You may refer without proof to results from the course (theorems, examples, etc.).
Q1 This question is concerned with a set $C=\cap_{n=1}^{\infty} C_{n}$, where C_{1}, C_{2}, \ldots are constructed recursively as follows ${ }^{(1)}$. Start with the closed unit interval $C_{1}=[0,1]$. For each $n=1,2, \ldots$ the set C_{n} is a union of 2^{n-1} disjoint closed intervals, called components. The set C_{n+1} is obtained by removing from each component $[a, b]$ of C_{n} a middle open interval of size $(b-a) /(n+1)^{2}$, so that

$$
[a, b] \cap C_{n+1}=\left[a, \frac{b+a}{2}-\frac{b-a}{2(n+1)^{2}}\right] \bigcup\left[\frac{b+a}{2}+\frac{b-a}{2(n+1)^{2}}, b\right] .
$$

For instance, $C_{2}=\left[0, \frac{3}{8}\right] \cup\left[\frac{5}{8}, 1\right]$. Let for $x \in \mathbb{R}$

$$
F(x)=\frac{\lambda(C \cap[0, x])}{\lambda(C)}, \quad F(x)=\frac{\lambda\left(C_{n} \cap[0, x]\right)}{\lambda\left(C_{n}\right)}, \quad n \in \mathbb{N},
$$

where λ is the Lebesgue measure.
(i) Is C a Borel set? What is the cardinality of C ? Is there an open interval contained in C ?
(ii) Determine $\lambda\left(C_{n}\right)$ for $n=1,2, \ldots$ [Hint: find first the quotient $\lambda\left(C_{n+1}\right) / \lambda\left(C_{n}\right)$.]
(iii) Prove that $\lambda(C)=\lim _{n \rightarrow \infty} \lambda\left(C_{n}\right)$ and calculate $\lambda(C)$ explicitly.
(iii) Show that F and F_{n} are continuous distribution functions of some probability measures μ and μ_{n}, respectively, and that μ_{n} weakly converge to μ as $n \rightarrow \infty$.
(iv) Calculate the density $f_{n}(x)=F_{n}^{\prime}(x)$ for all x where the derivative exists.
(v) Find the limit $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$ for all x such that $F_{n}^{\prime}(x)$ exists for every n.

Q1 solution (i) Each C_{n} is a finite union of closed intervals, hence Borel, and C is Borel as a countable intersection of Borel sets. Like for the standard Cantor set, points of C can be encoded by infinite binary sequences, hence the cardinality of C is continuum. Each component of C_{n} has length at not bigger than $2^{-(n-1)}$, and since this number approaches 0 as $n \rightarrow \infty$, the set C contains no intervals.
(ii) By the construction we have recursion

$$
\lambda\left(C_{n+1}\right)=\left(1-\frac{1}{(n+1)^{2}}\right) \lambda\left(C_{n}\right), \quad \lambda\left(C_{1}\right)=1,
$$

whence

$$
\lambda\left(C_{n}\right)=\prod_{k=1}^{n-1}\left(1-\frac{1}{(k+1)^{2}}\right)=\prod_{k=1}^{n-1} \frac{k(k+2)}{(k+1)^{2}}=\frac{1}{2}\left(1+\frac{1}{n}\right) .
$$

(iii) Since $C_{1} \supset C_{2} \supset \cdots$, we have $\lambda(C)=\lim _{n \rightarrow \infty} \lambda\left(C_{n}\right)$ by the monotonicity property of measure. Using the result in (ii), sending $n \rightarrow \infty$ yields $\lambda(C)=\frac{1}{2}$.
(iii) For every measurable A, the function $x \mapsto \lambda(A \cap[0, x])$ is continuous because $\lambda(\{x\})=0$. Thus F_{n}, F are continuous distribution functions on \mathbb{R}, with $F_{n}(x)=F(x)=0$ for $x \leq 0$ and $F_{n}(x)=F(x)=1$ for $x \geq 1$. By continuity of F, the weak convergence $\mu_{n} \Rightarrow \mu$ means convergence $F_{n}(x) \rightarrow F(x)$ for every $x \in \mathbb{R}$; and the latter is a consequence of $\lambda\left(C_{n} \cap[0, x]\right) \rightarrow \lambda(C \cap[0, x])$, which holds as in part (ii).
(iv) Measure μ_{n} is the uniform distribution on C_{n}, with density $f_{n}(x)=0$ for $x \notin C_{n}$ and $f_{n}(x)=$

