Higher-order networks An introduction to simplicial complexes Lesson I

LTCC Course
February 2023
Ginestra Bianconi
School of Mathematical Sciences, Queen Mary University of London
Alan Turing Institute
The
Alan Turing
Institute

Outline of the course

1. Higher order networks structure and maximum entropy models
2. Higher-order non-equilibrium network models and emergent geometry
3. Simplicial topology an introduction
4. Dynamics of higher-order topological signals
5. The Dirac operator and its applications

Lesson I: Higher order networks structure

- Higher-order networks

1. Definitions
2. Introduction to the higher-order combinatorial properties

- Background on networks and maximum entropy models
- Maximum Entropy models of simplicial complexes

Higher-order networks

Higher-order networks are characterising the interactions between two or more nodes

Hypergraph

Simplicial complex

Network with triadic interactions

Higher-order network data

Face-to-face interactions

Collaboration networks

Ecosystems

Protein interactions

Higher-order networks

New book by Cambridge University Press!!

Providing a general view of the interplay between topology and dynamics

The physics of higher-order interactions in complex systems

Federico Battiston ${ }^{1 \times}$, Enrico Amico ${ }^{2,3}$, Alain Barrat ${ }^{\left({ }^{4,5}\right.}{ }^{4,5}$, Ginestra Bianconi $\odot^{6,7}$,
Guilherme Ferraz de Arruda \oplus^{8}, Benedetta Franceschiello $\odot^{9,10}$, lacopo lacopini ${ }^{\text {© }}$, Sonia Kéfi ${ }^{11,12}$ Vito Latora $\odot^{6,13,14,15}$, Yamir Moreno $\odot^{8,15,16,17}$, Micah M. Murray $\odot^{9,10,18}$, Tiago P. Peixoto ${ }^{1,19}$,
Francesco Vaccarino ${ }^{()^{20}}$ and Giovanni Petri $\odot^{8,21 ■}$
Complex networks have become the main paradigm for modelling the dynamics of interacting systems. However, networks are intrinsically limited to describing pairwise interactions, whereas real-world systems are often characterized by higher-order interactions involving groups of three or more units. Higher-order structures, such as hypergraphs and simplicial complexes, are therefore a better tool to map the real organization of many social, blological and man-made systems. Here, we highligh recent evidence of collective behaviours induced by higher-order interactions, and we outline three key challenges for the physIcs of higher-order systems

Downward projection

b

Reconstruction

Generalized network structures

Going beyond the framework of simple networks is of fundamental importance
for understanding the relation between structure and dynamics in complex systems

Collaboration Networks

Each paper includes higher-order interac \downarrow among the corresponding team
Jacovacci, Wu, Bianconi (2015)

Higher-order interactions in the brain

Cho, Barcelon and Lee (2016)

Giusti et al (2016)

Petri et al. (2014)

Multilayer brain networks

Bullmore and Sporns (2009)

Ecosystems

a

Bairey et al. (2017)

Explosive Epidemic Spreading on co-location hypergraphs

Simplicial social contagions and social contagion on hypergraphs

lacopini et al. (2019)

De arruda et al. (2021)

Triadic interactions

Sun, Radicchi, Kurths GB (2022)

Background on network science

Networks

the interactions between the elements of large complex systems.

Randomness and order Complex networks

LATTICES

COMPLEX NETWORKS
RANDOM GRAPHS

Regular networks Symmetric

Scale free networks Small world With communities
ENCODING INFORMATION IN THEIR STRUCTURE

Totally random Binomial degree distribution

Universalities

- Small-world: $d_{H}=\infty$
[Watts \& Strogatz 1998]
- Scale-free: $P(k) \sim k^{-\gamma}$ for $k \gg 1$ [Barabasi \& Albert 1999] with $\gamma \in(2,3]$

$$
\begin{gathered}
\langle k\rangle \rightarrow \text { const }\left\langle k^{2}\right\rangle \rightarrow \infty \\
\text { for } N \rightarrow \infty
\end{gathered}
$$

- Modularity: Local communities of nodes [Fortunato 2010]

Interplay between network structure and dynamics

Critical phenomena on scale-free networks

Scale free networks:

- Percolation:

Percolation threshold

$$
p_{c} \frac{\langle k(k-1)\rangle}{\langle k\rangle}=1
$$

Scale free networks are robust to random damage

- Epidemic spreading:

