Measure Theory Fourth Week

A function f is continuous if $f^{-1}(A)$ is open for every open set A.

A function f is measurable if $f^{-1}(A)$ is measurable for every measurable set A.

 $f: X \to Y$ requires a concept of measurable for both X and Y.

When $f : X \to [-\infty, \infty]$ the concept of measurable in $[-\infty, \infty]$ is Borel measurable.

Lemma (2.1.1)

Let (X, \mathcal{A}) be a measurable space,

and let $A \in \mathcal{A}$.

For a function $f : A \rightarrow [-\infty, +\infty]$ the following are equivalent:

(a) for every real number t the set $\{x \in A \mid f(x) \leq t\}$ belongs to \mathcal{A} ,

(b) for every real number t the set $\{x \in A \mid f(x) < t\}$ belongs to \mathcal{A} ,

(c) for every real number t the set $\{x \in A \mid f(x) \ge t\}$ belongs to \mathcal{A} ,

(d) for every real number t the set $\{x \in A \mid f(x) > t\}$ belongs to \mathcal{A} .

$$\{ x \in A \mid f(x) < t \} =$$
$$\cup_{i=1}^{\infty} \{ x \in A \mid f(x) \le t - \frac{1}{i} \}$$

shows that (a) implies (b).

The symmetric argument shows that (c) implies (d).

Closure by complementation shows that (a) is equivalent to (d) and (c) is equivalent to (b).

A circle of implication is completed.

Definition: A function is measurable with respect to \mathcal{A} if any/all of the above conditions are satisfied.

Notice that this is equivalent to $f^{-1}(B) \in \mathcal{A}$ for every Borel subset $B \subseteq \mathbf{R}$.

How to show this: define \mathcal{B} as the collection of all subsets in \mathbf{R} such that

 $B \in \mathcal{B}$ if and only if $f^{-1}(B) \in \mathcal{A}$.

It is easy to see that \mathcal{B} is a sigma-algebra, and it contains the intervals, so it contains the Borel sets.

Examples:

(a) Continuous real valued functions are Borel measurable.

(b) Non-decreasing functions $f: I \to \mathbf{R}$ are Borel measurable.

(c) A function is *simple* if it takes on only finitely many values.

A simple function $f: X \to [-\infty, +\infty]$ is measurable if $f^{-1}(\alpha)$ is measurable for each of the finitely many values α . **Lemma (2.1.3):** Let (X, \mathcal{A}) be a measurable space and A a subset of X in \mathcal{A} .

Let $f, g : A \to [-\infty, +\infty]$ be measurable functions.

The following sets belong to \mathcal{A} :

 $\{x \in A \mid f(x) < g(x)\},\$ $\{x \in A \mid f(x) \le g(x)\}\$ and $\{x \in A \mid f(x) = g(x)\}.\$

Proof:

$$\{x \mid f(x) < g(x)\} =$$

$$\bigcup_{r \in \mathbf{Q}} (\{x \mid f(x) < r\} \cap \{x \mid r < g(x)\}),$$

$$\Rightarrow \ \{x \mid f(x) < g(x)\} \in \mathcal{A}.$$

By complementation,

$$\{x \mid f(x) \ge g(x)\} \in \mathcal{A}$$

and by symmetry
$$\{x \mid g(x) \ge f(x)\}, \{x \mid g(x) < f(x)\} \in \mathcal{A}.$$

$$\Rightarrow \{x \mid f(x) = g(x)\} =$$

$$\{x \mid g(x) \ge f(x)\} \setminus \{x \mid g(x) > f(x)\} \in \mathcal{A}.$$

If f, g have a common domain,

$$(f \lor g)(x) := \max(f(x), g(x))$$

$$f \wedge g)(x) := \min(f(x), g(x)).$$

If f_1, f_2, \ldots is a sequence of functions on the same domain,

define the functions $\sup_n f_n$, $\inf_n f_n$, $\limsup_n f_n$, $\lim \inf_n f_n$ pointwise,

and where it exists likewise $\lim_{n \to \infty} f_n$.

Lemma: If f and g are measurable then $f \wedge g$ and $f \vee g$ are measurable.

Proof:

for every choice of
$$t$$
,
 $\{x \mid (f \land g)(x) < t\} =$
 $\{x \mid f(x) < t\} \cup \{x \mid g(x) < t\}$

$$\{ x \mid (f \lor g)(x) < t \} =$$

$$\{ x \mid f(x) < t \} \cap \{ x \mid g(x) < t \}$$

Lemma: If the f_n are measurable

then the functions

$$\begin{split} \sup_{n} f_{n}, \\ \inf_{n} f_{n}, \\ \limsup_{n} f_{n}, \\ \lim \inf_{n} f_{n} \\ \inf \inf_{n} f_{n} \\ \text{and } \lim_{n} f_{n} \text{ are measurable.} \end{split}$$

Proof:

for every
$$t$$
,
 $\{x \mid (\sup_n f_n)(x) \le t\} =$
 $\cap_n \{x \mid f_n(x) \le t\},$
 $\{x \mid (\inf_n f_n)(x) < t\} =$
 $\cup_n \{x \mid f_n(x) < t\},$
 $\{x \mid (\limsup_n f_n)(x) > t\} =$
 $\cup_{i=1}^{\infty} \cap_{n=1}^{\infty} \{x \mid \sup_{k=n}^{\infty} f_k(x) > t + \frac{1}{i}\}$
 $\{x \mid (\liminf_n f_n)(x) < t\} =$
 $\cup_{i=1}^{\infty} \cap_{n=1}^{\infty} \{x \mid \inf_{k=n}^{\infty} f_k(x) < t - \frac{1}{i}\}.$

