR. In fact,
if λ is small in KRR, then there is little regularization in the KRR problem, so the solution prioritizes
adherence to data (and little importance is given to function smoothness). Accordingly, if σ2 is small in
GP regression, then we believe that the there is little noise in the data, and the likelihood dominates the
prior in the posterior formulation.

Remark 4.3.6. (Posterior mean in prior RKHS). A consequence of theorem 4.3.2 is that the posterior
mean function m̄ belongs to the RKHS corresponding to the prior covariance kernel Hk. Thus when
specifying the prior covariance kernel we can impose certain properties of the posterior mean. However,
following arguments similar to those in remark 4.2.3, posterior samples f ∼ GP(m̄, k̄) do not belong
to Hk.7

4.3.2 GP interpolation

We can consider the data to be noise-free observations of the function f : X → R so that for any
i = 1, . . . , N

yi = f(xi). (4.3.9)

In this case it is not possible to formally apply Bayes’ theorem because the likelihood is degenerate,
but following Gaussian calculus, and in case the matrix kDD is invertible,8 it is possible to establish an
expression of the GP posterior distribution formally equivalent to that in Theorem 4.3.1 with σ2 = 0.

The noise-free deterministic representation of data suits well the scenario in which the function val-
ues f(xi) represent the outcome of computer experiments. In this case GP interpolation is also called
model emulation and it is mostly used for cases when the computer model is expensive to run and any op-
eration that involves function evaluations should then be done parsimoniously. Modelling the function f
as a Gaussian process allows to do so, by incorporating prior knowledge on the function and refining its
characterization as new observations (computer runs) are obtained. We give an example below.

Example 4.3.1. (Bayesian optimization). The goal is to find the minimizer of a a function V : X → R

x∗ ∈ arg min
x∈X

V (x), (4.3.10)

7They do not belong to Hk̄ either. In fact Hk̄ ⊂ Hk, can you prove this as an exercise? Hint: consider the expression of
the posterior kernel (4.3.6).

8If kDD is not invertible, then GP interpolation is formally not well defined. In practice, the problem is regularized by
assuming the existence of small noise in the output (also called jitter). Thus the examples that we provide for GP interpolation
are in practice used in the regression setting and jitter is sometimes interpreted as model discrepancy term.

36

Figure 4.3.2: Illustration of three iterations of Bayesian optimization. The objective function is here
shown as dashed line, but it is in practice unknown. The acquisition function is shown on the bottom
and it trades off exploitation and exploration of the GP interpolating model. Image credit: [17].

in settings when the evaluation of V is computationally or experimentally expensive. Optimization is
performed as follows. Select an initial point x0 and evaluate V (x0). Then:

Step 1: Model V by a GP: V ∼ GP(m, k);

Step 2: Use the GP to find a new evaluation point xi and evaluate V (xi);

Step 3: Perform Bayes’ update using the new datapoint (xi, V (xi)), to get the GP posterior;

Step 4: Go to Step 1 and iterate until convergence.

Notice that the algorithm requires evaluation of the expensive model, but this is done efficiently. In
fact, in Step 2 the new point xi is found by maximizing an objective function (acquisition function),
which trades off exploitation (high GP mean) and exploration (high GP variance). This does not require
iterative evaluations of the function V .

Remark 4.3.7. (Kernel interpolation). It is possible to determine an analogous interpolation problem
to KRR (to be interpreted as the smoothest function in the RKHS that passes through the data), and this
is again equivalent to the posterior mean of the GP interpolation problem (provided the matrix kDD is
invertible).

37

Chapter 5

The Neural Tangent Kernel

5.1 Differentiable learning

In this section, we go back to the motivation from Section 1.1: the goal is to find a function f∗ that
describes available data (xi, yi)N

i=1. For this, we now consider a parameterisation (f(·; θ))θ∈Θ, with
Θ ⊂ Rp, and intend to find a parameter θ∗ ∈ Θ so that f(xi; θ∗) ≈ yi, i = 1, . . . , N . The primary
example to consider is when the parameterisation is in terms of a neural network (see below), that is, the
parameter space Θ comprises the weights and biases.

