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The 2-sphere S2

S2 =

{
(x1, x2, x3) :

3∑
i=1

x2i = 1

}
.

Polar coordinates:

x1 = cosφ sin θ,

x2 = sinφ sin θ,

x3 = cos θ.

Problem: We can’t label S2 with
single coord system such that

1 Nearby points have nearby
coords.

2 Every point has unique coords.

Stereographic Projection

X1 =
x1

1− x3
,

X2 =
x2

1− x3
.
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Manifold

Def: M is an m-dimensional (differentiable) manifold if

M is a topological space.

M comes with family of charts {(Ui , φi )} known as atlas.

{Ui} is family of open sets covering M:
⋃
i

Ui = M.

φi is homeomorphism from Ui onto open subset U ′i of Rm.

Given Ui ∩ Uj 6= ∅, then the map

ψij = φi ◦ φ−1j : φj(Ui ∩ Uj)→ φi (Ui ∩ Uj)

is C∞. ψij are called crossover maps.
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Picture

ψij = φi ◦ φ−1j : φj(Ui ∩ Uj)→ φi (Ui ∩ Uj)
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Example: S2

Projection from North pole:

X1 =
x1

1− x3
,

X2 =
x2

1− x3
.

U1 = S2 \ N, U ′1 = R2 :

φ1 : U1 → R2 :

(x1, x2, x3) 7→ (X1,X2)

Projection from South pole:

Y1 =
x1

1 + x3
,

Y2 =
x2

1 + x3
.

U2 = S2 \ S , U ′2 = R2 :

φ2 : U2 → R2 :

(x1, x2, x3) 7→ (Y1,Y2)

Crossover map ψ21 = φ2 ◦ φ−11 :

ψ21 : R2 \ {0} → R2 : (X1,X2) 7→ (Y1,Y2) =
(

X1

X 2
1+X 2

2
, −X2

X 2
1+X 2

2

)
.
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Example: S3

Stereographic coords for S3 work the same way as for S2, e.g.

Xi =
xi

1− x4
,

where i = 1, 2, 3 for the projection from the “North pole”.

Note S3 can be identified with SU(2), i.e. complex 2× 2 matrices
which satisfy

U U† = U†U = 1 and detU = 1. (1)

Setting

U =

(
z1 z2
−z̄2 z̄1

)
satisfies all the conditions in (1) provided

|z1|2 + |z2|2 = 1,

which is the equation for S3.
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The trivial bundle

Often manifolds can be build up from smaller manifolds.

An important example is the Cartesian product: E = B × F (known
as trivial bundle)

Fibre bundles are manifolds which look like Cartesian products,
locally, but not globally.

This concept is very useful for physics. Non-trivial fibre bundles
occur for example in general relativity, but also due to boundary
conditions “at infinity”.
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Fibre bundle

Def: A fibre bundle (E , π,M,F ,G ) consists of

A manifold E called total space, a manifold M called base space and
a manifold F called fibre (or typical fibre)

A surjection π : E → M called the projection. The inverse image of
a point p ∈ M is called the fibre at p, namely π−1(p) = Fp

∼= F .

A Lie group G called structure group which acts on F on the left.

A set of open coverings {Ui} of M with diffeomorphism
φi : Ui × F → π−1(Ui ), such that π ◦ φi (p, f ) = p. The map is
called the local trivialization, since φ−1i maps π−1(Ui ) to Ui × F .

Transition functions tij : Ui ∩ Uj → G , such that
φj(p, f ) = φi (p, tij(p)f ). Fix p then tij = φ−1i ◦ φj .
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The importance of the transition functions

Consistency conditions (ensure tij ∈ G )

tii (p) = e p ∈ Ui

tij(p) = t−1ji (p) p ∈ Ui ∩ Uj

tij(p) · tjk(p) = tik(p) p ∈ Ui ∩ Uj ∩ Uk

If all transition functions are the identity map e, then the fibre
bundle is called the trivial bundle, E = M × F .

The transition functions of two local trivializations {φi} and {φ̃i} for
fixed {Ui} are related via

t̃ij(p) = g−1i (p) · tij(p) · gj(p).

where for fixed p, we define gi : F → F : gi = φ−1i ◦ φ̃i .
For the trivial bundle, tij(p) = g−1i (p) · gj(p).
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Tangent vectors

Given a curve c : (−ε, ε)→ M and a function f : M → R, we define
the tangent vector X [f ] at c(0) as directional derivative of f (c(t))
along c(t) at t = 0, namely

X [f ] =
df (c(t))

dt

∣∣∣∣
t=0

.

In local coords, this becomes

∂f

∂xµ
dxµ(c(t))

dt

∣∣∣∣
t=0

,

hence

X [f ] = Xµ

(
∂f

∂xµ

)
.

