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The higher-order interactions of complex systems, such as the brain, are captured by their simplicial
complex structure and have a significant effect on dynamics. However, the existing dynamical models
defined on simplicial complexes make the strong assumption that the dynamics resides exclusively on the
nodes. Here we formulate the higher-order Kuramoto model which describes the interactions between
oscillators placed not only on nodes but also on links, triangles, and so on. We show that higher-order
Kuramoto dynamics can lead to an explosive synchronization transition by using an adaptive coupling
dependent on the solenoidal and the irrotational component of the dynamics.
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From the brain [1–5] to social interactions [6–9] and
complexmaterials [10,11], a vast number of complex systems
have the underlying topology of simplicial complexes
[12–14]. Simplicial complexes are topological structures
formed by simplices of different dimension such as nodes,
links, triangles, tetrahedra, and so on, and capture the many-
body interactions between the elements of an interacting
complex system. In the last years, simplicial complex model-
ing has attracted significant attention [15–18] revealing the
fundamental mechanisms determining emergent network
geometry [19] and the interplay between network geometry
and degree correlations [16]. Modeling complex systems
using simplicial complexes allows for the very fertile per-
spective of considering the role that higher-order interactions
have on dynamical processes. For instance, recent works
[6–9,20–24] on simplicial complex dynamics, including
works on simplicial complex synchronization [21–24], reveal
that the topology and geometry of the simplicial complexes
and their many-body interactions induce cooperative phe-
nomena that cannotbe found inpairwise interactionnetworks.
In the last years, explosive synchronization [25,26] has

been attracting increasing scientific interest. Different
pathways to explosive synchronization have been explored
in the framework of the Kuramoto dynamics of single and
multilayer networks. These notably include correlating the
intrinsic frequency of the nodes to their degree [27] or
modulating the coupling between different oscillators
adaptively using the local order parameter in single net-
works and in multiplex networks [28,29]. An outstanding

open question is to establish the conditions that allow
explosive synchronization on simplicial complexes.
Among the papers investigating synchonization dynam-

ics beyond pairwise interactions [30,31], recent works
[22,32] have proposed a many-body Kuramoto model
where the phases associated with the nodes of the network
can be coupled in triplets or quadruplets if the correspond-
ing nodes share a triangle or a tetrahedron. Interestingly, in
this context it has been shown [22] that the many-body
Kuramoto dynamics can lead to explosive, i.e., discontinu-
ous phase transitions. However this work, together with the
vast majority of works that address the study of dynamics
on simplicial complexes has the limitation that they
associate a dynamic variable exclusively with nodes of a
network. Here we are interested in a much more general
scenario where the dynamics can be associated with the
faces of dimension n ≥ 0 of a simplicial complex. Indeed,
dynamical processes might not just reside on nodes, instead
they might be related directly to dynamics defined on
higher-dimensional simplices leading to the definition of
topological dynamical signals [33]. For instance, each link
can be associated with a flux. Flow dynamics is relevant for
biological transport networks including fungal networks
[34], tree vascular networks [35], microvascular networks
[36], or hemodynamic in the mammalian cortex [37], where
there is some evidence that the dynamics can spontaneously
give rise to oscillatory currents. Flow signals can also be
used to analyze functional magnetic resonance image
(fMRI) [38] and to study blood flow between different
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Higher-order interactions   
in the brain

Giusti et al (2016)

Petri et al. (2014)
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glutamate spill-over [4, 5]. In addition, astrocytes are involved in 
maintaining structural integrity of the blood-brain barrier (BBB) 
[6, 7]. 