Epidemic threshold

$$
\lambda_{c} \frac{\langle k(k-1)\rangle}{\langle k\rangle}=1
$$

The epidemic threshold is zero on scale-free networks

Higher-order network structure and dynamics

Higher order networks Structure

Hyperedges

2-hyperedge
3-hyperedge
4-hyperedge
An m-hyperedge is set nodes

$$
\alpha=\left[i_{1}, i_{2}, i_{3}, \ldots i_{m}\right]
$$

-it indicates the interactions between the m-nodes

Hypergraphs

Hypergraph
A hypergraph $\mathcal{G}=\left(V, E_{H}\right)$ is defined by a set V of N nodes and a set E_{H} of hyperedges, where a $(m+1)$-hyperedge indicates a set of $m+1$ nodes

$$
e=\left[v_{0}, v_{1}, v_{2}, \ldots, v_{m}\right]
$$

with generic value of $1 \leq m<N$.
An hyperdge describes the many-body interaction between the nodes.

Simplices

2-simplex
3-simplex
0-simplex
1-simplex

Simplices

A d-dimensional simplex α (also indicated as a d-simplex α) is formed by a set of $(d+1)$ interacting nodes

$$
\alpha=\left[v_{0}, v_{1}, v_{2} \ldots, v_{d}\right] .
$$

It describes a many body interaction between the nodes. It allows for a topological and a geometrical interpretation of the simplex.

Faces of a simplex

FACES

A face of a d-dimensional simplex α is a simplex α^{\prime} formed by a proper subset of nodes of the simplex, i.e. $\alpha^{\prime} \subset \alpha$.

3-simplex

Faces

40 -simplices
6 1-simplices
4 2-simplices

Simplicial complex

SIMPLICIAL COMPLEX

A simplicial complex \mathcal{K} is formed by a set of simplices that is closed under the inclusion of the faces of each simplex.
The dimension d of a simplicial complex is the largest dimension of its simplices.

$$
\begin{aligned}
\mathscr{K}= & \{[1],[2],[3],[4],[5],[6], \\
& {[1,2],[1,3],[1,4],[1,5],[2,3], } \\
& {[3,4],[3,5],[3,6],[5,6], } \\
& {[1,2,3],[1,3,4],[1,3,5],[3,5,6]\} }
\end{aligned}
$$

Dimension of a simplicial complex

The dimension of a simplicial complex \mathscr{K} is the largest dimension of its simplices

This simplicial complex has dimension 2

$$
\begin{aligned}
\mathscr{K}= & \{[1],[2],[3],[4],[5],[6], \\
& {[1,2],[1,3],[1,4],[1,5],[2,3], } \\
& {[3,4],[3,5],[3,6],[5,6], } \\
& {[1,2,3],[1,3,4],[1,3,5],[3,5,6]\} }
\end{aligned}
$$

Facets of a simplicial complex

FACET

A facet is a simplex of a simplicial complex that is not a face of any other simplex. Therefore a simplicial complex is fully determined by the sequence of its facets.

The facets of this simplicial complex are

$$
\mathscr{K}=\{[1,2,3],[1,3,4],[1,3,5],[3,5,6]\}
$$

Pure simplicial complex

PURE SIMPLICIAL COMPLEXES

A pure d-dimensional simplicial complex is formed by a set of d dimensional simplices and their faces.
Therefore pure d-dimensional simplicial complexes admit as facets only d-dimensional simplices.

A pure d-dimensional simplicial complex is fully determined by an adjacency matrix tensor with ($\mathrm{d}+1$) indices.
For instance this simplicial complex is determined by the tensor

$$
a_{r s p}=\left\{\begin{array}{l}
1 \text { if }(r, s, p) \in \mathscr{K} \\
0 \text { otherwise }
\end{array}\right.
$$

Example

A simplicial complex \mathscr{K} is pure
if it is formed by d-dimensional simplices and their faces

6
PURE SIMPLICIAL COMPLEX

SIMPLICIAL COMPLEX THAT IS NOT PURE

Simplicial complex skeleton

From a simplicial complex is possible to generate a network salled the simplicial complex skeleton by considering only the nodes and the links of the simplicial complex

Clique complex

From a network is possible to generate a simplicial complex by Assuming that each clique is a simplex

Note:

Poisson networks have a clique number that is 3 and actually on a finite expected number of triangles in the infinite network limit

However
Scale-free networks have a diverging clique number, therefore the clique complex of a scale-free network has diverging dimension. (Bianconi,Marsili 2006)

Concatenation of the operations

Attention!
By concatenating the operations you are not guaranteed to return to the initial simplicial complex

Generalized degrees

The generalized degree $\mathrm{k}_{\mathrm{d}, \mathrm{m}}(\alpha)$ of a m -face α
in a d-dimensional simplicial complex is given by the number of d -dimensional simplices incident to the m -face α.