Example 5.1.1 (Two-layer neural network). The function class given by

f(x; θ) = 1
M

M∑

i=1
biσ(ai · x) (5.1.1)

describes neural networks with one hidden layer (M hidden neurons). Here, σ : R → R is a nonlinearity,
and θ = (ai, bi)M

i=1 is the collection of parameters. The hidden layer is parameterised by the weights
ai ∈ RM , and the output layer by bi ∈ R.

Example 5.1.2 (Kernel machine). According to the representer theorem (Theorem 2.0.1), the solution
to the kernel ridge regression problem is given in the form

f(x; θ) =
N∑

i=1
θik(xi, x). (5.1.2)

Kernel learning can thus be phrased as the task of determining the coefficients θ = (θ1, . . . , θ
⊤
N).

Example 5.1.3 (Tensor networks). Another interesting class of function approximators is the one given
by tensor networks, see, for example, [16].

To find θ∗, we define an optimality criterion (loss function) and optimise θ using gradient-descent type
algorithms. For example,

L(f) = 1
N

N∑

i=1
(f(xi) − yi)2 =

∫

Rd
(f(x) − f∗(x))2 ρ(dx) (5.1.3)

represents the data term in (2.0.3). In the second formulation in (5.1.3) have introduced the empirical
measure ρ = 1

N

∑N
i=1 δxi , as well as the target function f∗ satisfying f∗(xi) = yi. From another

(more fundamental) perspective, the middle term in (5.1.3) represents the empirical risk (training error),
whereas the right-most expression represents the true risk (test error). See [5, Chapter I,1] for more
information.

38

Remark 5.1.1. More generally, we can consider

L(f) =
∫

Rd
(f(x) − y)2 ρ(dxdy). (5.1.4)

This corresponds to the setting when the y-values are observed with noise. Again, see [5, Chapter I,1]
for a detailed discussion.

To find θ∗, it is natural to minimise (5.1.3) using gradient-descent type algorithms, given, in their
simplest form, as time-discretisations of

∂tθt = −∇θtL(f(·; θt)). (5.1.5)

More generally, (5.1.5) might be replaced by a stochastic version, or augmented with momentum. In the
case of (5.1.3), we obtain

∂tθt = −∇θt

(
1
N

N∑

i=1
(f(xi; θt) − yi)2

)
, (5.1.6)

and hope that θ∗ = limt→∞ θt solves the learning problem in an appropriate sense. The process of
evolving (5.1.6) is commonly referred to as training.

Linear vs. nonlinear parameterisations. Comparing Example 5.1.1 and 5.1.2, we see that the map
θ 7→ f(·, θ) is linear in the second case, and nonlinear in the first case. In the linear case, the map
θ 7→ L(f(·; θ)) is convex, and the solution to the dynamics (5.1.6) converges to a global minimum. In
the nonlinear case, the dynamics (5.1.6) is much harder to understand. In particular, we can ask the
following questions:

1. There might be many local and global minimima, and the loss landscape is typically nonconvex.
Will the dynamics converge to a global minimum?

2. If there are multiple global minima, will there be ‘good’ and ‘bad’ ones (in terms of generalisa-
tion)?

5.2 The neural tangent kernel

To give partial answers to those questions, it turns out to be useful to shift attention to the evolution of
f(·; θt). Using the chain rule, we calculate

∂tf(x; θt) = ∇θtf(x; θt) · ∂tθt = −∇θtf(x; θt) · ∇θtL(f(·; θt)) (5.2.1)

and

∇θL(f(·; θ)) = 2
N

N∑

i=1
(f(xi) − yi) ∇θf(xi; θ). (5.2.2)

Writing ft(·) := f(·; θt) and combining (5.2.1) with (5.2.2), we obtain the key equation

∂tft(·) = − 2
N

N∑

i=1
∇θtf(·; θt) · ∇θtf(xi; θt) (ft(xi) − yi) (5.2.3a)

= − 2
N

N∑

i=1
Hθt(·, xi) (ft(xi) − yi) , (5.2.3b)

where we have defined the neural tangent kernel (NTK)

Hθ(x, y) := ∇θf(x; θ) · ∇θf(y; θ). (5.2.4)

39

A short calculation shows that Hθ is indeed a positive definite kernel (see Definition 1), for all θ ∈ Θ.1

The equation (5.2.3) is almost a closed equation for f , noting that the only nonautonomous dependence
is via H though θt. We will see below that in certain regimes θt ≈ const. is a good approximation, so
that the analysis of (5.2.3) simplifies considerably.

