
Measure Theory Fifth Week

Integration
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With (X,A) a measurable space,

S is the collection of simple functions and

S+ is the collection of non-negative simple
functions.

χA is the function such that χA(x) = 1 if
x ∈ A and χA(x) = 0 if x 6∈ A.

If µ is also a measure defined on A,

and f =
∑n

i=1 aiχAi ∀i ai ∈ R

for finitely many disjoint A1, . . . , An ∈ A

define
∫
fdµ =

∑n
i=1 aiµ(Ai)

(where 0 · ∞ =∞ · 0 = 0).
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Need to know that
∫
f dµ is well defined:

Suppose g = f and g =
∑k

j=1 bjχBj :

We can break down both g and f further as
simple functions by the disjoint sets

(Ai ∩Bj | i = 1, . . . , n j = 1, . . . , k)

(assuming X = ∪iAi = ∪jBj)

and f =
∑

i

∑
j aiχAi∩Bj and

g =
∑

i

∑
j bjχAi∩Bj .
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But where Ai ∩ Bj 6= ∅ by f = g it must
be that ai = bj

and where Ai ∩Bj = ∅ it doesn’t matter,

because µ(Ai ∩Bj) = 0.

Therefore
∫
g dµ is equal to

∑
i

∑
j aiµ(Ai ∩Bj),

and by
∑

j µ(Ai ∩Bj) = µ(Ai)

we have that
∫
g dµ =

∫
f dµ.
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The simple functions defined on a measur-
able space (X,A) form a vector subspace:

if f is a simple function then αf is also a
simple function for any α ∈ R,

if f, g are simple functions then f + g is a
simple function.

The latter is true by taking the collection

(Ai ∩Bj | i = 1, . . . , n j = 1, . . . , k)

where theA1, . . . , An define f and theB1, . . . , Bk

define g.

5



The natural question is whether integration
is a linear functional on the subspace of sim-
ple functions.

Lemma:∫
αf dµ = α

∫
f dµ and∫

(f + g) dµ =
∫
f dµ +

∫
g dµ.
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Proof:

Let A1, . . . , An and a1, . . . , an define f .

αf is defined by the same sets and a′i = αai,

therefore
∫
αf dµ =

∑
i αaiµ(Ai) =

α(
∑

i aiµ(Ai)) = α
∫
f dµ.

Let B1, . . . , Bk and b1, . . . , bk define g.

f + g is defined by ai + bj and the

(Ai ∩Bj | i = 1, . . . , n j = 1, . . . , k):∫
(f +g) dµ =

∑
i

∑
j(ai+bj)µ(Ai∩Bj) =∑

i

∑
j aiµ(Ai∩Bj)+

∑
i

∑
j bjµ(Ai∩Bj) =∫

f dµ +
∫
g dµ.
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Lemma: If f ≤ g for simple functions f, g

then
∫
f dµ ≤

∫
g dµ.

Proof: g = f + (g − f )

and g − f is a simple function in S+.
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Lemma: Let f ∈ S+

and let f1 ≤ f2 ≤ . . . be a sequence of
simple functions in S+

such that for each x

f (x) = limi→∞ fi(x).

Then
∫
f dµ = limi→∞

∫
fi dµ.
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As fi ≤ f for every i,

it follows that
∫
fi dµ ≤

∫
f dµ.

For any ε > 0 with ε strictly less than any
positive value of f ,

define simple functions gi

by gi(x) = min(fi(x), f (x)− ε).

Define Bi := {x | gi(x) < f (x)− ε}:

p.w. convergence ⇒ ∩∞i=1Bi = ∅.

There are two cases,
∫
f = ∞ and

∫
f <

∞.
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If
∫
f =∞, there must be some r with r >

ε and a set A with f |A = r and µ(A) =∞:

there cannot be a bound M < ∞ with
µ(A\Bi) ≤M , hence

∫
limi→∞ fi =∞.

In the other case with
∫
f <∞ then by the

continuity of probability

limi→∞ µ(Bi) = 0.

Because simple functions have finite values,
f has a maximum finite value and it follows
from limi→∞ µ(Bi) = 0 that

limi→∞
∫
gi dµ ≥ −ε +

∫
f dµ.

The rest follows by gi ≤ fi for every i and
the arbitrary choice of ε. 2
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Let f be a measurable function f : X →
[0,∞].

The integral
∫
f dµ is defined to be

supg∈S+, g≤f
∫
g dµ.
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Lemma: Let f : X → [0,∞] be a mea-
surable function

and let f1 ≤ f2 ≤ . . . be a sequence of
simple functions in S+

such that for each x

f (x) = limi→∞ fi(x).