$k_{2,0}(\alpha)$ Number of triangles incident to the node α
$k_{2,1}(\alpha)$ Number of triangles incident to the link α
[Bianconi \& Rahmede (2016)]

Generalized degree

The generalized degree $\mathrm{k}_{\mathrm{d}, \mathrm{m}}(\alpha)$ of a m -face α in a d-dimensional simplicial complex is given by the number of d -dimensional simplices incident to the m -face α.

Pure simplicial complex

A simplicial complex \mathscr{K} is pure
if it is formed by d-dimensional simplices and their faces

A pure d-dimensional simplicial complex is fully determined by an adjacency matrix tensor with ($\mathrm{d}+1$) indices.
For instance this simplicial complex is determined by the tensor
$a_{r s p}=\left\{\begin{array}{l}1 \text { if }(r, s, p) \in \mathscr{K} \\ 0 \text { otherwise }\end{array}\right.$

Combinatorial properties of the generalised degrees

The generalized degrees $k_{d, m}(\alpha)$ of a pure d-dimensional simplicial complex can be defined in terms of the adjacency tensor \mathbf{a} as

$$
k_{d, m}(\alpha)=\sum_{\alpha^{\prime} \in \mathbb{Q}_{d}(N) \mid \alpha^{\prime} \supseteq \alpha} a_{\alpha^{\prime}}
$$

The generalized degrees obey a nice combinatorial relation as they are not independent of each other.

In fact for m ' $>m$ we have

$$
k_{d, m}(\alpha)=\frac{1}{\binom{d-m}{m^{\prime}-m}} \sum_{\alpha^{\prime} \in \mathbb{Q}_{d}(N) \mid \alpha^{\prime} \supseteq \alpha} k_{d, m^{\prime}}\left(\alpha^{\prime}\right)
$$

Simplicial complex models of arbitrary dimension

Emergent Hyperbolic Geometry Network Geometry with Flavor (NGF)
[Bianconi Rahmede ,2016 \& 2017]

Maximum entropy model
Configuration model
of simplicial complexes
[Courtney Bianconi 2016]

CODES AVAILABLE AT GITHUB $?$
ginestrab

Information theory of ensembles of simplicial complexes

Entropy of ensembles of simplicial complexes

To every simplicial complex \mathscr{K} of N nodes we associate a probability

$$
P(\mathscr{K})
$$

The entropy of the ensemble of simplicial complexes is given by

$$
S=-\sum_{\mathscr{K}} P(\mathscr{K}) \ln P(\mathscr{K})
$$

Constraints

We might consider simplicial complex ensemble with given
Expected generalized degrees of the nodes
or
Given generalized degrees of the nodes

Soft constraints

$$
\sum_{\mathscr{K}} P(\mathscr{K})\left[\sum_{\alpha \supset i} a_{\alpha}\right]=\bar{k}_{d, 0}(i)
$$

Hard constraints

$$
\sum_{\alpha \supset i} a_{\alpha}=k_{d, 0}(i)
$$

Maximum entropy ensembles

The maximum entropy ensembles
of simplicial complexes are caracterized by a probability measure given by

Soft constraints

$$
P(\mathscr{K})=\frac{1}{Z} e^{-\sum_{i} \lambda_{i} \Sigma_{a i} a_{\alpha}} \quad P(\mathscr{K})=\frac{1}{\mathscr{N}} \delta\left(k_{d, 0}(i), \sum_{\alpha \supset i} a_{\alpha}\right)
$$

[Courtney \& Bianconi (2015)]

Marginal probability

The marginal probability of a d-dimensional simplex μ is given by

$$
p_{\alpha}=\frac{e^{-\sum_{r \subset \alpha} \lambda_{r}}}{1+e^{-\sum_{r \subset \alpha} \lambda_{r}}}
$$