Besides such traditional role of astrocytes for structural integrity 
and brain homeostasis, during the last decade it was discovered 
that astrocytes are crucially involved in the regulation of synaptic 
transmission. Astrocytes usually project their fine cytoplasmic 
processes in vivo and contact synapses and blood vessels in their 
vicinity in the brain. According to a study by Allen and colleagues, 
a single astrocyte can contact up to approximately 140,000 
synapses, and more than 99% of the cerebrovascular surface 
is ensheathed by astrocyte end-feet [8]. Therefore, astrocytes 
are in a strategic position to monitor the microenvironment of 
neuronal synapses as well as brain microvessels. It has found that 
astrocytes express various neurotransmitter receptors including 
metabotropic (mGluR) and ionotropic (AMPAR) glutamate 
receptors, ATP receptors, and GABA receptors [5, 8-10]. This 
finding suggests that neurotransmitters released from the 
presynaptic terminal not only activate postsynaptic neurons, 
but may also transmit information to peri-synaptic astrocytes. 
Indeed, it has been shown that activation of synaptic transmission 
induces intracellular calcium increase in peri-synaptic astrocytes 
[11, 12]. In addition to having neurotransmitter receptors, 
astrocytes are also able to produce and release neurotransmitters 
by themselves such as glutamate [13], D-serine [14], ATP [15], 
and GABA [16], which are collectively called “gliotransmitters”. 
Therefore, astrocytes are not merely listening to neuronal synaptic 
activity but also appear to be capable of modulating neuronal 
activity. Studies have shown that such gliotransmitters released 
from astrocytes are able to regulate the excitability of pre- and 
post-synaptic neurons [1, 8, 17-19]. Based on the evidence of 
bidirectional communication between astrocytes and pre/post-
synaptic neurons, a novel concept of the tripartite synapse has 
been proposed (Fig. 1) [1]. 

Moreover, astrocytes are connected with each other via gap 
junctions composed of connexin channels and form extensive 
communication networks on their own [20]. The pore size of 
the connexin channels are large enough to be permeable to 
intracellular second messenger molecules such as cAMP and 
calcium [21, 22]. As a result, astrocytes can communicate with 
each other via these signaling molecules through open connexin 
channels. It is well documented that intracellular calcium increase 
in a single astrocyte can be propagated to other astrocytes 
resulting in Ca++ waves [20, 23-26]. Thus far, how astrocytes 
release gliotransmitters has not been conclusively resolved. Data 
supporting vesicular as well as channel-mediated release have both 
been documented [10, 17, 26, 27]. Intracellular calcium increase 

has been suggested as a common signal driving gliotransmitter 
release [1, 8, 11]. Assuming that calcium signals propagated via 
astrocyte gap junctions are capable of releasing gliotransmitters 
from other astrocytes, para-synaptic regulation and synchronized 
modulation of information processing by astrocytes are also 
conceivable.

The numerous studies showing astrocyte regulation of synaptic 
transmission suggested that astrocytes may also play a role in 
higher brain functions, which was substantiated by recent studies 
using astrocyte-specific genetically modified mice. For instance, 
Theis and colleagues reported that astrocyte-specific connexin-
deficient mice showed enhanced locomotory activity [20]. These 
data indicated that the astrocyte network, possibly due to astrocyte 
calcium waves via gap junctions, is critical for such higher 
brain functions. In addition, conditional gene deletion of leptin 
receptors in hypothalamic astrocytes resulted in decreased feeding 
and altered synaptic inputs onto hypothalamic arcuate nucleus 

Fig. 1. A Schematic representation of a tripartite synapse. The tripartite 
synapse is composed of  presynaptic and postsynaptic terminals 
with astrocytic processes enwrapping the synapses. The release of 
neurotransmitter from the presynaptic terminal acts on the postsynaptic 
terminal as well as with astrocytic receptors mediating intracellular 
Ca2+ elevation via Gq GPCR. Ca2+ elevation then triggers the release of 
gliotransmitters that react with the presynaptic and postsynaptic terminal 
receptors to modulate synaptic transmission.

Cho, Barcelon and Lee  (2016)



Multilayer brain networks

Bullmore and Sporns (2009)



Ecosystems

Box 1. Mathematical Definition of a Multilayer Network

A multilayer network is a quadruplet M = (VM , EM , V, L). Multilayer
networks can have several ‘aspects’ of layering, and an ‘elementary layer’ is
a single element in one aspect of layering. A ‘layer’ encompasses one choice
of elementary layer for each type of aspect (see the figure for an example).
We include such relationships using sequences L = {La}da=1 of sets La of
elementary layers, where a indexes the d di↵erent aspects. Note that d = 0
for a monolayer network, d = 1 when there is one type of layering, and d = 2
when there are two types of layering (as in the figure). The set of entities
(i.e., physical nodes) is V . The set VM ✓ V ⇥ L1 ⇥ · · · ⇥ Ld of node-layer
tuples (i.e., state nodes) encodes the manifestations of an entity v 2 V on a
particular layer l 2 L̂ = L1 ⇥ · · ·⇥ Ld.

