Applications of Differential Geometry to Mathematical Physics

Steffen Krusch University of Kent

January 2023

Steffen Krusch University of Kent Applications of Differential Geometry to Mathematical Physics

- Manifolds
- Fibre bundles
- Vector bundles, principal bundles
- Sections in fibre bundles
- Metric, Connection
- General Relativity, Yang-Mills theory

The 2-sphere S^2

•
$$S^2 = \left\{ (x_1, x_2, x_3) : \sum_{i=1}^3 x_i^2 = 1 \right\}.$$

- Polar coordinates:
 - $\begin{array}{rcl} x_1 & = & \cos\phi\sin\theta, \\ x_2 & = & \sin\phi\sin\theta, \\ x_3 & = & \cos\theta. \end{array}$
- Problem: We can't label S² with single coord system such that
 - Nearby points have nearby coords.
 - 2 Every point has unique coords.

• Stereographic Projection

$$X_1 = \frac{x_1}{1 - x_3}, X_2 = \frac{x_2}{1 - x_3}.$$

Def: *M* is an *m*-dimensional (differentiable) manifold if

- *M* is a topological space.
- *M* comes with family of charts $\{(U_i, \phi_i)\}$ known as *atlas*.
- $\{U_i\}$ is family of open sets covering $M: \bigcup_i U_i = M$.
- ϕ_i is homeomorphism from U_i onto open subset U'_i of \mathbb{R}^m .
- Given $U_i \cap U_j \neq \emptyset$, then the map

$$\psi_{ij} = \phi_i \circ \phi_j^{-1} : \phi_j(U_i \cap U_j) \to \phi_i(U_i \cap U_j)$$

is C^{∞} . ψ_{ij} are called *crossover maps*.

$$\psi_{ij} = \phi_i \circ \phi_j^{-1} : \phi_j(U_i \cap U_j) \to \phi_i(U_i \cap U_j)$$

• Projection from North pole:

$$X_1 = \frac{x_1}{1 - x_3},$$

$$X_2 = \frac{x_2}{1 - x_3}.$$

- $x_2 = \frac{1}{1-x_3}$
- $U_1 = S^2 \setminus N, U_1' = \mathbb{R}^2$: $\phi_1 : U_1 \rightarrow \mathbb{R}^2$: $(x_1, x_2, x_3) \mapsto (X_1, X_2)$

• Projection from South pole:

$$Y_1 = \frac{x_1}{1+x_3},$$

 $Y_2 = \frac{x_2}{1+x_3}.$

•
$$U_2 = S^2 \setminus S, U'_2 = \mathbb{R}^2$$
:
 $\phi_2 : U_2 \rightarrow \mathbb{R}^2$:
 $(x_1, x_2, x_3) \mapsto (Y_1, Y_2)$

Crossover map $\psi_{21} = \phi_2 \circ \phi_1^{-1}$:

$$\psi_{21}: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2: (X_1, X_2) \mapsto (Y_1, Y_2) = \left(\frac{X_1}{X_1^2 + X_2^2}, \frac{-X_2}{X_1^2 + X_2^2}\right).$$

• Stereographic coords for S^3 work the same way as for S^2 , e.g.

$$X_i=\frac{x_i}{1-x_4},$$

where i = 1, 2, 3 for the projection from the "North pole".

• Note S^3 can be identified with SU(2), i.e. complex 2×2 matrices which satisfy

$$U U^{\dagger} = U^{\dagger}U = 1 \quad \text{and} \quad \det U = 1.$$
 (1)

Setting

$$U = \left(\begin{array}{cc} z_1 & z_2 \\ -\overline{z}_2 & \overline{z}_1 \end{array}\right)$$

satisfies all the conditions in (1) provided

$$|z_1|^2 + |z_2|^2 = 1,$$

which is the equation for S^3 .

- Often manifolds can be build up from smaller manifolds.
- An important example is the Cartesian product: $E = B \times F$ (known as *trivial bundle*)
- *Fibre bundles* are manifolds which look like Cartesian products, *locally*, but not *globally*.
- This concept is very useful for physics. Non-trivial fibre bundles occur for example in general relativity, but also due to boundary conditions "at infinity".

