Measure Theory Fourth Week

A function f is continuous if $f^{-1}(A)$ is open for every open set A.

A function f is measurable if
$f^{-1}(A)$ is measurable
for every measurable set A.
$f: X \rightarrow Y$ requires a concept of measurable for both X and Y.

When $f: X \rightarrow[-\infty, \infty]$ the concept of measurable in $[-\infty, \infty]$ is Borel measurable.

Lemma (2.1.1)

Let (X, \mathcal{A}) be a measurable space, and let $A \in \mathcal{A}$.

For a function $f: A \rightarrow[-\infty,+\infty]$ the following are equivalent:
(a) for every real number t the set $\{x \in$ $A \mid f(x) \leq t\}$ belongs to \mathcal{A},
(b) for every real number t the set $\{x \in$ $A \mid f(x)<t\}$ belongs to \mathcal{A},
(c) for every real number t the set $\{x \in$ $A \mid f(x) \geq t\}$ belongs to \mathcal{A},
(d) for every real number t the set $\{x \in$ $A \mid f(x)>t\}$ belongs to \mathcal{A}.
$\{x \in A \mid f(x)<t\}=$
$\cup_{i=1}^{\infty}\left\{x \in A \left\lvert\, f(x) \leq t-\frac{1}{i}\right.\right\}$
shows that (a) implies (b).
The symmetric argument shows that (c) implies (d).

Closure by complementation shows that (a) is equivalent to (d) and (c) is equivalent to (b).

A circle of implication is completed.

Definition: A function is measurable with respect to \mathcal{A} if any/all of the above conditions are satisfied.

Notice that this is equivalent to $f^{-1}(B) \in$ \mathcal{A} for every Borel subset $B \subseteq \mathbf{R}$.

How to show this: define \mathcal{B} as the collection of all subsets in \mathbf{R} such that
$B \in \mathcal{B}$ if and only if $f^{-1}(B) \in \mathcal{A}$.
It is easy to see that \mathcal{B} is a sigma-algebra, and it contains the intervals, so it contains the Borel sets.

Examples:

(a) Continuous real valued functions are Borel measurable.
(b) Non-decreasing functions $f: I \rightarrow \mathbf{R}$ are Borel measurable.
(c) A function is simple if it takes on only finitely many values.

A simple function $f: X \rightarrow[-\infty,+\infty]$ is measurable if $f^{-1}(\alpha)$ is measurable for each of the finitely many values α.

Lemma (2.1.3): Let (X, \mathcal{A}) be a measurable space and A a subset of X in \mathcal{A}.

Let $f, g: A \rightarrow[-\infty,+\infty]$ be measurable functions.

The following sets belong to \mathcal{A} :
$\{x \in A \mid f(x)<g(x)\}$,
$\{x \in A \mid f(x) \leq g(x)\}$
and $\{x \in A \mid f(x)=g(x)\}$.

Proof:

$$
\begin{aligned}
& \{x \mid f(x)<g(x)\}= \\
& \cup_{r \in \mathbf{Q}}(\{x \mid f(x)<r\} \cap\{x \mid r<g(x)\}), \\
& \Rightarrow\{x \mid f(x)<g(x)\} \in \mathcal{A} .
\end{aligned}
$$

By complementation,
$\{x \mid f(x) \geq g(x)\} \in \mathcal{A}$ and by symmetry
$\{x \mid g(x) \geq f(x)\},\{x \mid g(x)<f(x)\} \in \mathcal{A}$.
$\Rightarrow\{x \mid f(x)=g(x)\}=$
$\{x \mid g(x) \geq f(x)\} \backslash\{x \mid g(x)>f(x)\} \in \mathcal{A}$.

If f, g have a common domain,
$(f \vee g)(x):=\max (f(x), g(x))$
$f \wedge g)(x):=\min (f(x), g(x))$.
If f_{1}, f_{2}, \ldots is a sequence of functions on the same domain,
define the functions $\sup _{n} f_{n}, \inf _{n} f_{n}, \lim \sup _{n} f_{n}$, $\lim \inf _{n} f_{n}$ pointwise, and where it exists likewise $\lim _{n} f_{n}$.

Lemma: If f and g are measurable then $f \wedge g$ and $f \vee g$ are measurable.

Proof:

for every choice of t,
$\{x \mid(f \wedge g)(x)<t\}=$
$\{x \mid f(x)<t\} \cup\{x \mid g(x)<t\}$
$\{x \mid(f \vee g)(x)<t\}=$
$\{x \mid f(x)<t\} \cap\{x \mid g(x)<t\}$

Lemma: If the f_{n} are measurable
then the functions
$\sup _{n} f_{n}$,
$\inf _{n} f_{n}$,
$\limsup { }_{n} f_{n}$,
$\liminf _{n} f_{n}$
and $\lim _{n} f_{n}$ are measurable.

Proof:

for every t,
$\left\{x \mid\left(\sup _{n} f_{n}\right)(x) \leq t\right\}=$
$\cap_{n}\left\{x \mid f_{n}(x) \leq t\right\}$,
$\left\{x \mid\left(\inf _{n} f_{n}\right)(x)<t\right\}=$
$\cup_{n}\left\{x \mid f_{n}(x)<t\right\}$,
$\left\{x \mid\left(\limsup \sup _{n} f_{n}\right)(x)>t\right\}=$
$\cup_{i=1}^{\infty} \cap_{n=1}^{\infty}\left\{x \left\lvert\, \sup _{k=n}^{\infty} f_{k}(x)>t+\frac{1}{i}\right.\right\}$
$\left\{x \mid\left(\liminf _{n} f_{n}\right)(x)<t\right\}=$
$\cup_{i=1}^{\infty} \cap_{n=1}^{\infty}\left\{x \left\lvert\, \inf _{k=n}^{\infty} f_{k}(x)<t-\frac{1}{i}\right.\right\}$.

