
Measure Theory Fourth Week
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A function f is continuous if

f−1(A) is open

for every open set A.

A function f is measurable if

f−1(A) is measurable

for every measurable set A.

f : X → Y requires a concept of measur-
able for both X and Y .

When f : X → [−∞,∞] the concept of
measurable in [−∞,∞] is Borel measurable.
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Lemma (2.1.1)

Let (X,A) be a measurable space,

and let A ∈ A.

For a function f : A → [−∞,+∞] the
following are equivalent:

(a) for every real number t the set {x ∈
A | f (x) ≤ t} belongs to A,

(b) for every real number t the set {x ∈
A | f (x) < t} belongs to A,

(c) for every real number t the set {x ∈
A | f (x) ≥ t} belongs to A,

(d) for every real number t the set {x ∈
A | f (x) > t} belongs to A.
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{x ∈ A | f (x) < t} =

∪∞i=1{x ∈ A | f (x) ≤ t− 1
i}

shows that (a) implies (b).

The symmetric argument shows that (c) im-
plies (d).

Closure by complementation shows that (a)
is equivalent to (d) and (c) is equivalent to
(b).

A circle of implication is completed.
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Definition: A function is measurable with
respect to A if any/all of the above condi-
tions are satisfied.

Notice that this is equivalent to f−1(B) ∈
A for every Borel subset B ⊆ R.

How to show this: define B as the collection
of all subsets in R such that

B ∈ B if and only if f−1(B) ∈ A.

It is easy to see that B is a sigma-algebra,
and it contains the intervals, so it contains
the Borel sets.
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Examples:

(a) Continuous real valued functions are Borel
measurable.

(b) Non-decreasing functions f : I → R are
Borel measurable.

(c) A function is simple if it takes on only
finitely many values.

A simple function f : X → [−∞,+∞] is
measurable if f−1(α) is measurable for each
of the finitely many values α.
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Lemma (2.1.3): Let (X,A) be a mea-
surable space and A a subset of X in A.

Let f, g : A → [−∞,+∞] be measurable
functions.

The following sets belong to A:

{x ∈ A | f (x) < g(x)},

{x ∈ A | f (x) ≤ g(x)}

and {x ∈ A | f (x) = g(x)}.
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Proof:

{x | f (x) < g(x)} =

∪r∈Q({x | f (x) < r} ∩ {x | r < g(x)}),

⇒ {x | f (x) < g(x)} ∈ A.

By complementation,

{x | f (x) ≥ g(x)} ∈ A

and by symmetry

{x | g(x) ≥ f (x)}, {x | g(x) < f (x)} ∈ A.

⇒ {x | f (x) = g(x)} =

{x | g(x) ≥ f (x)}\{x | g(x) > f (x)} ∈ A.
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If f, g have a common domain,

(f ∨ g)(x) := max(f (x), g(x))

f ∧ g)(x) := min(f (x), g(x)).

If f1, f2, . . . is a sequence of functions on
the same domain,

define the functions supn fn, infn fn, lim supn fn,
lim infn fn pointwise,

and where it exists likewise limn fn.
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Lemma: If f and g are measurable then
f ∧ g and f ∨ g are measurable.

Proof:

for every choice of t,

{x | (f ∧ g)(x) < t} =

{x | f (x) < t} ∪ {x | g(x) < t}

{x | (f ∨ g)(x) < t} =

{x | f (x) < t} ∩ {x | g(x) < t}
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Lemma: If the fn are measurable

then the functions

supn fn,

infn fn,

lim supn fn,

lim infn fn

and limn fn are measurable.
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Proof:

for every t,

{x | (supn fn)(x) ≤ t} =

∩n{x | fn(x) ≤ t},

{x | (infn fn)(x) < t} =

∪n{x | fn(x) < t},

{x | (lim supn fn)(x) > t} =

∪∞i=1 ∩∞n=1 {x | sup∞k=n fk(x) > t + 1
i}

{x | (lim infn fn)(x) < t} =

∪∞i=1 ∩∞n=1 {x | inf∞k=n fk(x) < t− 1
i}.
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And finally limn fn is defined on the set where
lim supn fn = lim infn fn,

which is measurable, and on this set

{x | (limn fn)(x) ≥ t} is equal either to

{x | (lim supn f )(x) ≥ t} or

{x | (lim infn f )(x) ≥ t}.