The edge set EM ✓ VM ⇥ VM , which includes both intralayer and in-
terlayer edges, encodes the connections between pairs of state nodes. In
a given layer, the intralayer edges encode connections of a specified type
(e.g., a certain type of interaction at a given point in time). A function
w : EM ! R encodes weights on edges. A pair of node-layer tuples, (u,↵)
and (v,�), are ‘adjacent’ if and only if there is an edge between them. One
places a 1 in the associated entry in an adjacency tensor (a generalization of
a matrix that consists of a higher-dimensional array of numbers)14,16 if and
only if ((u,↵), (v,�)) = 1. Otherwise, one places a 0 in the corresponding
entry. One can ‘flatten’ such an adjacency tensor into a matrix, called a
‘supra-adjacency matrix’, with intralayer edges on the diagonal blocks and
interlayer edges on the o↵-diagonal blocks (see Supplementary Fig. 1b).

Constraints on the above general definition restrict the structure of a
multilayer network14. For example, ‘diagonal coupling’ (see Fig. 1c) is a con-
straint in which the only permissible type of interlayer edge is one between
counterpart entities on di↵erent layers. See Kivelä et al.14 for additional
definitions and important types of constraints on M that produce common
types of multilayer networks.
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Explosive Epidemic Spreading   
on co-location hypergraphs
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St-Onge, et. al PRL (2021)



Simplicial social contagions and  
social contagion on  hypergraphs

Iacopini et al. (2019)  De arruda et al. (2021)



Triadic interactions

Sun, Radicchi, Kurths GB  (2022)



Background on network science



describe 

 the interactions between the elements  

of large complex systems.

Networks



         LATTICES                         COMPLEX NETWORKS                  RANDOM GRAPHS 
    

Regular networks 
Symmetric 

Scale free networks 
Small world 

With communities  
ENCODING INFORMATION IN 

THEIR STRUCTURE

Totally random 
Binomial degree 

 distribution

Randomness and order 
Complex networks



Universalities

• Small-world: 
  [Watts & Strogatz 1998] 

• Scale-free: 
[Barabasi & Albert 1999] 

• Modularity: Local communities of nodes 
[Fortunato 2010] 

€ 

€ 

dH = ∞

P(k) ∼ k−γ for k ≫ 1
with γ ∈ (2,3]

⟨k⟩ → const ⟨k2⟩ → ∞
for N → ∞



Interplay between network  
structure and dynamics

Network 
structure

Network 
dynamics

Combinatorial 
Statistical 
 Properties



Critical phenomena on scale-free networks

Scale free networks: 

• Percolation: 
Percolation threshold 

Scale free networks are robust to random damage 

• Epidemic spreading: 
Epidemic threshold 

The epidemic threshold is zero on scale-free networks

pc
⟨k(k − 1)⟩

⟨k⟩
= 1

λc
⟨k(k − 1)⟩

⟨k⟩
= 1



Higher-order network  
structure and dynamics
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Geometry

Higher order networks 
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An m-hyperedge is set  nodes 

-it indicates the interactions between the m-nodes

   2-hyperedge          3-hyperedge      4-hyperedge   

Hyperedges

α = [i1, i2, i3, …im]



Hypergraphs

1

6

5 4

2

3

Every hyperedge 𝛼 formed  
by a subset of the nodes  
can belong or not   
to the hypergraph ℋ

ℋ = {[1,2], [3,4], [1,2,3], [1,3,4], [1,3,5], [3,5,6]}

10 Series Name

Figure 4 An example of 2-dimensional simplicial complex that is pure and an
example of 2-dimensional simplicial complex that is not pure.

can be used instead of simplicial complexes.

HYPERGRAPH

A hypergraph G = (V, EH ) is defined by a set V of N nodes and a set EH

of hyperedges, where a (m + 1)-hyperedge indicates a set of m + 1 nodes

e = [v0, v1, v2, . . . , vm],

with generic value of 1  m < N .
An hyperdge describes the many-body interaction between the nodes.