Remark 5.2.1 (A geometric viewpoint). We can view the loss functional (5.1.3) as a mapping L :
L2(ρ) → R with Fréchet derivative

DL = 2(f − f∗). (5.2.5)

This can (formally) be verified by calculating

d
dε
∣∣∣
ε=0

L(f + εψ) = ⟨DL, ψ⟩L2(ρ), (5.2.6)

for all (reasonable) perturbations ψ. Using this, we can write (5.2.3) succinctly as

∂tf = −
∫

Rd
Hθt(·, z)DL(f)(z)ρ(dz) = −Tθt,ρDL(f), (5.2.7)

with reference to the integral operator

Tθ,ρϕ(x) =
∫

Rd
Hθ(x, y)ϕ(y) ρ(dx). (5.2.8)

The formulation (5.2.7) bears similarities to gradient flows on Riemannian manifolds. To be precise,
recall that if (M, g) is a (finite-dimensional) Riemannian manifold with a smooth potential V : M → R,
then we can consider

dX
dt = −gradgV (X) = −g#(dV)(X), (5.2.9)

where gradg refers to the Riemannian gradient, which can be expressed in terms of the musical isomor-
phism g# : T ∗M → TM and exterior derivative. In local coordinates, (5.2.9) takes the form

∂tX
µ = −gµν∂νV (X), (5.2.10)

employing Einstein’s summation convention and where gµν denote the coordinates of the inverse of the
metric tensor. Comparing (5.2.3) to (5.2.10), we arrive at the following interpretation: The neural
network f evolves according to a gradient flow dynamics (steepest descent) in a Riemannian manifold,
whose metric tensor is given by the inverse of the integral operator defined in (5.2.8).

To finish this section, we stress the following:

1. The evolution equations (5.2.3) and (5.2.7) are completely general (no reference to neural net-
works at this point, only to the parameterisation f(·; θ)), and it is exact (no approximation of any
kind).

2. However, those equations are not self-contained as the NTK H depends on θ.

In the following two sections we will study two scenarios whereH becomes independent of θ, and hence
the equations (5.2.3) and (5.2.7) can be studied very effectively.

1It is clear that Hθ is symmetric. To check positive definiteness, note that
∑

ij
αiαj∇θf(xi; θ) · ∇θf(xj ; θ) =(∑

i
αi∇θf(xi; θ)

)2 ≥ 0.

40

5.3 Kernel machines

We return to Example 5.1.2 and compute the NTK according to (5.2.4):

Hθ(u, v) =
N∑

i=1
k(u, xi)k(xi, v) =

∫

Rd
k(u, x)k(x, v)ρ(dx). (5.3.1)

Here, the key observation is that H does not depend on θ (this is of course a consequence of the fact
that the parameterisation θ 7→ f(·; θ) is linear). In the following, we drop the θ from the notation. The
evolution equation for f takes the friendly form

∂tft(·) = − 2
N

N∑

i=1
H(·, xi) (ft(xi) − f∗(xi)) . (5.3.2)

To solve this equation and gain more insight, it is convenient to introduce the residual Et := ft − f∗, so
that

∂tEt = − 2
N

N∑

i=1
H(·, xi)Et(xi), (5.3.3)

which is a linear evolution equation in E. Let us summarise the solutions to (5.3.2) and (5.3.3) as
follows:

Proposition 5.3.1. Let H ∈ RN×N and E0 ∈ RN be given by Hij = H(xi, xj) as well as E0 =
(E0(x1), . . . , E0(xN)))⊤. Furthermore, let h : RN → RN be given by h = ((H(·, x1), . . . ,H(·, xN))).
Assume that H is invertible. Then the (unique) solutions to (5.3.2) and (5.3.3) are given by

ft = f0 + h · H−1
(

exp
(

−2t
N

H

)
− IN×N

)
E0, (5.3.4)

and
Et = E0 + h · H−1

(
exp

(
−2t
N

H

)
− IN×N

)
E0, (5.3.5)

We can take the limit t → ∞ in the explicit solution (5.3.4). Remarkably, we recover the solution to
kernel ridge regression problem (see Theorem 2.0.2)!

Corollary 5.3.1. Assume that f0 = 0 (and still that H is invertible. Then in the long-time limit, we
recover the solution to the kernel ridge regression problem (2.0.3), with λ = 0, that is, limt→∞ ft is
given by (2.0.15) and (2.0.16).

