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The Fundamental group 71(M)

e Given a manifold M and an interval / = [0, 1] we can define paths
a:l = M:t— at), where a(0) = py, (1) = p;.

@ A Joop is a path with pg = p;.
@ Paths can be multiplied via

a(2s) 0<s<
axf(s) =
B(2s—1) 2<s<1
@ The constant path is c(s) = pp for all s € /.
@ The inverse of a paths is a~1(s) = a(1 — s).

@ This is not a group, yet!

Steffen Krusch Differential Geometry and Soliton Dynamics



The Fundamental group Il

Homotopy

Let a, 5 : | — M be loops at pg.
« and (B are homotopic, o ~ 3, it there exists a continuous map
F: I x| — M such that

@ F(s,0) = a(s) and F(s,1) = f5(s) forall s € /.
e F(0,t) = F(1,t) = po for all t € /.

a ~ 3 is an equivalence relation.

Let [a] be the equivalence class given by a.

Define a product on equivalence classes by [a] * [8] = [a * (]
This gives the fundamental group 71 (M, pg).t

Examples: m(SY) =2, m(R>\{0})=2%Z, m(T?)=Za®Z.
Note 71 (M x N) = w1 (M) & w1 (N).

LIf M is arcwise connected then 71(M, po) is isomorphic to 71 (M, py).
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Higher Homotopy groups m,(M)

@ This generalizes naturally to higher homotopy groups: Consider
maps from the cube /" = [ x --- x | to a manifold M such that all
the points on the boundary /" of the cube are mapped to py € M:

a: (17,017) — (M, po).

@ Again we can form the product a * 8 and define the equivalence
classes [a] (also known as homotopy classes).

e This gives us the nth homotopy group m,(M).
e Homotopy groups are Abelian for n > 1, i.e [a] * [5] = [B] * [o].

Steffen Krusch Differential Geometry and Soliton Dynamics



Summary of important results

e Manifolds M with m1(M) = 1 are called simply-connected.

o m,(S") =17
(the integer is known as the degree of the map and is related to the
number of pre-images)

o m(S9) =1forl<n<d

(contractible, not onto)
o m,11(S") = Zy, for n > 3, but m3(S2) = Z (related to Hopf bundle)
o mp2(S?) = Zy for n > 2.

(Homotopy groups of spheres really are complicated!)

@ Spectral sequences are an important tool:
Let G be a Lie group with subgroup H then

- = mp(H) = mr(G) = (G /H) = mp—1(H) = mn—1(G) = mp—1(G/H) — ...

is a long exact sequence. (example: G = S3, H=S!, G/H = S?)

Steffen Krusch Differential Geometry and Soliton Dynamics



Homotopy groups and Field Theory

o Why are these homotopy groups important for field theories?

o Field configurations are maps ¢ : R — M, from flat space to a
target space.

@ Homotopies of maps occur naturally (e.g. time evolution is
continuous and connects different field configurations in the same
homotopy class).

@ Two scenarios naturally give rise to homotopy groups. Both arise
from boundary conditions (due to finite energy).

@ One-point compactification: There is a unique vacuum vy € M,
namely, ¢(x) = v for x — co. So, we can identify all these points,
so that topologically RY U {0} = 5. So, we need

wa(M).

© Nontrivial maps at infinity: The vacuum is degenerate and forms a
submanifold N of M. Then, in the limit |x| — oo there is a
continuous map @|__ : S4-1 5 N. So, we need

TFdfl(N).
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Classification of solitons

7,(S¥) | ungauged

gauged

m1(St) | Kinks
72(S52) | Baby-Skyrmions, Lumps
73(S3) | Skyrmions

73(52) | Hopf Solitons

Vortices

Monopoles "'"" : ,—')
Instantons J
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Ginzburg-Landau vortices

@ The Ginzburg-Landau energy is given by
1 — A _
V= 5/ (32 + D606+ 5 (1- ¢¢>)2> ax.

where x = (x, y).

@ This is invariant under

o(x) — ei("(x)¢(x)
ai(x) —  ai(x)+ dia(x),

where e/*() is a spatially varying phase.

e Here D; = 0;¢p — ia;¢ is the covariant derivative and
B = (9182 — 8231

is the magnetic field.

@ The vacuum is ¢ = 1, a; = 0 and gauge transformations of this.
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Topological charge |

@ Asymptotically, for finite energy fields, we can fix the gauge so that

lim ¢(p,0)

p—r00

exists and varies continuously with 8, where (x,y) = (pcosé, psin 8).
@ Since |¢| = 1 as p — oo,

lim (p,6) = &),

p—00

where «¢ is a continuous function of 6.

e Winding number N: As 0 increases from 0 to 2w, «(6) increases by
27N (¢ is single valued). N is an arbitrary integer, cannot change
under smooth deformations of the field, remains constant in time.