Def: A *fibre bundle* (E, π, M, F, G) consists of

- A manifold *E* called *total space*, a manifold *M* called *base space* and a manifold *F* called *fibre* (or typical fibre)
- A surjection π : E → M called the *projection*. The inverse image of a point p ∈ M is called the fibre at p, namely π⁻¹(p) = F_p ≅ F.
- A Lie group G called structure group which acts on F on the left.
- A set of open coverings {U_i} of M with diffeomorphism φ_i : U_i × F → π⁻¹(U_i), such that π ∘ φ_i(p, f) = p. The map is called the *local trivialization*, since φ_i⁻¹ maps π⁻¹(U_i) to U_i × F.
- Transition functions $t_{ij}: U_i \cap U_j \to G$, such that $\phi_j(p, f) = \phi_i(p, t_{ij}(p)f)$. Fix p then $t_{ij} = \phi_i^{-1} \circ \phi_j$.

The importance of the transition functions

• Consistency conditions (ensure $t_{ij} \in G$)

$$egin{array}{ll} t_{ii}(p) = e & p \in U_i \ t_{ij}(p) = t_{ji}^{-1}(p) & p \in U_i \cap U_j \ t_{ij}(p) \cdot t_{jk}(p) = t_{ik}(p) & p \in U_i \cap U_j \cap U_k \end{array}$$

- If all transition functions are the identity map e, then the fibre bundle is called the trivial bundle, $E = M \times F$.
- The transition functions of two local trivializations {φ_i} and {φ_i} for fixed {U_i} are related via

$$\widetilde{t}_{ij}(p) = g_i^{-1}(p) \cdot t_{ij}(p) \cdot g_j(p).$$

where for fixed *p*, we define $g_i : F \to F : g_i = \phi_i^{-1} \circ \tilde{\phi}_i$.

• For the trivial bundle, $t_{ij}(p) = g_i^{-1}(p) \cdot g_j(p)$.

Tangent vectors

 Given a curve c : (-ε, ε) → M and a function f : M → ℝ, we define the tangent vector X[f] at c(0) as directional derivative of f(c(t)) along c(t) at t = 0, namely

$$X[f] = \left. \frac{df(c(t))}{dt} \right|_{t=0}$$

In local coords, this becomes

$$\left. \frac{\partial f}{\partial x^{\mu}} \left. \frac{dx^{\mu}(c(t))}{dt} \right|_{t=0}$$

hence

$$X[f] = X^{\mu} \left(\frac{\partial f}{\partial x^{\mu}} \right).$$

 To be more mathematical, the tangent vectors are defined via equivalence classes of curves.

More about Tangent vectors

• Vectors are independent of the choice of coordinates, hence

$$X = X^{\mu} \frac{\partial}{\partial x^{\mu}} = \tilde{X}^{\mu} \frac{\partial}{\partial y^{\mu}}$$

• The components of X^{μ} and $ilde{X}^{\mu}$ are related via

$$\tilde{X}^{\mu} = X^{\nu} \frac{\partial y^{\mu}}{\partial x^{\nu}}.$$

• It is very useful to define the pairing

$$\left\langle dx^{\nu}, \frac{\partial}{\partial x^{\mu}} \right\rangle = \frac{\partial x^{\nu}}{\partial x^{\mu}} = \delta^{\nu}_{\mu}.$$

• This leads us to one-forms $\omega = \omega_{\mu} dx^{\mu}$, also independent of choice of coordinates. Now, we have

$$\omega = \omega_{\mu} dx^{\mu} = \tilde{\omega}_{\nu} dy^{\nu} \implies \tilde{\omega}_{\nu} = \omega_{\mu} \frac{\partial x^{\mu}}{\partial y^{\nu}}.$$

• This can be generalized further to tensors $T^{\mu_1...\mu_q}{}_{\nu_1...\nu_r}$.

The Tangent bundle

 At each point p ∈ M all the tangent vectors form an n dimensional vector space T_pM, so tangent vectors can be added and multiplied by real numbers:

$$\alpha X_1 + \beta X_2 \in T_p M$$
 for $\alpha, \beta \in \mathbb{R}$, $X_1, X_2 \in T_p M$.