[^0]$1 / \lambda\left(C_{n}\right)=\frac{2 n}{n+1}$ in the interior points of C_{n}. The derivative $F_{n}^{\prime}(x)$ does not exist if x is an endpoint of a component of C_{n}.
(v) If x is an internal point of every C_{n}, then $f_{n}(x) \rightarrow f(x)=1 / \lambda(C)=2$, if $x \in \mathbb{R} \backslash C$ we have $f_{n}(x)=0=f(x)$ for all sufficiently large n. If x is a boundary point of one of C_{n} 's (endpoint of a component), $f_{n}^{\prime}(x)$ does not exist for large enough n. [In fact, $f(x)=F^{\prime}(x)$ everywhere with the exception of the latter countable set.]

Q2 Let ξ_{1}, ξ_{2}, \ldots be a sequence of independent, identically distributed random variables with mean $\mathbb{E} \xi_{i}=0$ and variance $\operatorname{Var}\left(\xi_{i}\right)=\sigma^{2}<\infty$. Let $S_{0}=0$, and $S_{n}=\xi_{1}+\cdots+\xi_{n}, \mathcal{F}_{n}=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$ for $n \in \mathbb{N}$.
(i) For positive function $\psi(n), n \in \mathbb{N}$, what are possible values for probability of the event $A=$ $\left\{\left|S_{n}\right|>\psi(n)\right.$ i.o. $\}$ (where i.o. means infinitely often)? Give examples of all possibilities.
(ii) Let $M_{n}=\sum_{1 \leq i<j \leq n} \xi_{i} \xi_{j}$. Show that $\left(M_{n}, n \in \mathbb{N}\right)$ is a martingale.
(iii) Let τ be a stopping time adapted to the filtration $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$, with $\mathbb{E} \tau<\infty$. For martingale from part (ii), give definition of the random variable M_{τ} and show that $\mathbb{E} M_{\tau}=0$. [Hint: use Wald's identities].
(iv) Let

$$
R_{n}=\frac{\max _{0 \leq i \leq j \leq n}\left|S_{i}-S_{j}\right|}{\sigma \sqrt{n}}
$$

Show that the random variables R_{n} converge in distribution as $n \rightarrow \infty$. You are not asked to find the limit distribution explicitly.

Q2 solution (i) Event A belongs to $\sigma\left(\xi_{n}, \xi_{n+1}, \ldots\right)$ for every n, hence is a tail event, with probability 0 or 1 , according to Kolmogorov's $0-1$ law. Let $A_{n}=\left\{\left|S_{n}\right|>\psi(n)\right\}$, then by Chebyshev's inequality

$$
\mathbb{P}\left(A_{n}\right)<\frac{\operatorname{Var}\left(S_{n}\right)}{n^{3}}=\frac{\sigma^{2} n}{\psi^{2}(n)},
$$

so choosing $\psi(n)=n^{3 / 2}$ we have $\sum_{n} \mathbb{P}\left(A_{n}\right)<\infty$ hence $\mathbb{P}(A)=0$ by the Borel-Cantelli lemma.
To illustrate the second possibility, let $\left(S_{n}\right)$ be a simple symmetric random walk and $\psi(n) \equiv 1$; then $\mathbb{P}(A)=1$, because the random walk is recurrent and $\left|S_{n}\right|>1$ holds infinitely often.
(ii) Write $M_{n+1}=M_{n}+\xi_{n+1} S_{n}$, and observe that by measurability and independence

$$
\mathbb{E}\left[M_{n}+\xi_{n+1} S_{n} \mid \mathcal{F}_{n}\right]=M_{n}+S_{n} \mathbb{E}\left[\xi_{n+1} \mid \mathcal{F}_{n}\right]=M_{n}+S_{n} \mathbb{E}\left[\xi_{n+1}\right]=M_{n} .
$$