@ N is also invariant under smooth gauge transformations.
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Topological charge Il

@ In polar coordinates (p, 0)

2w

<B2 + D,6D,¢ + Dg(nggzb +Z A (1 — $0) > pdp doé.

<
N\n—l
0\8

0

@ By Stokes theorem

2T
/ B d®x = / ap do
R? 0 p—00

@ As p — oo, the covariant derivative Dg¢p = 0y — iagp has to vanish.
Since ¢ = e/“(%) we have ag = 92. Hence

/B d’x = a(27) — a(0) = 27N.
R2
so N measures the magnetic flux units in the plane.
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Topological charge Il

@ If ¢ has only isolated zeros,
then the number of these
(counted with multiplicity) is N.

@ A zero of ¢ is said to have
multiplicity k, if on a small
cirlce enclosing the zero,

— arg ¢ increases by 2mk. For
simple zeros k = +1.
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Energy of N Ginzburg-Landau vortices

@ Let Ep be the minimal energy V' of N vortices.

A<1 En < NE;  the vortices attract (Type |)
A>1 En > NE;  the vortices repel (Type II)
A=1 En = NE;  no forces between static vortices

=
@

L L
0.6 08
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Vortices at critical coupling A =1

@ By “completing the square” V can be written as
1 1 N S —— : 2
V= E/ B—5(1=99)) + (Dig+iD2g) (Do + iDag) + B | d’x.
@ Recall that
/B d’x =27N, so V >xN.
@ Bogomolny equations:

Di¢p+iDp = 0
1 _
B-3(1-39)

I
=

These equations cannot be solved analytically. However, a lot is
known about the solutions.
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The Vortex moduli space

o For given topological charge N, the Bogomolny equations have a 2N
dimensional manifold of static solutions, known as the moduli space
Mp. (Gauge equivalent solutions are identified.)

@ All zeros of ¢ have positive multiplicity (generically there are only
simple zeros).

@ A solution is completely determined by the locations of these zeros,
which can be anywhere. N unordered points in R? require 2N
coordinates.

@ There are no static forces between vortices for A = 1, however, there
will be velocity dependent forces.
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Relativistic vortex dynamics

@ The standard relativistic Lagrangian is

e 1 L, A — 12
L£=3Du8D"6 = 2 f™ — 2 (1-69)",

where x* = (t,x).
@ In the following, we will often use complex coordinates z = x + iy.

@ We can parametrize the moduli space for A = 1 in terms of the
vortex positions Z;. Assuming that Z; are time dependent gives rise
to the reduced Lagrangian

N
1 . . . _— .
Lred. - E Z (grsZrZs + grEZrZs + gTsZrZs) - Vred.v

r,s=1

where

Viea. = %/(1 —6¢)” dx.
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Properties of the moduli space

e Setting h = log |$|? the Bogomolny equations imply

N
Vh+1-e"=4an) 6%(z-Z).
r=1

@ The ¢ functions arise because h has logarithmic singularities at the
zeros Z, of ¢.
@ Expanding h around the point Z, gives
- 1l o 1 =
h(z,z) =2log|z — Z,| + a, + Eb,(z -Z)+ Eb,(z —Z)+...

o After a long calculation

™ N ob. .-
Lred. - 5 Z <5rs + 262) ZrZs - Vred.
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The metric on the moduli space

@ The moduli space metric

T N ob
. 6 7
g = > ,Eszl (6,5 + 232,) dZ,.dZ;
is Kahler.

@ This structure provides a lot of information about the metric,
although it is only know implicitly.

@ The moduli space approximation captures the dynamics of vortices,
in particular right-angle scattering.

Steffen Krusch Differential Geometry and Soliton Dynamics



First order vortex dymanics

@ The Schrodinger-Chern-Simons Lagrangian

g _

Lscs = 5 (¢Do¢ — ¢Dod) + Bag + e1ar — e2a1 — ag
1, 1— A — 12
*EB 7§DI¢DI¢7§(17¢¢) )

is a model for vortex dynamics in superconductors.

This Lagrangian is gauge invariant and Galilean invariant.

Lscs give rise to first order vortex dynamics.

For A close to one, we can again use our moduli space My to
approximate the dynamics of N vortices.
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Moduli approximation and the Kahler potential

@ Now, the reduced Lagrangian is also first order

red— Z-A i* red()

where y are the coordinates on the moduli space and
A—1 =
Viea = “5— / (1—3¢)* dx.