To be more mathematical, the tangent vectors are defined via
equivalence classes of curves.
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More about Tangent vectors

Vectors are independent of the choice of coordinates, hence

X = Xµ ∂

∂xµ
= X̃µ ∂

∂yµ
.

The components of Xµ and X̃µ are related via

X̃µ = X ν ∂y
µ

∂xν
.

It is very useful to define the pairing〈
dxν ,

∂

∂xµ

〉
=
∂xν

∂xµ
= δνµ.

This leads us to one-forms ω = ωµdx
µ, also independent of choice

of coordinates. Now, we have

ω = ωµdx
µ = ω̃νdy

ν =⇒ ω̃ν = ωµ
∂xµ

∂yν
.

This can be generalized further to tensors Tµ1...µq
ν1...νr .
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The Tangent bundle

At each point p ∈ M all the tangent vectors form an n dimensional
vector space TpM, so tangent vectors can be added and multiplied
by real numbers:

αX1 + βX2 ∈ TpM for α, β ∈ R, X1,X2 ∈ TpM.

A basis of TpM is given by ∂/∂xµ, (1 ≤ µ ≤ n), hence
dimM = dimTpM.

The union of all tangent spaces forms the tangent bundle

TM =
⋃
p∈M

TpM.

TM is a 2n dimensional manifold with base space M and fibre Rn. It
is an example of a vector bundle.
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The Tangent bundle TS2

We use the two stereographic projections as our charts.

The coords (X1,X2) ∈ U ′1 and (Y1,Y2) ∈ U ′2 are related via

Y1 =
X1

X 2
1 + X 2

2

, Y2 =
−X2

X 2
1 + X 2

2

.

Given u ∈ TS2 with π(u) = p ∈ U1 ∩ U2, then the local
trivializations φ1 and φ2 satisfy φ−11 (u) = (p,V µ

1 ) and
φ−12 (u) = (p,V µ

2 ). The local trivialization is

t12 =
∂(Y1,Y2)

∂(X1,X2)
=

1

(X 2
1 + X 2

2 )2

(
X 2
2 − X 2

1 −2X1X2

−2X1X2 X 2
1 − X 2

2

)
.

Check: t21(p) = t−112 (p).
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Example: U(1) bundle over S2

Consider a fibre bundle with fibre U(1) and base space S2.

Let {UN ,US} be an open covering of S2 where

UN = {(θ, φ) : 0 ≤ θ < π/2 + ε, 0 ≤ φ < 2π}
US = {(θ, φ) : π/2− ε < θ ≤ π, 0 ≤ φ < 2π}

The intersection UN ∩ US is a strip which is basically the equator.
Local trivializations are

φ−1N (u) = (p, e iαN ), φ−1S (u) = (p, e iαS )

where p = π(u).

Possible transition functions are tNS = e inφ, where n ∈ Z.

The fibre coords in UN ∩ US are related via

e iαN = e inφe iαS .

If n = 0 this is the trivial bundle P0 = S2 × S1. For n 6= 0 the U(1)
bundle Pn is twisted.
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Magnetic monopoles and the Hopf bundle

Pn is an example of a principal bundle because the fibre is the same
as the structure group G = U(1).

In physics, Pn is interpreted as a magnetic monopole of charge n.

Given S3 =
{
x ∈ R4 : x21 + x22 + x23 + x24 = 1

}
we can define the

Hopf map: π : S3 → S2 by

ξ1 = 2(x1x3 + x2x4)

ξ2 = 2(x2x3 − x1x4)

ξ3 = x21 + x22 − x23 − x24 .

which implies ξ21 + ξ22 + ξ23 = 1.

It turns out that with this choice of coords S3 can be identified with
P1, a nontrivial U(1) bundle over S2, known as the Hopf bundle.
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Sections

Def: Let (E ,M, π) be a fibre bundle. A section s : M → E is a smooth
map which satisfies π ◦ s = idM . Here, s|p is an element of the fibre
Fp = π−1(p). The space of section is denoted by Γ(E ).

A local section is defined on U ⊂ M, only.

Note that not all fibre bundles admit global sections!

Example: The wave function ψ(x, t) in quantum mechanics can be
thought of as a section of a complex line bundle E = R3,1 × C.
Vector fields associate a tangent vector to each point in M. They
can be thought of as sections of TM.
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More on sections

Vector bundles always have at least one section, the null section s0
with

φ−1i (s0(p)) = (p, 0)

in any local trivialization.

A principal bundle E only admits a global section if it is trivial:
E = M × F .

A section in a principal bundle can be used to construct the
trivialization of the bundle which uses that we can define a right
action which is independent of the local trivialization:

ua = φ(p, gia), a ∈ G
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Associated Vector bundle

Given a principal fibre bundle P(M,G , π) and a k-dimensional
vector space V , and let ρ be a k dimensional representation of G
then the associated vector bundle E = P ×ρ V is defined by
identifying the points

(u, v) and (ug , ρ(g)−1v) ∈ P × V

where u ∈ P, g ∈ G , and v ∈ V .

