You may refer without proof to results from the course (theorems, examples, etc.).

**Q1** This question is concerned with a set  $C = \bigcap_{n=1}^{\infty} C_n$ , where  $C_1, C_2, \ldots$  are constructed recursively as follows<sup>(1)</sup>. Start with the closed unit interval  $C_1 = [0, 1]$ . For each  $n = 1, 2, \ldots$  the set  $C_n$  is a union of  $2^{n-1}$  disjoint closed intervals, called *components*. The set  $C_{n+1}$  is obtained by removing from each component [a, b] of  $C_n$  a middle open interval of size  $(b - a)/(n + 1)^2$ , so that

$$[a,b] \cap C_{n+1} = \left[a, \frac{b+a}{2} - \frac{b-a}{2(n+1)^2}\right] \bigcup \left[\frac{b+a}{2} + \frac{b-a}{2(n+1)^2}, b\right].$$

For instance,  $C_2 = [0, \frac{3}{8}] \cup [\frac{5}{8}, 1]$ . Let for  $x \in \mathbb{R}$ 

$$F(x) = \frac{\lambda(C \cap [0, x])}{\lambda(C)}, \quad F(x) = \frac{\lambda(C_n \cap [0, x])}{\lambda(C_n)}, \quad n \in \mathbb{N},$$

where  $\lambda$  is the Lebesgue measure.

- (i) Is C a Borel set? What is the cardinality of C? Is there an open interval contained in C?
- (ii) Determine  $\lambda(C_n)$  for n = 1, 2, ... [Hint: find first the quotient  $\lambda(C_{n+1})/\lambda(C_n)$ .]
- (iii) Prove that  $\lambda(C) = \lim_{n \to \infty} \lambda(C_n)$  and calculate  $\lambda(C)$  explicitly.
- (iii) Show that F and  $F_n$  are continuous distribution functions of some probability measures  $\mu$  and  $\mu_n$ , respectively, and that  $\mu_n$  weakly converge to  $\mu$  as  $n \to \infty$ .
- (iv) Calculate the density  $f_n(x) = F'_n(x)$  for all x where the derivative exists.
- (v) Find the limit  $f(x) := \lim_{n \to \infty} f_n(x)$  for all x such that  $F'_n(x)$  exists for every n.

**Q1 solution** (i) Each  $C_n$  is a finite union of closed intervals, hence Borel, and C is Borel as a countable intersection of Borel sets. Like for the standard Cantor set, points of C can be encoded by infinite binary sequences, hence the cardinality of C is continuum. Each component of  $C_n$  has length at not bigger than  $2^{-(n-1)}$ , and since this number approaches 0 as  $n \to \infty$ , the set C contains no intervals. (ii) By the construction we have recursion

$$\lambda(C_{n+1}) = \left(1 - \frac{1}{(n+1)^2}\right)\lambda(C_n), \quad \lambda(C_1) = 1,$$

whence

$$\lambda(C_n) = \prod_{k=1}^{n-1} \left( 1 - \frac{1}{(k+1)^2} \right) = \prod_{k=1}^{n-1} \frac{k(k+2)}{(k+1)^2} = \frac{1}{2} \left( 1 + \frac{1}{n} \right).$$

(iii) Since  $C_1 \supset C_2 \supset \cdots$ , we have  $\lambda(C) = \lim_{n \to \infty} \lambda(C_n)$  by the monotonicity property of measure. Using the result in (ii), sending  $n \to \infty$  yields  $\lambda(C) = \frac{1}{2}$ .

(iii) For every measurable A, the function  $x \mapsto \lambda(A \cap [0, x])$  is continuous because  $\lambda(\{x\}) = 0$ . Thus  $F_n, F$  are continuous distribution functions on  $\mathbb{R}$ , with  $F_n(x) = F(x) = 0$  for  $x \leq 0$  and  $F_n(x) = F(x) = 1$  for  $x \geq 1$ . By continuity of F, the weak convergence  $\mu_n \Rightarrow \mu$  means convergence  $F_n(x) \to F(x)$  for every  $x \in \mathbb{R}$ ; and the latter is a consequence of  $\lambda(C_n \cap [0, x]) \to \lambda(C \cap [0, x])$ , which holds as in part (ii).

(iv) Measure  $\mu_n$  is the uniform distribution on  $C_n$ , with density  $f_n(x) = 0$  for  $x \notin C_n$  and  $f_n(x) =$ 

<sup>&</sup>lt;sup>(1)</sup>Compare with the construction of the standard Cantor set.

 $1/\lambda(C_n) = \frac{2n}{n+1}$  in the interior points of  $C_n$ . The derivative  $F'_n(x)$  does not exist if x is an endpoint of a component of  $C_n$ .

(v) If x is an internal point of every  $C_n$ , then  $f_n(x) \to f(x) = 1/\lambda(C) = 2$ , if  $x \in \mathbb{R} \setminus C$  we have  $f_n(x) = 0 = f(x)$  for all sufficiently large n. If x is a boundary point of one of  $C_n$ 's (endpoint of a component),  $f'_n(x)$  does not exist for large enough n. [In fact, f(x) = F'(x) everywhere with the exception of the latter countable set.]