(iii) $M_{\tau}=\sum_{n=1}^{\infty} M_{n} 1(\tau=n)$ (where $1(\cdots)$ is indicator variable. Squaring yields,

$$
S_{n}^{2}=\sum_{j=1}^{n} \xi_{j}^{2}+2 M_{n}
$$

so

$$
S_{\tau}^{2}=\sum_{j=1}^{\tau} \xi_{j}^{2}+2 M_{\tau}
$$

By the first Wald identity applied to i.i.d. ξ_{j}^{2}

$$
\mathbb{E} \sum_{j=1}^{\tau} \xi_{j}^{2}=\sigma^{2} \mathbb{E} \tau
$$

and by the second $\mathbb{E} S_{\tau}^{2}=\sigma^{2} \mathbb{E} \tau$, hence $\mathbb{E} M_{\tau}=0$. [Under additional assumptions on τ or ξ_{j} 's the result can be concluded straight from Doob's Optional Sampling theorem.]
(iv) For continuous function $x:[0,1] \rightarrow \mathbb{R}$ let $\rho_{x}:=\sup _{0 \leq s \leq t \leq 1}|x(t)-x(s)|$, the functional called the range of function. Check that $\left|\rho_{x}-\rho_{y}\right| \leq 2 \sup _{t \in[0,1]}|x(t)-y(t)|$, which implies that the range $x \mapsto \rho_{x}$ is a continuous functional on the metric space $C[0,1]$ of continuous functions. Let

$$
X_{n}(t)=\frac{1}{\sigma \sqrt{n}}\left(\sum_{j=1}^{\lfloor n t\rfloor} \xi_{j}+(n t-\lfloor n t\rfloor) \xi_{\lfloor n t\rfloor+1}\right), t \in[0,1]
$$

be a (random) continuous function, whose graph is a broken line obtained by connecting the points

$$
\left(\frac{k}{n}, \frac{S_{k}}{\sigma \sqrt{n}}\right), \quad k=0, \ldots, n
$$

The random variable R_{n} in question is the range of $X_{n}(\cdot)$. By Donsker's Invariance Principle $R_{n} \xrightarrow{d}$ ρ_{B}, where ρ_{B} is the range of the Brownian motion on $[0,1]$.

Q3 Let $(B(t), t \geq 0)$ be a standard Brownian motion with natural filtration $\left(\mathcal{F}_{t}, t \geq 0\right)$. Consider $A(t)=|B(t)|$, the absolute value of the Brownian motion. The process $(A(t), t \geq 0)$ is called the reflected Brownian motion.
(i) Determine the probability density function $f_{A(t)}(x)$ of the random variable $A(t)$.
(ii) Determine the conditional probability density function of $A(t)$ given that $A(s)=x$, for $x, s>0$.
(iii) Justify that $(A(t), t \geq 0)$ is a Markov process by showing that for $0 \leq s<t$

$$
\mathbb{E}\left[g(A(t)) \mid \mathcal{F}_{s}\right]=\mathbb{E}[g(A(t)) \mid A(s)]
$$

for every bounded measurable function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$.
(iv) Is the reflected Brownian motion a martingale, a submartingale, a supermartingale or none of these?
(v) For $x>0$, let $\tau_{x}=\inf \{t \geq 0: A(t)=x\}$. Show that $\tau_{x}<\infty$ a.s.. [Hint: you may use that $\left\{\tau_{x} \leq t\right\} \supset\{A(t) \geq x\}$.]