The projection πE : E → M is defined by πE (u, v) = π(u), which is
well defined because

πE (ug , ρ(g)−1v) = π(ug) = π(u) = πE (u, v)

The transition functions of E are given by ρ(tij(p)) where tij(p) are
the transition functions of P.

Conversely, a vector bundle naturally induces a principal bundle
associated with it.
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Metric

Manifolds can carry further structure, for example a metric.

A metric g is a (0, 2) tensor which satisfies at each point p ∈ M :
1 gp(U,V ) = gp(V ,U)
2 gp(U,U) ≥ 0, with equality only when U = 0.

where U,V ∈ TpM.

The metric g provides an inner product for each tangent space TpM.

Notation:
g = gµνdx

µdxν .

If M is a submanifold of N with metric gN and f : M → N is the
embedding map, then the induced metric gM is

gMµν(x) = gNαβ(f (x))
∂f α

∂xµ
∂f β

∂xν
.
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Connection for the Tangent bundle

Consider the “derivative” of a vector field V = V µ ∂
∂xµ w.r.t. xν :

∂V µ

∂xν
= lim
4x→0

V µ(. . . , xν +4xν , . . . )− V µ(. . . , xν , . . . )

4xν

This doesn’t work as the first vector is defined at x +4x and the
second at x .

We need to transport the vector V µ from x to x +4x “without
change”. This is known as parallel transport.

This is achieved by specifying a connection Γµνλ, namely the parallel
transported vector Ṽ µ is given by

Ṽ µ(x +4x) = V µ(x)− V λ(x)Γµνλ(x)4xν .

The covariant derivative of V w.r.t. xν is

lim
4xν→0

V µ(x +4x)− Ṽ µ(x +4x)

4xν
=
∂V µ

∂xν
+ V λΓµνλ.
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The Levi-Civita Connection

We demand that the metric g is covariantly constant.

This means, if two vectors X and Y are parallel transported along
any curve, then the inner product g(X ,Y ) remains constant.

The condition
∇V (g(X ,Y )) = 0,

gives us the Levi-Civita connection.

The Levi-Civita connection can be written as

Γκµν = 1
2g

κλ (∂µgνλ + ∂νgµλ − ∂λgµν) .
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General Relativity

The Levi-Civita connection doesn’t transform like a tensor. However,
from it, we can build the curvature tensor:

Rκλµν = ∂µΓκνλ − ∂νΓκµλ + ΓηνλΓκµη − ΓηµλΓκνη.

Important contractions of the curvature tensor are the Ricci tensor
Ric :

Ricµν = Rλµλν .

and the scalar curvature R :

R = gµνRicµν .

Now, we have the ingredients for Einstein’s Equations of General
Relativity, namely

Ricµν − 1
2gµνR = 8πGTµν ,

where G is the gravitational constant and Tµν is the energy
momentum tensor which describes the distribution of matter.
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Yang-Mills theory

An example of Yang-Mills theory is given by the following
Lagrangian density,

L =
1

8
Tr (FµνFµν) +

1

2
(DµΦ)† DµΦ− U(Φ†Φ). (2)

where

DµΦ = ∂µΦ + AµΦ and Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ] .

Here Φ is a two component complex scalar field.

Aµ is called a gauge field and is su(2)-valued, i.e. Aµ are
anti-hermitian 2× 2 matrices.

Fµν is known as the field strength (also su(2)-valued)

This Lagrangian is Lorentz invariant.
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Gauge invariance

Lagrangian (2) is also invariant under local gauge transformations:

Let g ∈ SU(2) be a space-time dependent gauge transformation with

Φ 7→ gΦ, and Aµ 7→ gAµg
−1 − ∂µgg−1.

The covariant derivative DµΦ transforms as

DµΦ 7→ ∂µ(gΦ) +
(
gAµg

−1 − ∂µgg−1
)
gΦ

= gDµΦ

Hence Φ†Φ 7→ (gΦ)†gΦ = Φ†g†gΦ = Φ†Φ, and similarly for

(DµΦ)† DµΦ.

Finally, Fµν 7→ gFµνg−1, so

Tr (FµνFµν)

is also invariant
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Yang-Mills theory and Fibre bundles

In a more mathematical language:

The gauge field Aµ corresponds to the connection of the principal
SU(2) bundle.

The field strength Fµν corresponds to the curvature of the principal
SU(2) bundle.

The complex scalar field Φ is a section of the associated C2 vector
bundle.

The action of g ∈ SU(2) on Φ and Aµ is precisely what we expect
for an associated fibre bundle.

Surprisingly, mathematicians and physicist derived the same result
very much independently!
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