- A basis of T_pM is given by ∂/∂x^μ, (1 ≤ μ ≤ n), hence dim M = dim T_pM.
- The union of all tangent spaces forms the tangent bundle

$$TM = \bigcup_{p \in M} T_p M.$$

TM is a 2*n* dimensional manifold with base space *M* and fibre ℝⁿ. It is an example of a *vector bundle*.

The Tangent bundle TS^{2}

- We use the two stereographic projections as our charts.
- The coords $(X_1,X_2)\in U_1'$ and $(Y_1,Y_2)\in U_2'$ are related via

$$Y_1 = \frac{X_1}{X_1^2 + X_2^2}, \quad Y_2 = \frac{-X_2}{X_1^2 + X_2^2}$$

• Given $u \in TS^2$ with $\pi(u) = p \in U_1 \cap U_2$, then the local trivializations ϕ_1 and ϕ_2 satisfy $\phi_1^{-1}(u) = (p, V_1^{\mu})$ and $\phi_2^{-1}(u) = (p, V_2^{\mu})$. The local trivialization is

$$t_{12} = \frac{\partial(Y_1, Y_2)}{\partial(X_1, X_2)} = \frac{1}{(X_1^2 + X_2^2)^2} \begin{pmatrix} X_2^2 - X_1^2 & -2X_1X_2 \\ -2X_1X_2 & X_1^2 - X_2^2 \end{pmatrix}.$$

• Check: $t_{21}(p) = t_{12}^{-1}(p)$.

Example: U(1) bundle over S^2

- Consider a fibre bundle with fibre U(1) and base space S^2 .
- Let $\{U_N, U_S\}$ be an open covering of S^2 where

$$\begin{array}{rcl} U_{\mathsf{N}} & = & \{(\theta,\phi): 0 \le \theta < \pi/2 + \epsilon, 0 \le \phi < 2\pi\} \\ U_{\mathsf{S}} & = & \{(\theta,\phi): \pi/2 - \epsilon < \theta \le \pi, 0 \le \phi < 2\pi\} \end{array}$$

• The intersection $U_N \cap U_S$ is a strip which is basically the equator. Local trivializations are

$$\phi_N^{-1}(u) = (p, e^{i\alpha_N}), \quad \phi_S^{-1}(u) = (p, e^{i\alpha_S})$$

where $p = \pi(u)$.

- Possible transition functions are $t_{NS} = e^{in\phi}$, where $n \in \mathbb{Z}$.
- The fibre coords in $U_N \cap U_S$ are related via

$$e^{i\alpha_N}=e^{in\phi}e^{i\alpha_S}.$$

• If n = 0 this is the trivial bundle $P_0 = S^2 \times S^1$. For $n \neq 0$ the U(1) bundle P_n is twisted.

Magnetic monopoles and the Hopf bundle

- P_n is an example of a *principal bundle* because the fibre is the same as the structure group G = U(1).
- In physics, P_n is interpreted as a magnetic monopole of charge n.
- Given $S^3 = \{x \in \mathbb{R}^4 : x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1\}$ we can define the Hopf map: $\pi : S^3 \to S^2$ by

$$\begin{aligned} \xi_1 &= 2(x_1x_3 + x_2x_4) \\ \xi_2 &= 2(x_2x_3 - x_1x_4) \\ \xi_3 &= x_1^2 + x_2^2 - x_3^2 - x_4^2 \end{aligned}$$

which implies $\xi_1^2 + \xi_2^2 + \xi_3^2 = 1$.

• It turns out that with this choice of coords S^3 can be identified with P_1 , a nontrivial U(1) bundle over S^2 , known as the *Hopf bundle*.

Def: Let (E, M, π) be a fibre bundle. A section $s : M \to E$ is a smooth map which satisfies $\pi \circ s = id_M$. Here, $s|_p$ is an element of the fibre $F_p = \pi^{-1}(p)$. The space of section is denoted by $\Gamma(E)$.

- A local section is defined on $U \subset M$, only.
- Note that not all fibre bundles admit global sections!
- Example: The wave function $\psi(\mathbf{x}, t)$ in quantum mechanics can be thought of as a section of a complex line bundle $E = \mathbb{R}^{3,1} \times \mathbb{C}$.
- Vector fields associate a tangent vector to each point in *M*. They can be thought of as sections of *TM*.