Q3 solution (i) The function $x \rightarrow|x|$ is smooth and 2-to-1 everywhere (with the exception of 0), with derivative ± 1. Since $A(t)=|B(t)|$, the density of $A(t)$ is

$$
f_{A(t)}(x)=\frac{2}{\sqrt{2 \pi t}} \exp \left(-x^{2} /(2 t)\right), \quad x>0
$$

corresponding to the 'folded normal distribution'.
(ii) Using notation $p(t-s, x, y)$ for the transition density of the Brownian motion (for moving from $B(s)=x$ to $B(t)=y$) we have for $s<t, x \in \mathbb{R}, y>0$ by symmetry of the centred normal distribution

$$
f_{A(t) \mid B(s)=x}(y)=p(t-s, x, y)+p(t-s, x,-y)=p(t-s,-x, y)+p(t-s,-x,-y)=f_{A(t) \mid B(s)=-x}(y) .
$$

Hence by the total probability formula for $x \geq 0$

$$
f_{A(t) \mid A(s)=x}(y)=f_{A(t) \mid B(s)=x}(y)=f_{A(t) \mid B(s)=-x}(y)=p(t-s, x, y)+p(t-s, x,-y) .
$$

(iii) The Brownian motion itself is a Markov process, therefore

$$
\mathbb{E}\left[g(A(t)) \mid \mathcal{F}_{s}\right]=\mathbb{E}[g(A(t)) \mid B(s)] .
$$

But for $x \geq 0$ from part (ii)
$\mathbb{E}[g(A(t)) \mid B(s)=x]=\int_{0}^{\infty} g(y) f_{A(t) \mid B(s)=x}(y) \mathrm{d} y=\int_{0}^{\infty} g(y) f_{A(t) \mid A(s)=x}(y) \mathrm{d} y=E[g(A(t)) \mid A(s)=x]$ and because $x \geq 0$ is arbitrary

$$
\mathbb{E}\left[g(A(t)) \mid \mathcal{F}_{s}\right]=\mathbb{E}[g(A(t)) \mid A(s)]
$$

as wanted.
(iv) Since the function $x \mapsto|x|$ is convex, we may apply Jenssen's inequality to the conditional expectation to obtain for $s<t$

$$
\mathbb{E}\left[A(t) \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[|B(t)| \mid \mathcal{F}_{s}\right] \geq\left|\mathbb{E}\left[B(t) \mid \mathcal{F}_{s}\right]\right|=|B(s)|=A(s),
$$

where $\mathbb{E}\left[B(t) \mid \mathcal{F}_{s}\right]=B(s)$ holds because the Brownian motion is a martingale. Thus $(A(t), t \geq 0)$ is a submartingale.
(v) Using $B(t) \stackrel{d}{=} \sqrt{t} B(1) \sim \mathcal{N}(0,1)$

$$
\mathbb{P}\left(\tau_{x} \leq t\right) \geq \mathbb{P}(A(t) \geq x)=\mathbb{P}(|B(t)| \geq x)=\mathbb{P}(|B(1)| \geq x / \sqrt{t})=2(1-\Phi(x / \sqrt{t}))
$$

where Φ is the cumulative distribution function of the $\mathcal{N}(0,1)$-distribution. Letting $t \rightarrow \infty$ we have $\Phi(x / \sqrt{t}) \rightarrow 1 / 2$, so $2(1-\Phi(x / \sqrt{t})) \rightarrow 1$ and $\mathbb{P}\left(\tau_{x} \leq t\right) \rightarrow 1$. Now from

$$
1-\mathbb{P}\left(\tau_{x}<\infty\right)=\mathbb{P}\left(\tau_{x}=\infty\right) \leq \mathbb{P}\left(\tau_{x}>t\right)=1-\mathbb{P}\left(\tau_{x} \leq t\right)
$$

we obtain

$$
\mathbb{P}\left(\tau_{x}=\infty\right)=0, \quad \mathbb{P}\left(\tau_{x}<\infty\right)=1
$$

[^0]: ${ }^{(1)}$ Compare with the construction of the standard Cantor set.