Before giving the proofs of Proposition 5.3.1 and Corollary 5.3.1, we give a few remarks.

Remark 5.3.1. 1. Corollary 5.3.1 shows that the solution to the kernel ridge regression problem can
be found by integrating the dynamics (5.3.2), and so in some sense (5.3.2) solves the linear system
(2.0.16) iteratively (continuously in time). This can indeed be useful computationally when N is
very large, because no matrix inverses are required.

2. The equation (5.3.3) is interesting, as updates to the residual happen in the subspace
{

N∑

i=1
αiH(·, xi) : αi ∈ R

}
⊂ HH . (5.3.6)

It is also possible to analyse the dynamics (5.3.3) spectrally, by diagonalising the involved linear
operator. It can then be seen that high-frequency modes decay first, and regularisation (in the
sense of avoiding overfitting) can be obtained by early stopping. This idea is developed more fully
in [9, Section 5].

41

3. The fact the the dynamics (5.3.2) recovers the minimum-norm interpolation of the data (see
(2.0.17)) is an instance of the following phenomenon: Statistics and computation cannot be
thought of separately, but have to be considered in tandem (historically, these two subjects tended
to be treated separately, but arguably ‘machine learning’ is to some extent about uniting both
disciplines). Here, gradient descent (an algorithm) helps to identify a statistically favourable
solution, avoiding overfitting.

Proof of Proposition 5.3.1 and Corollary 5.3.1. The solutions (5.2.3) and (5.3.5) can be verified by di-
rectly taking derivatives. A more constructive approach is to first solve (5.3.3) partially, in the sense that
we determine the dynamics of the vector Et := (Et(x1), . . . , Et(xN)))⊤ ∈ RN . Defining the matrix
H ∈ RN×N with entries Hij = H(xi, xj), we observe that Et satisfies the ODE

∂tEt = − 2
N

HEt, (5.3.7)

with solution given by

Et = exp
(

−2t
N

H

)
E0. (5.3.8)

We next introduce the function-valued vector h = ((H(·, x1), . . . ,H(·, xN))), so that (5.3.3) can be
written in the form

∂tEt = − 2
N

h · Et. (5.3.9)

We can then compute

Et = E0 − 2
N

h ·
∫ t

0
Es ds = E0 − 2

N
h ·
∫ t

0
exp

(
−2t
N

H

)
E0 ds (5.3.10a)

= E0 + h · H−1
(

exp
(

−2t
N

H

)
− IN×N

)
E0. (5.3.10b)

Now, (5.3.4) directly follow by plugging in Et = ft − f∗.

For Corollary 5.3.1, we take the limit in (5.3.4) to obtain

lim
t→∞

ft = h · H−1y, (5.3.11)

with y = (f∗(x1), . . . , f∗(xN)). From (5.3.1) we see that H = K2 and h = kK, with Kij =
k(xi, xj) and ki = k(·, xi), and so the result follows by comparison with (2.0.15) and (2.0.16).

5.4 Lazy training in neural networks

For example 5.1.1 (and, more general neural networks), the dynamics (5.2.3) is more difficult to analyse,
since H depends on θ. However, the following was observed in [9]:

In the limit when the hidden layer(s) become infinitely wide, and under appropriate initialisation of
the weights, the NTK remains constant during training. As a consequence, neural network training is
well-described by (5.3.2), and the network acts like a kernel machine. This observation answers the
questions posed at the end of Section 5.1.

Why is this so?

In this limiting regime, it turns out that the individual weights θ ∈ Θ do not move (or move only
infinitesimally), but f(·; θ) does change substantially. This is possible because in the limit there are
infinitely many weights that contribute to f(·; θ). This phenomenon is called lazy training.

In the following, we aim at making these claims (somewhat) precise. For full rigour, we refer to the
excellent exposition in [12, Appendix H]. To arrive at the limit, it is clear that (5.1.1) has to be rescaled

42

appropriately, and so we introduce

fα(x; θ) := α

M

M∑

i=1
biσ(ai · x). (5.4.1)

In the main, two choices for the scale parameter make sense:

1. α = O(1). This leads to ‘law of large number’ type results, and a description in terms of the
empirical measure ρ = 1

M

∑M
i=1 δθi

suggests itself. As M → ∞, we may work with measures
that have full support on Θ and analyse their dynamics. This is not the kernel regime, but see [12]
for details.