 Vector bundles always have at least one section, the null section s₀ with

$$\phi_i^{-1}(s_0(p)) = (p, 0)$$

in any local trivialization.

- A principal bundle *E* only admits a global section if it is trivial: $E = M \times F$.
- A section in a principal bundle can be used to construct the trivialization of the bundle which uses that we can define a right action which is independent of the local trivialization:

$$ua = \phi(p, g_i a), \quad a \in G$$

Associated Vector bundle

• Given a principal fibre bundle $P(M, G, \pi)$ and a k-dimensional vector space V, and let ρ be a k dimensional representation of G then the associated vector bundle $E = P \times_{\rho} V$ is defined by identifying the points

$$(u, v)$$
 and $(ug, \rho(g)^{-1}v) \in P \times V$

where $u \in P$, $g \in G$, and $v \in V$.

• The projection $\pi_E : E \to M$ is defined by $\pi_E(u, v) = \pi(u)$, which is well defined because

$$\pi_E(ug, \rho(g)^{-1}v) = \pi(ug) = \pi(u) = \pi_E(u, v)$$

- The transition functions of E are given by ρ(t_{ij}(p)) where t_{ij}(p) are the transition functions of P.
- Conversely, a vector bundle naturally induces a principal bundle associated with it.

Metric

- Manifolds can carry further structure, for example a metric.
- A metric g is a (0,2) tensor which satisfies at each point $p \in M$:

•
$$g_p(U, V) = g_p(V, U)$$

• $g_p(U, U) \ge 0$, with equality only when $U = 0$.
where $U, V \in T_p M$.

- The metric g provides an inner product for each tangent space $T_{\rho}M$.
- Notation:

$$g=g_{\mu\nu}dx^{\mu}dx^{\nu}.$$

• If *M* is a submanifold of *N* with metric g_N and $f: M \to N$ is the embedding map, then the induced metric g_M is

$$g_{M\mu\nu}(x) = g_{N\alpha\beta}(f(x)) \frac{\partial f^{\alpha}}{\partial x^{\mu}} \frac{\partial f^{\beta}}{\partial x^{\nu}}.$$

Connection for the Tangent bundle

• Consider the "derivative" of a vector field $V = V^{\mu} \frac{\partial}{\partial x^{\mu}}$ w.r.t. x^{ν} :

$$\frac{\partial V^{\mu}}{\partial x^{\nu}} = \lim_{\Delta x \to 0} \frac{V^{\mu}(\dots, x^{\nu} + \Delta x^{\nu}, \dots) - V^{\mu}(\dots, x^{\nu}, \dots)}{\Delta x^{\nu}}$$

- This doesn't work as the first vector is defined at x + △x and the second at x.
- We need to transport the vector V^µ from x to x + △x "without change". This is known as *parallel transport*.
- This is achieved by specifying a connection $\Gamma^{\mu}{}_{\nu\lambda}$, namely the parallel transported vector \tilde{V}^{μ} is given by

$$ilde{V}^{\mu}(x+ riangle x)=V^{\mu}(x)-V^{\lambda}(x)\Gamma^{\mu}{}_{
u\lambda}(x) riangle x^{
u}.$$

• The covariant derivative of V w.r.t. x^{ν} is

$$\lim_{\Delta x^{\nu} \to 0} \frac{V^{\mu}(x + \Delta x) - \tilde{V}^{\mu}(x + \Delta x)}{\Delta x^{\nu}} = \frac{\partial V^{\mu}}{\partial x^{\nu}} + V^{\lambda} \Gamma^{\mu}{}_{\nu\lambda}.$$

- We demand that the metric g is covariantly constant.
- This means, if two vectors X and Y are parallel transported along any curve, then the inner product g(X, Y) remains constant.
- The condition

$$\nabla_V(g(X,Y))=0,$$

gives us the Levi-Civita connection.

