Measure Theory Fourth Week



A function f is continuous if
f7Y(A) is open

for every open set A.

A function f is measurable if
f7YA) is measurable

for every measurable set A.

f X — Y requires a concept of measur-

able for both X and Y.

When f : X — [—o00, 00| the concept of
measurable in |[—o00, 00| is Borel measurable.



Lemma (2.1.1)

Let (X, A) be a measurable space,
and let A € A.

For a function f : A — |[—o00,+00| the
following are equivalent:

(a) for every real number ¢ the set {z €

A | f(z) <t} belongs to A,

(b) for every real number ¢ the set {x €
A | f(x) < t} belongs to A,

(c) for every real number ¢ the set {z €

A | f(z) >t} belongs to A,

(d) for every real number t the set {x €&
A | f(x) > t} belongs to A.



(e Al flr) <t} =
UE{re Al flz) <t -3}
shows that (a) implies (b).

The symmetric argument shows that (¢) im-
plies (d).

Closure by complementation shows that (a)
is equivalent to (d) and (c) is equivalent to

(b).

A circle of implication is completed.



Definition: A function is measurable with
respect to A if any/all of the above condi-
tions are satisfied.

Notice that this is equivalent to f~1(B) €
A for every Borel subset B C R.

How to show this: define B as the collection
of all subsets in R such that

B € Bif and only if f71(B) € A.

It is easy to see that B is a sigma-algebra,
and it contains the intervals, so it contains
the Borel sets.



Examples:

(a) Continuous real valued functions are Borel
measurable.

(b) Non-decreasing functions f : I — R are
Borel measurable.

(c) A function is simple if it takes on only
finitely many values.

A simple function f : X — [—o00,4+0o0] is
measurable if f~1(a/) is measurable for each
of the finitely many values «.



Lemma (2.1.3): Let (X,.A) be a mea-
surable space and A a subset of X in A.

Let f,g : A — [—00,+00] be measurable

functions.

The following sets belong to A:
{z e Al flz) <g(z)},

{re Al flz) <g(x)}

and {z € A| f(x) = g(z)}.



Proof:

{o] fla) < glx)} =
Ureq(fe | f@) < rynfe | r < g)})
= {o| f(z) < gla)} € A

By complementation,

{z | flz) > g(z)} € A
and by symmetry

1zl g(x) = fz)}, {z ] glx) < flx); € A

=z | f(z) = gz)} =
17| g(x) > fla)\z [ g(z) > f(z); € A



If f, g have a common domain,
(f V g)(x) = max(f(z), g(x))
f A g)(x) == min(f(z), g(x)).

If fi, fo,... is a sequence of functions on
the same domain,

define the functions sup,, f;,, inf,, f,,, imsup,, f,.
lim inf,, f,, pointwise,

and where it exists likewise lim,, f,,.



Lemma: If f and g are measurable then
f A gand fV g are measurable.

Proof:

for every choice of ¢,
{z | (fAg)x) <t} =
{z | f(z) <t} U{z | g(z) <t}

{z | (fVg)lr) <t} =
{z | f(z) <tyn{z | g(z) <t}
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Lemma: If the f,, are measurable

then the functions

sup,, Jn,
inf,, fn,

lim sup,, fn,
liminf,, f,

and lim,, f,, are measurable.
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Proof:

for every t,
{2 | (sup, fu)(z) <t} =
Moz | falz) <t}

{z | (inf, fo)(z) <t} =
U | fulx) <t}

{z | (limsup,, fo)(z) >t} =
Uy Moty iz | supie, fulz) >t + %}

{z | (liminf, f,)(x) <t} =

Uy M2y { | inf2, filw) <t — 3

i)
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And finally lim,, f,, is defined on the set where
limsup,, f, = liminf,, f,,

which is measurable, and on this set

{z | (lim, f,)(x) >t} is equal either to

{z | (limsup,, f)(x) >t} or
{z | (liminf, f)(z) > t}.

Notice that we could also show that
{z | (liminf, f,)(z) >t} =
X U e x| felx) > t+ 3}
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Lemma:

Real valued measurable functions form a sub-
space, or

when f, g are real valued and measurable
and 7 is a real number

then f+ ¢ and r f are measurable functions.
Proof:
r = 0 trivial

r>0:{x|rflr) <t} =A{x f(x)ﬁ%}

r<0:{z|rflz) <t}={z| f(z)>1}.

{o] fl2)+ g(x) < 1} =
Ureq(fe | f@) < r¥nfa | gle) < t—r})
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Lemma: When f, g are measurable real
valued functions

then fg is measurable

and g is measurable where g # 0.

Proof: First, f2 is measurable, as for every
t>0

{z | f22) <t} =
{x ]| —Vt< flx) <t}

Then notice that (f + ¢)* = f*+ ¢* +2fg.

so that the measurability of f? and ¢® im-
[+9)*=f*~¢*
5 .

plies the measurability of fg = (
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The set where g # 0 is measurable,

and {z | {8 <1} =

213

{7 g(x)>0;n{iz| flz) <tg(z)}

unioned with

{z|glz) <0}niz| flz) >tg(z)} O

Implied is also that | f| is a measurable func-
tion if f is measurable,

since | f(z)] = max(f(z), = f(z)).

Also any funtion can be broken into its pos-
itive and negative parts, both measurable:

fT(x) = max(f(x),0),
f(x) = —min(f(z),0) and
f=1 -t

16



Lemma: Let A be a measurable subset of
X.

For every measurable function f : A —
0, 00]

there is an infinite sequence f1 < fo < ..

of simple functions with values in [0, c0)
such that

f(x) =lim;_, fi(x) for all x € A.
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Proof: For every n = 1,2,3,... and 0 <
k< n2"

define A, = {z | & < f(z) < &

2”
and A, pon = {x | f(x) > n}.

Define f,(z) := 2% ifx e A,
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Let (X, A, 1) be a measure space.

A property holds p-almost everywhere if

the set of points where it does not hold is
contained in a set of measure zero with re-
spect to .

For example, the real valued function f(t) =
% is defined A*-almost everywhere,

as it is not defined only for 0.

The real numbers are almost everywhere ir-
rational,

because the set of rational numbers is a set
of measure zero.
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Lemma: Let (X, A, 1) be a measure space
such that p is complete.

Let f,g : X — |—o00,+00] be functions
such that

f is A-measurable and

f = g p-almost everywhere.

Then g is A measurable.

Proof: Let N be a subset with u(N) = 0
where {x | f(x) # g(x)} is contained in N.

For every ¢,

(o] gle) <t} =

1z | flz) <t} N (XAN)

unioned with {x | g(z) <t} N N,

both sets A measurable.
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Lemma: (X, A, 11) is a measure space with
{4 complete.

If f, : X — [—00,4+00] is a sequence of A
measurable functions and f : X — [—o0, +00]
is a function such that lim,, o f,(x) = f(x)
almost everywhere,

then f is a A measurable function.

Proof: Where it is defined, by previous
lemma necessarily on a measurable set,

lim, o0 fn(x) is measurable.

Then by the previous lemma, f is also mea-
surable.
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