2. α = O(
√
M). This is a ‘central limit theorem’ type scaling and leads to lazy training.

First, let us discuss in which sense the scaling α = O(
√
M) makes sense:

Lemma 11. Let ai, bi ∼ N (0, 1) be sequences of iid normally distributed random variables. Then f
√

M

as defined in (5.4.1) converges (in distribution) to a Gaussian process.

Proof. Remember Definition 12. We need to fix (x1, . . . , xN) ∈ RdN and show that the distribution of
(f

√
M (x1, θ), . . . , f

√
M (xN , θ)) converges to a Gaussian as M → ∞. For this, notice that the (vector-

valued) random variables

(biσ(ai · x1), . . . , biσ(ai · xN))⊤ ∈ RN , i = 1, . . . ,M, (5.4.2)

are iid, and hence indeed by the central limit theorem, their rescaled sum (rescaled as in (5.4.1) converges
to an N -dimensional Gaussian.

Bonus question: What are the mean and covariance functions associated to the limiting Gaussian pro-
cess?

Next, we go back to the abstract picture and study the training dynamics subject to rescalings (this is
again general, and goes beyond the neural network setting). Recall that the training dynamics can be
viewed as a coupled system of equations, comprised by (5.1.5), governing the evolution of θ, and (5.2.3),
governing of the evolution of f . The second depends on the solution of the first, and is (of course) in
some sense redundant, because knowing θt, we can directly compute f(·; θt). However, the whole point
of the analysis in this section is to decouple these two equations.

We introduce the following new variables:

fα(x; θ) := αf(x; θ) (rescaled parameterisation) (5.4.3a)

τ := α−2t (short times) (5.4.3b)

In terms of those, the coupled system (5.1.5),(5.2.3) takes the form

∂τθτ = − 1
α

∇θτ L(fα(·, θτ)), (5.4.4a)

∂τf
α
τ (·) = − 2

N

N∑

i=1
Hθτ (·, xi) (fα

τ (xi) − yi) , (5.4.4b)

that is, the second equation is invariant under the rescaling (5.4.3), while the first one picks up a factor
of 1

α . Therefore, indeed, in the limit when α → ∞, it is reasonable to expect that θτ remains constant
(hence Hθ remains constant), while fτ evolves according to the kernel machine dynamics (5.3.2). This
argument essentially explains the phenomenon of lazy training, and more rigorous results can be found
in [12, Appendix H] as well as in the original paper [9].

43

Remark 5.4.1 (Initial conditions). Notice that while the dynamics (5.4.4b) is invariant under the rescal-
ing, the initial condition (suppressed in the notation/discussion) is not! Therefore, this scaling argument
is not as straightforward as it appears and depends more delicately on the parameterisation. However,
we established in Lemma 11 that in the case of neural networks of the form (5.1.1), the limiting ob-
ject is a Gaussian process (this will be the initial condition for the dynamics (5.4.4b)). Therefore, fα

remains bounded in a suitable sense as α → ∞, and therefore the argument for lazy training can be
substantiated.

Remark 5.4.2 (Deterministic limit of the NTK). In the setting of Lemma 11, the initial condition for
(5.4.4b) will be random (a Gaussian process), see the previous remark. However, the NTK will con-
verge towards a deterministic positive definite kernel as α → ∞: this is (roughly speaking) because
∇θf(·; θ) ≈ O(

√
M), and so the NTK as defined in (5.2.4) scales with 1

M , leading to a ‘law of large
number’ scaling and a deterministic limit.

Further reading. The neural tangent kernel analysis answers some questions: Minimisers of the loss
can be found according to (5.3.2), and their statistical properties can be understood as minimum-norm
interpolators. However, there are also new questions: Empirically, it has been observed that neural net-
works often outperform kernel methods. It must therefore be the case that the NTK limiting regime is not
completely realised in practice (and this fact should somehow help the performance). One intuitive idea
is that the NTK (as in (5.2.3)) evolves during the training in a favourable way, and so neural networks
can (maybe) be understood as kernel machine with a positive definite kernel that is adapted according
to the task at hand. Understanding this in more detail is very much ongoing research. Here is a (very
incomplete) list of suggestions for further reading.