As mathematical objects simplicial complexes are distinct from hypergraphs,
the di�erence being that simplicial complexes include all the subsets of a
given simplex. From a network science perspective a given dataset including
higher order interactions can be described either as a simplicial complex or
as an hypergraph. However it might be argued that in a simplicial complex
description of higher-order network dataset we can loose some information. For
example a collaboration network is a good example of an hypergraph where
hyperedges correspond to the fact that the considered set of authors (nodes)
have published at least a paper together. In this context having a hyperdge
connecting three authors indicates that the three authors have co-authored at
least a paper together. However the existence of this three-body interaction
does not imply that each scientist has also co-authored a two-authors paper with
each other scientist in the triple. Therefore by using simplicial complexes to
model a collaboration network, we essentially retain only information about
the facets of the collaboration while loosing detailed information about which
lower-dimensional simplex actually indicates a real collaboration. On the other



Elements Name 7

2 Combinatorial and statistical properties of
simplicial complexes

2.1 Mathematical de�nitions

2.1.1 Basic properties of simplicial complexes and hypergraphs

A network is a graph G = (V, E) formed by a set of nodes V and a set of
links E that represent the elements of a complex system and their interactions,
respectively. Networks are ubiquitous and include systems as di�erent as the
WWW (web graphs), infrastructures (as airport networks or road networks)
and biological networks (as the brain of the protein interaction network in the
cell). Networks are pivotal to capture the architecture of complex systems,
however they have the important limitation that they cannot be used to capture
the higher-order interactions. In order to encode for the many-body interactions
between the elements of a complex system higher-order networks need to be
used. A powerful mathematical framework to describe higher-order networks is
provided by simplicial complexes. Simplicial complexes are formed by a set of
simplices. The simplices indicate the interactions existing between two or more
nodes and are defined as in the following.

SIMPLICES

A d-dimensional simplex ↵ (also indicated as a d-simplex ↵) is formed by
a set of (d + 1) interacting nodes

↵ = [v0, v1, v2 . . . , vd].

It describes a many body interaction between the nodes.
It allows for a topological and a geometrical interpretation of the simplex.

For instance a node is a 0-simplex, a link is a 1-simplex, a triangle is 2-simplex
a tetrahedron is a 3-simplex and so on (see Figure 2).

FACES

A face of a d-dimensional simplex ↵ is a simplex ↵0 formed by a proper
subset of nodes of the simplex, i.e. ↵0 ⇢ ↵.

For instance the faces of a 2-simplex [v0, v1, v2] include three nodes [v0], [v1], [v2]
and three links [v0, v1], [v0, v2], [v1, v2]. Similarly in Figure 3 we characterize
the faces of a tetrahedron.

The simplices constitute the building blocks of simplicial complexes.

Simplices

0-simplex     1-simplex          2-simplex      3-simplex   
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Faces of a simplex

Faces

4 0-simplices           6  1-simplices                 4   2-simplices



Simplicial complex

   

8 Series Name

Figure 2 A 0-simplex is a node, a 1-simplex is a link, a 2-simplex is a triangle,
a 3-simplex is a tethrahedron and so on.

Source: Reprinted from [38] ©SISSA Medialab Srl. Reproduced by permission of IOP
Publishing. All rights reserved.

Figure 3 The faces of a 3-simplex (tetrahedron) are four 0-simplices (nodes),
six links (1-simplices) and four triangles (2-simplices).

Source: Reprinted from [38] ©SISSA Medialab Srl. Reproduced by permission of IOP
Publishing. All rights reserved.

SIMPLICIAL COMPLEX

A simplicial complex K is formed by a set of simplices that is closed
under the inclusion of the faces of each simplex.
The dimension d of a simplicial complex is the largest dimension of its
simplices.

Simplicial complexes represent higher-order networks, which include interac-
tions between two or more nodes, described by simplices. In more stringent
mathematical terms a simplicial complex K is a a set of simplices that satisfy
the following two conditions:

(a) if a simplex ↵ belongs to the simplicial complex, i.e. ↵ 2 K then any face
↵0 of the simplex ↵ is also included in the simplicial complex, i.e. if ↵0 ⇢ ↵
then ↵0 2 K;

(b) given two simplices of the simplicial complex ↵ 2 K and ↵0 2 K then either
their intersection belongs to the simplicial complex, i.e. ↵ \ ↵0 2 K or their
intersection is null, i.e. ↵ \ ↵0 = ;.