Notice that we could also show that

{x | (lim infn fn)(x) > t} =

∪∞i=1 ∪∞n=1 ∩∞k=n{x | fk(x) > t + 1
i}.
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Lemma:

Real valued measurable functions form a sub-
space, or

when f, g are real valued and measurable
and r is a real number

then f+g and rf are measurable functions.

Proof:

r = 0 trivial

r > 0: {x | rf (x) ≤ t} = {x | f (x) ≤ t
r}.

r < 0: {x | rf (x) ≤ t} = {x | f (x) ≥ t
r}.

{x | f (x) + g(x) < t} =

∪r∈Q({x | f (x) < r}∩{x | g(x) < t− r}).
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Lemma: When f, g are measurable real
valued functions

then fg is measurable

and f
g is measurable where g 6= 0.

Proof: First, f 2 is measurable, as for every
t > 0

{x | f 2(x) < t} =

{x | −
√
t < f (x) <

√
t}.

Then notice that (f + g)2 = f 2 + g2 + 2fg,

so that the measurability of f 2 and g2 im-

plies the measurability of fg = (f+g)2−f2−g2
2 .
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The set where g 6= 0 is measurable,

and {x | f(x)g(x) < t} =

{x | g(x) > 0} ∩ {x | f (x) < tg(x)}

unioned with

{x | g(x) < 0} ∩ {x | f (x) > tg(x)} 2

Implied is also that |f | is a measurable func-
tion if f is measurable,

since |f (x)| = max(f (x),−f (x)).

Also any funtion can be broken into its pos-
itive and negative parts, both measurable:

f+(x) = max(f (x), 0),

f−(x) = −min(f (x), 0) and

f = f+ − f−.
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Lemma: Let A be a measurable subset of
X .

For every measurable function f : A →
[0,∞]

there is an infinite sequence f1 ≤ f2 ≤ . . .
of simple functions with values in [0,∞)
such that

f (x) = limi→∞ fi(x) for all x ∈ A.
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Proof: For every n = 1, 2, 3, . . . and 0 ≤
k < n2n

define An,k = {x | k2n ≤ f (x) < k+1
2n }

and An,n2n = {x | f (x) ≥ n}.

Define fn(x) := k
2n if x ∈ An,k.
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Let (X,A, µ) be a measure space.

A property holds µ-almost everywhere if

the set of points where it does not hold is
contained in a set of measure zero with re-
spect to µ.

For example, the real valued function f (t) =
1
t is defined λ∗-almost everywhere,

as it is not defined only for 0.

The real numbers are almost everywhere ir-
rational,

because the set of rational numbers is a set
of measure zero.
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Lemma: Let (X,A, µ) be a measure space
such that µ is complete.

Let f, g : X → [−∞,+∞] be functions
such that

f is A-measurable and

f = g µ-almost everywhere.

Then g is A measurable.

Proof: Let N be a subset with µ(N) = 0
where {x | f (x) 6= g(x)} is contained in N .

For every t,

{x | g(x) ≤ t} =

{x | f (x) ≤ t} ∩ (X\N)

unioned with {x | g(x) ≤ t} ∩N ,

both sets A measurable.
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Lemma: (X,A, µ) is a measure space with
µ complete.

If fn : X → [−∞,+∞] is a sequence of A
measurable functions and f : X → [−∞,+∞]
is a function such that limn→∞ fn(x) = f (x)
almost everywhere,

then f is a A measurable function.

Proof: Where it is defined, by previous
lemma necessarily on a measurable set,

limn→∞ fn(x) is measurable.

Then by the previous lemma, f is also mea-
surable.
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