@ A is a gauge potential, and F = d.A the corresponding field
strength.

@ The equations of motion are

aVred.
dyi

Fiyj = —
@ The field strength F is

o b,
]—":—mz s+ 257 dZ, NdZ,

r,s=1

which is the Kahler form associated to the metric g on My,.



Moduli space approximation

@ For )\ close to 1, two vortices
circle around each other
anticlockwise.

@ Moduli space approximation is
in agreement with numerical =
simulation.
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Vortices on various domains

@ We can consider physical spaces with a different metric, e.g.
ds? = dt? — Q(x, y)(dx? + dy?),

where Q is a Riemannian metric on a physical space X.

@ Again we can “complete the square” and obtain the Bogomolny
equations

Dip+iDop = 0

[9) _
B-5(1-%9) = 0,

where B = fi5.

@ The integral

1 1
a=— [ f=— [ Bd
27T X 27T X

is an integer. This topological invariant is known as the first Chern
number.
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Compact domains and the Bradlow limit

@ We can integrate the second Bogomolny equation over X and obtain

2/ Bd2x+/ |9]2Q d2x:/§2d2x.
X X X

@ If X has a finite area A we obtain
4N + / |%1Q d®x = A.
X

@ This gives us the Bradlow limit
A> 4N

in other words, a vortex needs at least an area of 4.

@ At the Bradlow bound A = 47N both equations can trivially be
solved by ¢ =0 and B = 2.

@ For the torus T2 the moduli space metric has been calculated as an
expansion around the Bradlow limit.
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Hyperbolic vortices

@ Setting h = log |$#|? we can again derive an equation for h :

N
V2h+Q—Qe" =4n) 6%z - Z).
r=1
@ For hyperbolic space
8
ds® = ————dz dz
T-1zPp™ ™
with |z| < 1, the equation can be transformed to Liouville's
equation, which is integrable.
@ In this case, the moduli space is known explicitly, and

_1—z? df
11— |f]2dz’
f(z) has the rather simple form

f(z) = lﬁ (12__;;)

i=1

¢

where |¢;| < 1. The positions of the vortices are the zeros of % .
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Metric for Hyperbolic vortices

@ In hyperbolic space, the metric is

. ob ]
£=73 ,;1 <Q(z,)5,s + 2az,> dZ,dZ,

but now we can calculate bs for special cases.
@ The metric for n vortices on a regular polygon with m vortices fixed
at the origin is given by

2n (1+ |af?)

2 4rnd|al?"2da da 1+

>
(1= laf>") \/(m +1)2(1 - |04|2”)2 + 4n?|a)2n

for n # m+ 1, and by

2 12mn?lal?"2da da

(1 = Jof2n)®

for m+ 1 = n. The nontrivial zeros are at z = a 2™ /" for
k=0,...,n—1.
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CP?! lumps on S?

o Kinetic and potential energy (with z = x + iy):

2 2 2
2 (L+[WP)? (1+|z]?)? 2 (1+|W[?)?

@ Static minimal energy solutions are rational maps of degree n

az"+ - +ann
- )
an22" + -+ @242

with potential energy V = 4mn.
@ Make moduli space coordinates time dependent

z" + QQ(t)Z"_l + -4 q,,+1(t)
Gnt2(t)2" + gni3(t)z" 1 + - - - + Gant2(t)

@ Then the metric is given by
_EZ = / OW OW  4dxdy
R WP a4, 0, 1+ 17
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Charge 1 lumps

e Use projective equivalence class [L] of GL(2,C) matrices,
sene (3]
@ S0O(3) x SO(3) symmetry
([U]. [a]) : [L] = [ULLUS ).
@ Unique polar decomposition:
[L] = [UAL +X-T)],

where ([U],A) € PU(2) x R3, A =+1+ X2, A= |\|, and 71,72, 73
are the Pauli spin matrices.

Steffen Krusch Differential Geometry and Soliton Dynamics



Charge 1 lumps continued

@ Let v be an SO(3) x SO(3) invariant Kihler metric on Rat;. Then
v =ArdA-dA 4+ Ay(A-dA)? + A3 -0 + Ay(A-0)? + A - (0 x dA),

where A, ..., Aq are smooth functions of A only, all determined
from the single function A; = A(\) by the relations

Q) ANE) As = 1(1+2A2)A(A), Ay = %(HV)A’(A)-

Ay = A
2= 1 et T 2

Here o1, 05, 03 are the left invariant one forms.

@ For the L2 metric, one finds that

A 32mplpt — 42 log pr — 1]
(p?—1)3 '

where 11 = 252
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