Here and in the future we will indicate with N the total number of nodes
in the simplicial complex and we will indicate with N[m] the total number

1

6

5 4

2

3

𝒦
If a simplex 𝛼 belongs  
to the simplicial complex  
then every face of  𝛼 
must also belong to  𝒦

𝒦 = {[1], [2], [3], [4], [5], [6],
[1,2], [1,3], [1,4], [1,5], [2,3],
[3,4], [3,5], [3,6], [5,6],
[1,2,3], [1,3,4], [1,3,5], [3,5,6]}



Dimension of a simplicial complex
The dimension of a simplicial complex   
is the largest dimension of its simplices  

1

6

5 4

2

3

This simplicial complex  
has dimension 2

𝒦

𝒦 = {[1], [2], [3], [4], [5], [6],
[1,2], [1,3], [1,4], [1,5], [2,3],
[3,4], [3,5], [3,6], [5,6],
[1,2,3], [1,3,4], [1,3,5], [3,5,6]}
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of m-dimensional simplices in the simplicial complex (note that N[0] = N).
Furthermore we will indicate with Qm(N) the set of all possible and distinct
m-dimensional simplices that can be present in a simplicial complexK including
N nodes. With Sm(K) we will indicate instead the set of all m-dimensional
simplices present in K.

Among the simplices of a simplicial complex, the facets play a very relevant
role.

FACET
A facet is a simplex of a simplicial complex that is not a face of any
other simplex. Therefore a simplicial complex is fully determined by the
sequence of its facets.

A very interesting class of simplicial complexes are pure simplicial com-
plexes.

PURE SIMPLICIAL COMPLEXES

A pure d-dimensional simplicial complex is formed by a set of d-
dimensional simplices and their faces.
Therefore pure d-dimensional simplicial complexes admit as facets only
d-dimensional simplices.

This implies that pure d-dimensional simplicial complexes are formed exclusively
by gluing d-dimensional simplices along their faces. In Figure 4 we show an
example of simplicial complex that is pure and an example of simplicial complex
that it is not pure.

An interesting question is whether it is possible to convert a simplicial
complex into a network and viceversa and how much information is lost/retained
in the process. Given a simplicial complex it is always possible to extract a
network known as the 1-skeleton of the simplicial complex by considering
exclusively the nodes and links belonging to the simplicial complex. Conversely,
given a network, it is possible to derive deterministically a simplicial complex
defining its clique complex obtained by taking a converting every (d + 1)-clique
of the network in a simplex of dimension d. The clique complex is a simplicial
complex. In fact, if a simplex is included in a clique complex, then all its
sub-simplices are also included. Moreover any two simplices of the clique
complex have an intersection that is either the null set or it is a simplex of the
clique complex.

Hypergraphs are an alternative representations of higher order networks that

1

6

5 4

2

3
𝒦 = {[1,2,3], [1,3,4], [1,3,5], [3,5,6]}

The facets of this  
 simplicial complex are 

Facets of a simplicial complex



Pure simplicial complex

Elements Name 9

of m-dimensional simplices in the simplicial complex (note that N[0] = N).
Furthermore we will indicate with Qm(N) the set of all possible and distinct
m-dimensional simplices that can be present in a simplicial complexK including
N nodes. With Sm(K) we will indicate instead the set of all m-dimensional
simplices present in K.

Among the simplices of a simplicial complex, the facets play a very relevant
role.

FACET
A facet is a simplex of a simplicial complex that is not a face of any
other simplex. Therefore a simplicial complex is fully determined by the
sequence of its facets.

A very interesting class of simplicial complexes are pure simplicial com-
plexes.

PURE SIMPLICIAL COMPLEXES

A pure d-dimensional simplicial complex is formed by a set of d-
dimensional simplices and their faces.
Therefore pure d-dimensional simplicial complexes admit as facets only
d-dimensional simplices.

This implies that pure d-dimensional simplicial complexes are formed exclusively
by gluing d-dimensional simplices along their faces. In Figure 4 we show an
example of simplicial complex that is pure and an example of simplicial complex
that it is not pure.

An interesting question is whether it is possible to convert a simplicial
complex into a network and viceversa and how much information is lost/retained
in the process. Given a simplicial complex it is always possible to extract a
network known as the 1-skeleton of the simplicial complex by considering
exclusively the nodes and links belonging to the simplicial complex. Conversely,
given a network, it is possible to derive deterministically a simplicial complex
defining its clique complex obtained by taking a converting every (d + 1)-clique
of the network in a simplex of dimension d. The clique complex is a simplicial
complex. In fact, if a simplex is included in a clique complex, then all its
sub-simplices are also included. Moreover any two simplices of the clique
complex have an intersection that is either the null set or it is a simplex of the
clique complex.