1. the original paper: [9]

2. an excellent overview: [12, Appendix H]

3. Clearly, it is important to study properties of the RKHS associated to the NTK. See [3], ”Deep
neural tangent kernel and Laplace kernel have the same RKHS”

4. [8]: When do neural networks outperform kernel methods? The name of the paper speaks for
itself...

5. [6] data adaptive kernels...

44

Bibliography

[1] Andreas Anastasiou, Alessandro Barp, François-Xavier Briol, Bruno Ebner, Robert E Gaunt, Fate-
meh Ghaderinezhad, Jackson Gorham, Arthur Gretton, Christophe Ley, Qiang Liu, et al. Stein’s
Method Meets Computational Statistics: A Review of Some Recent Developments. arXiv preprint
arXiv:2105.03481, 2021.

[2] Francis Bach. Learning theory from first principles. Draft of a book, version of Sept, 6:2021, 2021.

[3] Lin Chen and Sheng Xu. Deep neural tangent kernel and laplace kernel have the same rkhs. arXiv
preprint arXiv:2009.10683, 2020.

[4] Kacper Chwialkowski, Heiko Strathmann, and Arthur Gretton. A kernel test of goodness of fit. In
International conference on machine learning, pages 2606–2615. PMLR, 2016.

[5] Felipe Cucker and Steve Smale. On the mathematical foundations of learning. Bulletin of the
American mathematical society, 39(1):1–49, 2002.

[6] Xialiang Dou and Tengyuan Liang. Training neural networks as learning data-adaptive kernels:
Provable representation and approximation benefits. Journal of the American Statistical Associa-
tion, 116(535):1507–1520, 2021.

[7] Gregory E Fasshauer and Qi Ye. Reproducing kernels of generalized Sobolev spaces via a Green
function approach with distributional operators. Numerische Mathematik, 119(3):585–611, 2011.

[8] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When do neural
networks outperform kernel methods? Advances in Neural Information Processing Systems, 33:
14820–14830, 2020.

[9] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

[10] Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K Sriperumbudur. Gaus-
sian processes and kernel methods: A review on connections and equivalences. arXiv preprint
arXiv:1807.02582, 2018.

[11] Erwin Kreyszig. Introductory functional analysis with applications, volume 1. Wiley New York,
1978.

[12] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural
networks: dimension-free bounds and kernel limit. In Conference on Learning Theory, pages
2388–2464. PMLR, 2019.

[13] Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, Bernhard Schölkopf, et al. Kernel
mean embedding of distributions: A review and beyond. Foundations and Trends® in Machine
Learning, 10(1-2):1–141, 2017.

45

[14] Alfred Müller. Integral probability metrics and their generating classes of functions. Advances in
Applied Probability, 29(2):429–443, 1997.

[15] Chris J Oates, Mark Girolami, and Nicolas Chopin. Control functionals for monte carlo integration.
Journal of the Royal Statistical Society. Series B (Statistical Methodology), pages 695–718, 2017.

[16] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):
2295–2317, 2011.

[17] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2015.

[18] Bharath K Sriperumbudur, Kenji Fukumizu, and Gert RG Lanckriet. Universality, Characteristic
Kernels and RKHS Embedding of Measures. Journal of Machine Learning Research, 12(7), 2011.

[19] Ingo Steinwart and Andreas Christmann. Support vector machines. Springer Science & Business
Media, 2008.

[20] Grace Wahba and Yuedong Wang. Representer Theorem, pages 1–11. American Cancer Society,
2019. ISBN 9781118445112.

46

	Kernels and RKHSs
	Motivation
	Positive definite kernels
	Reproducing kernel Hilbert spaces (RKHSs)
	Function evaluations, and the interpretation of Hk
	The norm Hk as a measure of complexity.

	Kernel Ridge Regression
	Extensions

	Kernel Embeddings
	Motivation
	Feature maps
	Review of connections and equivalences

	Algorithm kernelization
	Kernel PCA
	Other kernelizable algorithms

	Extensions
	Kernel mean embeddings
	Discrepancies based on kernel mean embeddings

	Gaussian Processes
	Motivation
	Gaussian processes
	GP-regression
	Relationship between KRR and GP regression
	GP interpolation

	The Neural Tangent Kernel
	Differentiable learning
	The neural tangent kernel
	Kernel machines
	Lazy training in neural networks