And finally $\lim _{n} f_{n}$ is defined on the set where $\limsup _{n} f_{n}=\liminf f_{n}$, which is measurable, and on this set
$\left\{x \mid\left(\lim _{n} f_{n}\right)(x) \geq t\right\}$ is equal either to
$\left\{x \mid\left(\lim \sup _{n} f\right)(x) \geq t\right\} \quad$ or
$\left\{x \mid\left(\liminf { }_{n} f\right)(x) \geq t\right\}$.

Notice that we could also show that
$\left\{x \mid\left(\liminf _{n} f_{n}\right)(x)>t\right\}=$
$\cup_{i=1}^{\infty} \cup_{n=1}^{\infty} \cap_{k=n}^{\infty}\left\{x \left\lvert\, f_{k}(x)>t+\frac{1}{i}\right.\right\}$.

Lemma:

Real valued measurable functions form a subspace, or
when f, g are real valued and measurable and r is a real number
then $f+g$ and $r f$ are measurable functions.

Proof:

$$
r=0 \text { trivial }
$$

$$
r>0:\{x \mid r f(x) \leq t\}=\left\{x \left\lvert\, f(x) \leq \frac{t}{r}\right.\right\} .
$$

$$
r<0:\{x \mid r f(x) \leq t\}=\left\{x \left\lvert\, f(x) \geq \frac{t}{r}\right.\right\} .
$$

$$
\{x \mid f(x)+g(x)<t\}=
$$

$$
\cup_{r \in \mathbf{Q}}(\{x \mid f(x)<r\} \cap\{x \mid g(x)<t-r\}) .
$$

Lemma: When f, g are measurable real valued functions
then $f g$ is measurable
and $\frac{f}{g}$ is measurable where $g \neq 0$.
Proof: First, f^{2} is measurable, as for every $t>0$
$\left\{x \mid f^{2}(x)<t\right\}=$
$\{x \mid-\sqrt{t}<f(x)<\sqrt{t}\}$.
Then notice that $(f+g)^{2}=f^{2}+g^{2}+2 f g$, so that the measurability of f^{2} and g^{2} implies the measurability of $f g=\frac{(f+g)^{2}-f^{2}-g^{2}}{2}$.

The set where $g \neq 0$ is measurable,
and $\left\{x \left\lvert\, \frac{f(x)}{g(x)}<t\right.\right\}=$
$\{x \mid g(x)>0\} \cap\{x \mid f(x)<\operatorname{tg}(x)\}$
unioned with
$\{x \mid g(x)<0\} \cap\{x \mid f(x)>\operatorname{tg}(x)\}$

Implied is also that $|f|$ is a measurable function if f is measurable,
since $|f(x)|=\max (f(x),-f(x))$.

Also any funtion can be broken into its positive and negative parts, both measurable:

$$
\begin{aligned}
& f^{+}(x)=\max (f(x), 0), \\
& f^{-}(x)=-\min (f(x), 0) \text { and } \\
& f=f^{+}-f^{-} .
\end{aligned}
$$

Lemma: Let A be a measurable subset of X.

For every measurable function $f: A \rightarrow$ $[0, \infty]$
there is an infinite sequence $f_{1} \leq f_{2} \leq \ldots$ of simple functions with values in $[0, \infty)$ such that
$f(x)=\lim _{i \rightarrow \infty} f_{i}(x)$ for all $x \in A$.

Proof: For every $n=1,2,3, \ldots$ and $0 \leq$ $k<n 2^{n}$
define $A_{n, k}=\left\{x \left\lvert\, \frac{k}{2^{n}} \leq f(x)<\frac{k+1}{2^{n}}\right.\right\}$
and $A_{n, n 2^{n}}=\{x \mid f(x) \geq n\}$.
Define $f_{n}(x):=\frac{k}{2^{n}}$ if $x \in A_{n, k}$.

Let (X, \mathcal{A}, μ) be a measure space.
A property holds μ-almost everywhere if the set of points where it does not hold is contained in a set of measure zero with respect to μ.

For example, the real valued function $f(t)=$ $\frac{1}{t}$ is defined λ^{*}-almost everywhere, as it is not defined only for 0 .

The real numbers are almost everywhere irrational,
because the set of rational numbers is a set of measure zero.

Lemma: Let (X, \mathcal{A}, μ) be a measure space such that μ is complete.

Let $f, g: X \rightarrow[-\infty,+\infty]$ be functions such that
f is \mathcal{A}-measurable and $f=g \mu$-almost everywhere.

Then g is \mathcal{A} measurable.

Proof: Let N be a subset with $\mu(N)=0$ where $\{x \mid f(x) \neq g(x)\}$ is contained in N.

For every t,
$\{x \mid g(x) \leq t\}=$
$\{x \mid f(x) \leq t\} \cap(X \backslash N)$
unioned with $\{x \mid g(x) \leq t\} \cap N$,
both sets \mathcal{A} measurable.

Lemma: (X, \mathcal{A}, μ) is a measure space with μ complete.

If $f_{n}: X \rightarrow[-\infty,+\infty]$ is a sequence of \mathcal{A} measurable functions and $f: X \rightarrow[-\infty,+\infty]$ is a function such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ almost everywhere,
then f is a \mathcal{A} measurable function.

Proof: Where it is defined, by previous lemma necessarily on a measurable set, $\lim _{n \rightarrow \infty} f_{n}(x)$ is measurable.

Then by the previous lemma, f is also measurable.