Hypergraphs are an alternative representations of higher order networks that

1

6

5 4

2

3

arsp = {1 if (r, s, p) ∈ 𝒦
0 otherwise

A pure d-dimensional simplicial complex 
is fully determined by an 
adjacency matrix tensor 

with  (d+1) indices. 
For instance this simplicial complex  

is determined by the tensor 



Example
A simplicial complex     is  pure  

if it is formed by d-dimensional simplices  
and their faces  
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𝒦
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PURE SIMPLICIAL COMPLEX SIMPLICIAL COMPLEX  
THAT IS NOT PURE



Simplicial complex skeleton

From a simplicial complex is possible to generate a network  
salled the simplicial complex skeleton by  

considering only the nodes and the links of the simplicial complex



Clique complex

From a network is possible to generate a simplicial complex by  
Assuming that each clique is a simplex 

Note:  
Poisson networks have a clique number that is 3 and actually on a finite 

expected number of triangles in the infinite network limit
However

Scale-free networks have a diverging clique number, therefore the clique complex 
of a scale-free network has diverging dimension. (Bianconi,Marsili 2006)



Concatenation of the operations

Attention! 
By concatenating the operations you are not guaranteed to return to the initial  

simplicial complex

Network 
Skeleton

Clique  
complex



1

6

5 4

2

3

€ 

Number of triangles 
incident to the node 𝛼

Number of triangles 
incident to the link 𝛼 

Generalized degrees

[Bianconi & Rahmede (2016)]

k2,0(α)

k2,1(α)

The generalized degree kd,m(𝛼) of a m-face 𝛼  

in a d-dimensional simplicial complex is given by the number  

of d-dimensional simplices incident to the m-face 𝛼. 



The generalized degree kd,m(𝛼) of a m-face 𝛼  

in a d-dimensional simplicial complex is given by the number  

of d-dimensional simplices incident to the m-face 𝛼. 

 1

6

5 4

2

3

Generalized degree

i k2,0(i)
1 3
2 1
3 4
4 1
5 2
6 1

(i, j) k2,1(i, j)
(1,2) 1
(1,3) 3
(1,4) 1
(1,5) 1
(2,3) 1
(3,4) 1
(3,5) 2
(3,6) 1
(5,6) 1



Pure simplicial complex
A simplicial complex     is  pure  

if it is formed by d-dimensional simplices  
and their faces  

1

6

5 4

2

3

𝒦

arsp = {1 if (r, s, p) ∈ 𝒦
0 otherwise

A pure d-dimensional simplicial complex 
is fully determined by an 
adjacency matrix tensor 

with  (d+1) indices. 
For instance this simplicial complex  

is determined by the tensor 



kd,m(α) =
1

( d − m
m′ − m) ∑

α′ ∈𝒬d(N)|α′ ⊇α

kd,m′ 
(α′ ) .

The generalized degrees  of a pure d-dimensional simplicial complex 

can be defined in terms of the adjacency tensor  as


 

The generalized degrees obey a nice combinatorial relation 

as they are not independent of each other. 


In fact  for  m’>m we have 

kd,m(α)
a

kd,m(α) = ∑
α′ ∈𝒬d(N)|α′ ⊇α

aα′ 

Combinatorial properties of the 
generalised degrees



Simplicial complex models  
of arbitrary dimension

Emergent Hyperbolic Geometry 
Network Geometry with Flavor (NGF) 

[Bianconi Rahmede ,2016 & 2017]

Maximum entropy model 
Configuration model  

of simplicial complexes 
[Courtney Bianconi 2016]

CODES AVAILABLE AT GITHUB                    ginestrab



Information theory of  
ensembles of simplicial complexes



Entropy of ensembles of 
simplicial complexes

To every simplicial complex  of  nodes we associate a probability  

The entropy of the ensemble of simplicial complexes is given by 

𝒦 N

P(𝒦)

S = − ∑
𝒦

P(𝒦)ln P(𝒦)



Constraints
We might consider simplicial complex ensemble  

with given  
Expected generalized degrees of the nodes   

or  
Given generalized degrees of the nodes  

      Soft constraints   Hard constraints 

∑
𝒦

P(𝒦)[∑
α⊃i

aα] = k̄d,0(i) ∑
α⊃i

aα = kd,0(i)