And finally $\lim_{n \to \infty} f_n$ is defined on the set where $\limsup_{n \to \infty} f_n = \liminf_{n \to \infty} f_n$,

which is measurable, and on this set

- $\{x \mid (\lim_n f_n)(x) \ge t\}$ is equal either to
- $\{x \mid (\limsup_n f)(x) \ge t\} \quad \text{or}$
- $\{x \mid (\liminf_n f)(x) \ge t\}.$

Notice that we could also show that $\{x \mid (\liminf_n f_n)(x) > t\} =$ $\bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} \cap_{k=n}^{\infty} \{x \mid f_k(x) > t + \frac{1}{i}\}.$

Lemma:

Real valued measurable functions form a subspace, or

when f, g are real valued and measurable and r is a real number

then f + g and rf are measurable functions.

Proof:

 $\begin{aligned} r &= 0 \text{ trivial} \\ r &> 0: \ \{x \mid rf(x) \leq t\} = \{x \mid f(x) \leq \frac{t}{r}\}. \\ r &< 0: \ \{x \mid rf(x) \leq t\} = \{x \mid f(x) \geq \frac{t}{r}\}. \\ \{x \mid f(x) + g(x) < t\} = \\ \cup_{r \in \mathbf{Q}}(\{x \mid f(x) < r\} \cap \{x \mid g(x) < t - r\}). \end{aligned}$

Lemma: When f, g are measurable real valued functions

then fg is measurable

and $\frac{f}{q}$ is measurable where $q \neq 0$.

Proof: First, f^2 is measurable, as for every t > 0

$$\{x \mid f^2(x) < t\} =$$

$$\{x \mid -\sqrt{t} < f(x) < \sqrt{t}\}.$$

Then notice that $(f+g)^2 = f^2 + g^2 + 2fg$, so that the measurability of f^2 and g^2 implies the measurability of $fg = \frac{(f+g)^2 - f^2 - g^2}{2}$.

The set where
$$g \neq 0$$
 is measurable,
and $\{x \mid \frac{f(x)}{g(x)} < t\} =$
 $\{x \mid g(x) > 0\} \cap \{x \mid f(x) < tg(x)\}$
unioned with
 $\{x \mid g(x) < 0\} \cap \{x \mid f(x) > tg(x)\}$

Implied is also that |f| is a measurable function if f is measurable,

since
$$|f(x)| = \max(f(x), -f(x)).$$

Also any function can be broken into its positive and negative parts, both measurable:

$$f^+(x) = \max(f(x), 0),$$

 $f^-(x) = -\min(f(x), 0)$ and
 $f = f^+ - f^-.$

Lemma: Let A be a measurable subset of X.

For every measurable function $f : A \rightarrow [0,\infty]$

there is an infinite sequence $f_1 \leq f_2 \leq \ldots$ of simple functions with values in $[0, \infty)$ such that

 $f(x) = \lim_{i \to \infty} f_i(x)$ for all $x \in A$.

Proof: For every $n = 1, 2, 3, \ldots$ and $0 \le k < n2^n$

define $A_{n,k} = \{x \mid \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n}\}$ and $A_{n,n2^n} = \{x \mid f(x) \ge n\}.$

Define $f_n(x) := \frac{k}{2^n}$ if $x \in A_{n,k}$.

Let (X, \mathcal{A}, μ) be a measure space.

A property holds μ -almost everywhere if

the set of points where it does not hold is contained in a set of measure zero with respect to μ .

For example, the real valued function $f(t) = \frac{1}{t}$ is defined λ^* -almost everywhere,

as it is not defined only for 0.

The real numbers are almost everywhere irrational,

because the set of rational numbers is a set of measure zero.

Lemma: Let (X, \mathcal{A}, μ) be a measure space such that μ is complete.

Let $f, g : X \to [-\infty, +\infty]$ be functions such that

f is \mathcal{A} -measurable and

 $f = g \mu$ -almost everywhere.

Then g is \mathcal{A} measurable.

Proof: Let N be a subset with $\mu(N) = 0$ where $\{x \mid f(x) \neq g(x)\}$ is contained in N.

For every t, $\{x \mid g(x) \leq t\} =$ $\{x \mid f(x) \leq t\} \cap (X \setminus N)$ unioned with $\{x \mid g(x) \leq t\} \cap N$, both sets \mathcal{A} measurable. **Lemma:** (X, \mathcal{A}, μ) is a measure space with μ complete.

If $f_n : X \to [-\infty, +\infty]$ is a sequence of \mathcal{A} measurable functions and $f : X \to [-\infty, +\infty]$ is a function such that $\lim_{n\to\infty} f_n(x) = f(x)$ almost everywhere,

then f is a \mathcal{A} measurable function.

Proof: Where it is defined, by previous lemma necessarily on a measurable set,

 $\lim_{n\to\infty} f_n(x)$ is measurable.

Then by the previous lemma, f is also measurable.