In presence of a maximum degree K (the structural cutoff) the marginal can be written as

$$
p_{\alpha}=d!\frac{\prod_{r \subset \alpha} k_{d, 0}(r)}{\left(\left\langle k_{d, 0}(r)\right\rangle N\right)^{d}} \quad \text { where } \quad K=\left[\frac{\left(\left\langle k_{d, 0}(r)\right\rangle N\right)^{d}}{d!}\right]^{1 /(d+1)}
$$

[Courtney \& Bianconi (2015)]

Case d=1

The marginal probability of a 1-dimensional simplex μ is given by

$$
p_{i j}=\frac{e^{-\lambda_{i}-\lambda_{j}}}{1+e^{-\lambda_{i}-\lambda_{j}}}
$$

In presence of a maximum degree K (the structural cutoff) the marginal can be written as

$$
p_{i j}=\frac{k_{d, 0}(i) k_{d, 0}(j)}{\left(\left\langle k_{d, 0}(r)\right\rangle N\right)} \quad \text { where } \quad K=\left[\left(\left\langle k_{d, 0}(r)\right\rangle N\right)\right]^{1 / 2}
$$

[Courtney \& Bianconi (2015)]

Case d=2

The marginal probability of a 2-dimensional simplex μ is given by

$$
p_{i j r}=\frac{e^{-\lambda_{i}-\lambda_{j}-\lambda_{r}}}{1+e^{-\lambda_{i}-\lambda_{j}-\lambda_{r}}}
$$

In presence of a maximum degree K (the structural cutoff) the marginal can be written as

$$
p_{i j r}=2 \frac{k_{d, 0}(i) k_{d, 0}(j) k_{d, 0}(r)}{\left(\left\langle k_{d, 0}(r)\right\rangle N\right)^{2}} \quad \text { where } \quad K=\frac{\left(\left\langle k_{d, 0}(r)\right\rangle N\right)^{2 / 3}}{2^{1 / 3}}
$$

[Courtney \& Bianconi (2015)]

Entropy of simplicial complex ensembles

Canonical ensemble
Microcanonical ensemble

$$
S=-\sum_{\alpha \in S_{\alpha}(N)}\left[p_{\alpha} \ln p_{\alpha}+\left(1-p_{\alpha}\right) \ln \left(1-p_{\alpha}\right)\right] \quad \Sigma=\ln \mathcal{N}
$$

Non-equivalence of the ensembles

$$
\Sigma=S-\Omega
$$

[Courtney \& Bianconi (2015)] generalizing [Anand \& Bianconi (2009)-(2010)] for simple networks

Non-equivalence of ensembles

In the uncorrelated simplicial complex limit we have

$$
\Sigma=\ln \mathcal{N}=S-\Omega
$$

Where Ω is extensive and given by

$$
\Omega=-\sum_{r=1}^{N} \ln \frac{1}{k_{d, 0}(r)!}\left(k_{d, 0}(r)\right)^{k_{d, 0}(r)} e^{-k_{d, 0}(r)}
$$

[Courtney \& Bianconi (2015)]

Asymptotic expression
for the number of simplicial complexes

with given

 generalized degree of the nodes$$
\mathcal{N} \sim \frac{[(\langle k\rangle N)!]^{d(d+1)}}{\prod_{r=0}^{N} k_{d, 0}(r)!} \frac{1}{(d!)^{\langle k\rangle N /(d+1)}} \exp \left(-\frac{d!}{2(d+1)(\langle k\rangle N)^{d-1}}\left(\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}\right)^{d+1}\right)
$$

Configuration model of simplicial complexes

Construction of a random simplicial complex

From models of pure simplicial complexes to models of hypergraphs

Pure 1-dimensional simplicial complex
Pure 2-dimensional simplicial complex
=
HYPERGRAPH

Conclusions

- Simplicial complexes capture the many-body interactions of complex systems and reveal the hidden geometry and topology of data
- Pure simplicial complexes can be represented by tensors
- The generalised degrees allow to capture important combinatorial properties of simplicial complexes
- Maximum entropy models of simplicial complexes are unbiased models with given (expected) generalised degrees

Maximum entropy models for complex networks

London Taught Course (PhD Level) on You Tube at https://www.youtube.com/channel/ UCsHAVdCU5XLaBYDXoINYZvg