**Q2** Let  $\xi_1, \xi_2, \ldots$  be a sequence of independent, identically distributed random variables with mean  $\mathbb{E}\xi_i = 0$  and variance  $\operatorname{Var}(\xi_i) = \sigma^2 < \infty$ . Let  $S_0 = 0$ , and  $S_n = \xi_1 + \cdots + \xi_n$ ,  $\mathcal{F}_n = \sigma(\xi_1, \ldots, \xi_n)$  for  $n \in \mathbb{N}$ .

- (i) For positive function  $\psi(n), n \in \mathbb{N}$ , what are possible values for probability of the event  $A = \{|S_n| > \psi(n) \text{ i.o.}\}$  (where i.o. means infinitely often)? Give examples of all possibilities.
- (ii) Let  $M_n = \sum_{1 \le i < j \le n} \xi_i \xi_j$ . Show that  $(M_n, n \in \mathbb{N})$  is a martingale.
- (iii) Let  $\tau$  be a stopping time adapted to the filtration  $(\mathcal{F}_n, n \in \mathbb{N})$ , with  $\mathbb{E} \tau < \infty$ . For martingale from part (ii), give definition of the random variable  $M_{\tau}$  and show that  $\mathbb{E} M_{\tau} = 0$ . [Hint: use Wald's identities].
- (iv) Let

$$R_n = \frac{\max_{0 \le i \le j \le n} |S_i - S_j|}{\sigma \sqrt{n}}$$

Show that the random variables  $R_n$  converge in distribution as  $n \to \infty$ . You are not asked to find the limit distribution explicitly.

**Q2 solution** (i) Event A belongs to  $\sigma(\xi_n, \xi_{n+1}, ...)$  for every n, hence is a tail event, with probability 0 or 1, according to Kolmogorov's 0 - 1 law. Let  $A_n = \{|S_n| > \psi(n)\}$ , then by Chebyshev's inequality

$$\mathbb{P}(A_n) < \frac{\operatorname{Var}(S_n)}{n^3} = \frac{\sigma^2 n}{\psi^2(n)},$$

so choosing  $\psi(n) = n^{3/2}$  we have  $\sum_n \mathbb{P}(A_n) < \infty$  hence  $\mathbb{P}(A) = 0$  by the Borel-Cantelli lemma.

To illustrate the second possibility, let  $(S_n)$  be a simple symmetric random walk and  $\psi(n) \equiv 1$ ; then  $\mathbb{P}(A) = 1$ , because the random walk is recurrent and  $|S_n| > 1$  holds infinitely often. (ii) Write  $M_{n+1} = M_n + \xi_{n+1}S_n$ , and observe that by measurability and independence

$$\mathbb{E}[M_n + \xi_{n+1}S_n | \mathcal{F}_n] = M_n + S_n \mathbb{E}[\xi_{n+1} | \mathcal{F}_n] = M_n + S_n \mathbb{E}[\xi_{n+1}] = M_n.$$

(iii)  $M_{\tau} = \sum_{n=1}^{\infty} M_n 1(\tau = n)$  (where  $1(\cdots)$  is indicator variable. Squaring yields,

$$S_n^2 = \sum_{j=1}^n \xi_j^2 + 2M_n$$

so

$$S_{\tau}^{2} = \sum_{j=1}^{\tau} \xi_{j}^{2} + 2M_{\tau}$$

By the first Wald identity applied to i.i.d.  $\xi_i^2$ 

$$\mathbb{E}\sum_{j=1}^{\tau}\xi_j^2 = \sigma^2 \mathbb{E}\tau$$

and by the second  $\mathbb{E} S_{\tau}^2 = \sigma^2 \mathbb{E} \tau$ , hence  $\mathbb{E} M_{\tau} = 0$ . [Under additional assumptions on  $\tau$  or  $\xi_j$ 's the result can be concluded straight from Doob's Optional Sampling theorem.]

(iv) For continuous function  $x : [0, 1] \to \mathbb{R}$  let  $\rho_x := \sup_{0 \le s \le t \le 1} |x(t) - x(s)|$ , the functional called the range of function. Check that  $|\rho_x - \rho_y| \le 2 \sup_{t \in [0,1]} |x(t) - y(t)|$ , which implies that the range  $x \mapsto \rho_x$  is a continuous functional on the metric space C[0, 1] of continuous functions. Let

$$X_n(t) = \frac{1}{\sigma\sqrt{n}} \left( \sum_{j=1}^{\lfloor nt \rfloor} \xi_j + (nt - \lfloor nt \rfloor) \xi_{\lfloor nt \rfloor + 1} \right), \ t \in [0, 1]$$

be a (random) continuous function, whose graph is a broken line obtained by connecting the points

$$\left(\frac{k}{n}, \frac{S_k}{\sigma\sqrt{n}}\right), \quad k = 0, \dots, n.$$

The random variable  $R_n$  in question is the range of  $X_n(\cdot)$ . By Donsker's Invariance Principle  $R_n \xrightarrow{a} \rho_B$ , where  $\rho_B$  is the range of the Brownian motion on [0, 1].