[Courtney & Bianconi (2015)]



Maximum entropy ensembles

The maximum entropy ensembles  
of simplicial complexes  

are caracterized by a probability measure given by  

      Soft constraints   Hard constraints 

P(𝒦) =
1
Z

e−∑i λi ∑α⊃i aα P(𝒦) =
1
𝒩

δ (kd,0(i), ∑
α⊃i

aα)

[Courtney & Bianconi (2015)]



Marginal probability

pα =
e−∑r⊂α λr

1 + e−∑r⊂α λr

pα = d!
∏r⊂α kd,0(r)

(⟨kd,0(r)⟩N)d K = [
(⟨kd,0(r)⟩N )d

d! ]
1/(d+1)

The marginal probability of a d-dimensional simplex 𝜇 is given by 

In presence of a maximum degree K (the structural cutoff)  
the marginal can be written as 

where

[Courtney & Bianconi (2015)]



Case d=1

pij =
e−λi−λj

1 + e−λi−λj

pij =
kd,0(i)kd,0( j)

(⟨kd,0(r)⟩N) K = [(⟨kd,0(r)⟩N )]1/2

The marginal probability of a 1-dimensional simplex 𝜇 is given by 

In presence of a maximum degree K (the structural cutoff)  
the marginal can be written as 

where

[Courtney & Bianconi (2015)]



Case d=2

pijr =
e−λi−λj−λr

1 + e−λi−λj−λr

pijr = 2
kd,0(i)kd,0( j)kd,0(r)

(⟨kd,0(r)⟩N)2 K =
(⟨kd,0(r)⟩N )2/3

21/3

The marginal probability of a 2-dimensional simplex 𝜇 is given by 

In presence of a maximum degree K (the structural cutoff)  
the marginal can be written as 

where

[Courtney & Bianconi (2015)]



Entropy of  
simplicial complex ensembles

S = − ∑
α∈Sd(N)

[pα ln pα + (1 − pα)ln(1 − pα)] Σ = ln 𝒩

Microcanonical ensembleCanonical ensemble

Σ = S − Ω
Non-equivalence of the ensembles

[Courtney & Bianconi (2015)] generalizing [Anand & Bianconi (2009)-(2010)] for simple networks



Non-equivalence of ensembles

Σ = ln 𝒩 = S − Ω

Ω = −
N

∑
r=1

ln
1

kd,0(r)!
(kd,0(r))kd,0(r)e−kd,0(r)

In the uncorrelated simplicial complex limit we have 

Where  is extensive and given byΩ

[Courtney & Bianconi (2015)]



Asymptotic expression  
for the number  

of simplicial complexes  
with given  

generalized degree of the nodes

𝒩 ∼ [(⟨k⟩N )!]d(d+1)

∏N
r=0 kd,0(r)!

1
(d!)⟨k⟩N/(d+1)

exp −
d!

2(d + 1)(⟨k⟩N )d−1 ( ⟨k2⟩
⟨k⟩ )

d+1

[Courtney & Bianconi (2015)]



Configuration model of simplicial 
complexes

• Given the generalized degree  
    of the nodes there are in general 
    multiple ways to realize the simplicial 
     complex. 
• The information encoded  
     in the constraints is captured by the  
     entropy of the ensemble

We consider an ensemble of  
pure simplicial complexes 

formed by d-dimensional simplicies and their faces 
where each node has given generalized degree

[Courtney & Bianconi (2015)]



Construction of a random simplicial 
complex

CODE AVAILABLE AT GITHUB PAGE       ginestrab



From models of pure simplicial complexes  
to models of hypergraphs

[Bianconi Cambridge University Press (2021)]

Pure 1-dimensional 
simplicial complex 

+

=
=  

HYPERGRAPH 

+ 
Pure 2-dimensional 
simplicial complex 



Conclusions
• Simplicial complexes capture the many-body interactions 

of complex systems and reveal the hidden geometry and 
topology of data 

• Pure simplicial complexes can be represented by tensors 

• The generalised degrees allow to capture important 
combinatorial properties of simplicial complexes 

• Maximum entropy models of simplicial complexes are 
unbiased models with given (expected) generalised 
degrees 



Maximum entropy models  
for complex networks

London Taught Course (PhD Level) 
on You Tube at 

https://www.youtube.com/channel/
UCsHAVdCU5XLaBYDXoINYZvg