Then
∫
f dµ = limi→∞

∫
fi dµ.
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Proof: Assume first that
∫
fdµ <∞. For

any given ε > 0 let g be a simple function
such that g ≤ f and∫
g dµ ≥ −ε +

∫
f dµ,

(by definition of the integral exists).

As the f̃i = fi ∧ g are also simple functions

with limi→∞ f̃i(x) = g(x) for all x,

it follows that

limi→∞
∫
f̃i dµ =

∫
g dµ ≥ −ε +

∫
f dµ.

The rest follows from f̃i ≤ fi ⇒

limi→∞
∫
f̃i dµ ≤ lim→∞

∫
fi dµ.

And if
∫
fdµ = ∞ do the same with any

M > 0 and 0 ≤ g ≤ f with
∫
g dµ ≥M .
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Monotone Convergence Theorem:

Let f : X → [0,∞] and fi : X → [0,∞]
be measurable functions

such that f1 ≤ f2 ≤ . . .

such that for each x

f (x) = limi→∞ fi(x).

Then
∫
f dµ = limi→∞

∫
fi dµ.
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Proof: By previous lemma, there is a se-
quence (gl | l = 1, 2, . . . ) of simple functions

with gl ≤ f for every l. and

liml→∞ gl(x) = f (x) for every x.

By the last lemma liml→∞
∫
gl dµ =

∫
f dµ.

For every i = 1, 2, . . . there are simple func-
tion hij ∈ S+

with hi1 ≤ hi2, . . . and limj→∞ h
i
j(x) = fi(x)

and limj→∞
∫
hij dµ =

∫
fi dµ.

For every l = 1, 2, . . .

define f lk = ∨i,j≤k(hij ∧ gl).

We have f l1 ≤ f l2 ≤ . . . and ∀i f li ≤ fi.
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Choosing any x and ε > 0 there is an i such
that fi(x) ≥ f (x)− ε

2 and then there is a j
such that hij(x) ≥ fi(x)− ε

2.

This means that limj→∞ f
l
j(x) = gl(x)

and so limj→∞
∫
f lj dµ =

∫
gl dµ.

And with f lj ≤ fj for all j it follows that

limj→∞
∫
fj dµ ≥

∫
gl dµ.

But with limj→∞
∫
fj dµ ≤

∫
fdµ

and liml→∞
∫
gl dµ =

∫
f dµ,

⇒ limj→∞
∫
fj dµ =

∫
f dµ. 2
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Note: The same concluson holds for the
more liberal condition limi→∞ fi(x) = f (x)
for almost all x,

since one can restict all arguments to the
set where the equality holds and the com-
plement of this set contributes nothing to
the integrals.
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Any measurable f : X → [−∞,+∞]

is called integrable if

both
∫
f+ dµ and

∫
f− dµ are finite.

If either
∫
f+ dµ or

∫
f− dµ is finite, then∫

f dµ is defined to be∫
f+ dµ −

∫
f+ dµ

If A is a measurable set and f a measurable
function

then
∫
A f dµ =

∫
χAf dµ, given that it is

well defined.
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Fatou’s Lemma:

Let f1, f2, . . . be a sequence of non-negative
valued measurable functions.

Then
∫

lim infn fn dµ ≤ lim infn
∫
fn dµ.

Proof: Let gn = inf∞k=n fk.

We have g1 ≤ g2 ≤ · · · ≤ gn ≤ fn and

limn→∞ gn(x) = lim infn fn(x) for all x.

By the monotone convergence theorem,∫
lim infn fn dµ =

∫
limn gn dµ = limn

∫
gn dµ =

lim infn
∫
gn dµ ≤ lim infn

∫
fn dµ.

20



Dominated Convergence Theorem

Let g : X → [0,∞) be an integrable func-
tion and

let f and f1, f2, . . . be [−∞,+∞] valued
measurable functions

such that f (x) = limn fn(x) almost every-
where

and |fn(x)| ≤ g(x).

Then
∫
f dµ = limn

∫
fn dµ.
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Proof:

By Fatou’s Lemma∫
lim infi(g+fi) dµ ≤ lim infi

∫
(g+fi) dµ,∫

lim infi(g−fi) dµ ≤ lim infi
∫

(g−fi) dµ.

Therefore
∫

lim infi fi dµ ≤ lim infi
∫
fi dµ

and
∫

lim supi fi dµ ≥ lim supi
∫
fi dµ.

As lim supi fi = lim infi fi all four values
must be equal.
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