**Q3** Let  $(B(t), t \ge 0)$  be a standard Brownian motion with natural filtration  $(\mathcal{F}_t, t \ge 0)$ . Consider A(t) = |B(t)|, the absolute value of the Brownian motion. The process  $(A(t), t \ge 0)$  is called the *reflected Brownian motion*.

- (i) Determine the probability density function  $f_{A(t)}(x)$  of the random variable A(t).
- (ii) Determine the conditional probability density function of A(t) given that A(s) = x, for x, s > 0.
- (iii) Justify that  $(A(t), t \ge 0)$  is a Markov process by showing that for  $0 \le s < t$

$$\mathbb{E}[g(A(t)) | \mathcal{F}_s] = \mathbb{E}[g(A(t)) | A(s)]$$

for every bounded measurable function  $g : \mathbb{R}_+ \to \mathbb{R}$ .

- (iv) Is the reflected Brownian motion a martingale, a submartingale, a supermartingale or none of these?
- (v) For x > 0, let  $\tau_x = \inf\{t \ge 0 : A(t) = x\}$ . Show that  $\tau_x < \infty$  a.s.. [Hint: you may use that  $\{\tau_x \le t\} \supset \{A(t) \ge x\}$ .]

**Q3 solution** (i) The function  $x \to |x|$  is smooth and 2-to-1 everywhere (with the exception of 0), with derivative  $\pm 1$ . Since A(t) = |B(t)|, the density of A(t) is

$$f_{A(t)}(x) = \frac{2}{\sqrt{2\pi t}} \exp(-x^2/(2t)), \quad x > 0,$$

corresponding to the 'folded normal distribution'.

(ii) Using notation p(t - s, x, y) for the transition density of the Brownian motion (for moving from B(s) = x to B(t) = y) we have for  $s < t, x \in \mathbb{R}, y > 0$  by symmetry of the centred normal distribution

$$f_{A(t)|B(s)=x}(y) = p(t-s, x, y) + p(t-s, x, -y) = p(t-s, -x, y) + p(t-s, -x, -y) = f_{A(t)|B(s)=-x}(y).$$

Hence by the total probability formula for  $x \ge 0$ 

$$f_{A(t)|A(s)=x}(y) = f_{A(t)|B(s)=x}(y) = f_{A(t)|B(s)=-x}(y) = p(t-s,x,y) + p(t-s,x,-y).$$

(iii) The Brownian motion itself is a Markov process, therefore

$$\mathbb{E}[g(A(t)) | \mathcal{F}_s] = \mathbb{E}[g(A(t)) | B(s)].$$

But for  $x \ge 0$  from part (ii)

$$\mathbb{E}[g(A(t))|B(s) = x] = \int_0^\infty g(y) f_{A(t)|B(s) = x}(y) dy = \int_0^\infty g(y) f_{A(t)|A(s) = x}(y) dy = E[g(A(t))|A(s) = x]$$

and because  $x \ge 0$  is arbitrary

$$\mathbb{E}[g(A(t)) | \mathcal{F}_s] = \mathbb{E}[g(A(t)) | A(s)]$$

as wanted.

(iv) Since the function  $x \mapsto |x|$  is convex, we may apply Jenssen's inequality to the conditional expectation to obtain for s < t

$$\mathbb{E}[A(t)|\mathcal{F}_s] = \mathbb{E}[|B(t)||\mathcal{F}_s] \ge |\mathbb{E}[B(t)|\mathcal{F}_s]| = |B(s)| = A(s)$$

where  $\mathbb{E}[B(t)|\mathcal{F}_s] = B(s)$  holds because the Brownian motion is a martingale. Thus  $(A(t), t \ge 0)$  is a submartingale.

(v) Using  $B(t) \stackrel{d}{=} \sqrt{t}B(1) \sim \mathcal{N}(0,1)$ 

$$\mathbb{P}(\tau_x \le t) \ge \mathbb{P}(A(t) \ge x) = \mathbb{P}(|B(t)| \ge x) = \mathbb{P}(|B(1)| \ge x/\sqrt{t}) = 2(1 - \Phi(x/\sqrt{t})),$$

where  $\Phi$  is the cumulative distribution function of the  $\mathcal{N}(0, 1)$ -distribution. Letting  $t \to \infty$  we have  $\Phi(x/\sqrt{t}) \to 1/2$ , so  $2(1 - \Phi(x/\sqrt{t})) \to 1$  and  $\mathbb{P}(\tau_x \leq t) \to 1$ . Now from

$$1 - \mathbb{P}(\tau_x < \infty) = \mathbb{P}(\tau_x = \infty) \le \mathbb{P}(\tau_x > t) = 1 - \mathbb{P}(\tau_x \le t)$$

we obtain

$$\mathbb{P}(\tau_x = \infty) = 0, \quad \mathbb{P}(\tau_x < \infty) = 1.$$