• The Levi-Civita connection can be written as

$$\Gamma^{\kappa}{}_{\mu
u} = rac{1}{2} g^{\kappa\lambda} \left(\partial_{\mu} g_{
u\lambda} + \partial_{
u} g_{\mu\lambda} - \partial_{\lambda} g_{\mu
u}
ight).$$

General Relativity

• The Levi-Civita connection doesn't transform like a tensor. However, from it, we can build the curvature tensor:

$$R^{\kappa}{}_{\lambda\mu\nu} = \partial_{\mu}\Gamma^{\kappa}{}_{\nu\lambda} - \partial_{\nu}\Gamma^{\kappa}{}_{\mu\lambda} + \Gamma^{\eta}{}_{\nu\lambda}\Gamma^{\kappa}{}_{\mu\eta} - \Gamma^{\eta}{}_{\mu\lambda}\Gamma^{\kappa}{}_{\nu\eta}.$$

• Important contractions of the curvature tensor are the *Ricci tensor Ric* :

$$Ric_{\mu
u}=R^{\lambda}{}_{\mu\lambda
u}.$$

and the scalar curvature \mathcal{R} :

$$\mathcal{R} = g^{\mu
u} Ric_{\mu
u}.$$

• Now, we have the ingredients for *Einstein's Equations of General Relativity*, namely

$$Ric_{\mu\nu}-\frac{1}{2}g_{\mu\nu}\mathcal{R}=8\pi GT_{\mu\nu},$$

where G is the gravitational constant and $T_{\mu\nu}$ is the energy momentum tensor which describes the distribution of matter.

Yang-Mills theory

• An example of Yang-Mills theory is given by the following Lagrangian density,

$$\mathcal{L} = \frac{1}{8} \text{Tr} \left(\mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu} \right) + \frac{1}{2} \left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi - U(\Phi^{\dagger} \Phi).$$
(2)

where

$$D_{\mu}\Phi = \partial_{\mu}\Phi + \mathbf{A}_{\mu}\Phi \quad \text{and} \quad \mathbf{F}_{\mu\nu} = \partial_{\mu}\mathbf{A}_{\nu} - \partial_{\nu}\mathbf{A}_{\mu} + [\mathbf{A}_{\mu}, \mathbf{A}_{\nu}].$$

- Here Φ is a two component complex scalar field.
- A_μ is called a gauge field and is su(2)-valued, i.e. A_μ are anti-hermitian 2 × 2 matrices.
- $\mathbf{F}_{\mu\nu}$ is known as the field strength (also su(2)-valued)
- This Lagrangian is Lorentz invariant.

Gauge invariance

Lagrangian (2) is also invariant under local gauge transformations:

• Let $g \in SU(2)$ be a space-time dependent gauge transformation with

$$\Phi \mapsto g\Phi$$
, and $\mathbf{A}_{\mu} \mapsto g\mathbf{A}_{\mu}g^{-1} - \partial_{\mu}gg^{-1}$.

• The covariant derivative $D_{\mu}\Phi$ transforms as

$$D_{\mu}\Phi \quad \mapsto \quad \partial_{\mu}(g\Phi) + \left(g\mathbf{A}_{\mu}g^{-1} - \partial_{\mu}gg^{-1}\right)g\Phi$$
$$= \quad gD_{\mu}\Phi$$

• Hence $\Phi^{\dagger}\Phi \mapsto (g\Phi)^{\dagger}g\Phi = \Phi^{\dagger}g^{\dagger}g\Phi = \Phi^{\dagger}\Phi$, and similarly for $(D_{\mu}\Phi)^{\dagger}D^{\mu}\Phi$.

• Finally,
$${f F}_{\mu
u}\mapsto g{f F}_{\mu
u}g^{-1}$$
, so

 $\operatorname{Tr}\left(\mathbf{F}_{\mu\nu}\mathbf{F}^{\mu\nu}\right)$

is also invariant

Yang-Mills theory and Fibre bundles

In a more mathematical language:

- The gauge field \mathbf{A}_{μ} corresponds to the connection of the principal SU(2) bundle.
- The field strength $\mathbf{F}_{\mu\nu}$ corresponds to the curvature of the principal SU(2) bundle.
- \bullet The complex scalar field Φ is a section of the associated \mathbb{C}^2 vector bundle.
- The action of g ∈ SU(2) on Φ and A_μ is precisely what we expect for an associated fibre bundle.
- Surprisingly, mathematicians and physicist derived the same result very much independently!