Measure Theory Fifth Week

Integration

With (X, \mathcal{A}) a measurable space,

 \mathcal{S} is the collection of simple functions and

 \mathcal{S}_+ is the collection of non-negative simple functions.

 χ_A is the function such that $\chi_A(x) = 1$ if $x \in A$ and $\chi_A(x) = 0$ if $x \notin A$.

If μ is also a measure defined on \mathcal{A} , and $f = \sum_{i=1}^{n} a_i \chi_{A_i} \quad \forall i \ a_i \in \mathbf{R}$ for finitely many disjoint $A_1, \ldots, A_n \in \mathcal{A}$ define $\int f d\mu = \sum_{i=1}^{n} a_i \mu(A_i)$ (where $0 \cdot \infty = \infty \cdot 0 = 0$). Need to know that $\int f \ d\mu$ is well defined:

Suppose
$$g = f$$
 and $g = \sum_{j=1}^{k} b_j \chi_{B_j}$:

We can break down both g and f further as simple functions by the disjoint sets

$$(A_i \cap B_j \mid i = 1, \dots, n \quad j = 1, \dots, k)$$

(assuming $X = \bigcup_i A_i = \bigcup_j B_j$) and $f = \sum_i \sum_j a_i \chi_{A_i \cap B_j}$ and $g = \sum_i \sum_j b_j \chi_{A_i \cap B_j}$. But where $A_i \cap B_j \neq \emptyset$ by f = g it must be that $a_i = b_j$ and where $A_i \cap B_j = \emptyset$ it doesn't matter, because $\mu(A_i \cap B_j) = 0$.

Therefore $\int g \, d\mu$ is equal to $\sum_i \sum_j a_i \mu(A_i \cap B_j)$, and by $\sum_j \mu(A_i \cap B_j) = \mu(A_i)$ we have that $\int g \, d\mu = \int f \, d\mu$. The simple functions defined on a measurable space (X, \mathcal{A}) form a vector subspace:

if f is a simple function then αf is also a simple function for any $\alpha \in \mathbf{R}$,

if f, g are simple functions then f + g is a simple function.

The latter is true by taking the collection

 $(A_i \cap B_j \mid i = 1, \dots, n \quad j = 1, \dots, k)$

where the A_1, \ldots, A_n define f and the B_1, \ldots, B_k define g.

The natural question is whether integration is a linear functional on the subspace of simple functions.

Lemma:

$$\int \alpha f \, d\mu = \alpha \int f \, d\mu \text{ and}$$
$$\int (f+g) \, d\mu = \int f \, d\mu + \int g \, d\mu.$$

Proof:

Let
$$A_1, \ldots, A_n$$
 and a_1, \ldots, a_n define f .

 αf is defined by the same sets and $a'_i = \alpha a_i$, therefore $\int \alpha f \ d\mu = \sum_i \alpha a_i \mu(A_i) =$ $\alpha(\sum_i a_i \mu(A_i)) = \alpha \int f \ d\mu.$

Let B_1, \ldots, B_k and b_1, \ldots, b_k define g.

$$f + g \text{ is defined by } a_i + b_j \text{ and the}$$
$$(A_i \cap B_j \mid i = 1, \dots, n \quad j = 1, \dots, k):$$
$$\int (f+g) \, d\mu = \sum_i \sum_j (a_i + b_j) \mu(A_i \cap B_j) =$$
$$\sum_i \sum_j a_i \mu(A_i \cap B_j) + \sum_i \sum_j b_j \mu(A_i \cap B_j) =$$
$$\int f \, d\mu + \int g \, d\mu.$$

Lemma: If $f \leq g$ for simple functions f, gthen $\int f d\mu \leq \int g d\mu$.

Proof: g = f + (g - f)

and g - f is a simple function in \mathcal{S}_+ .

Lemma: Let $f \in \mathcal{S}_+$

and let $f_1 \leq f_2 \leq \ldots$ be a sequence of simple functions in S_+

such that for each x

 $f(x) = \lim_{i \to \infty} f_i(x).$

Then $\int f d\mu = \lim_{i \to \infty} \int f_i d\mu$.

As $f_i \leq f$ for every i, it follows that $\int f_i d\mu \leq \int f d\mu$.

For any $\epsilon > 0$ with ϵ strictly less than any positive value of f,

define simple functions g_i

by $g_i(x) = \min(f_i(x), f(x) - \epsilon).$

Define $B_i := \{ x \mid g_i(x) < f(x) - \epsilon \}$:

p.w. convergence $\Rightarrow \cap_{i=1}^{\infty} B_i = \emptyset$.

There are two cases, $\int f = \infty$ and $\int f < \infty$.

If $\int f = \infty$, there must be some r with $r > \epsilon$ and a set A with $f|_A = r$ and $\mu(A) = \infty$: there cannot be a bound $M < \infty$ with $\mu(A \setminus B_i) \leq M$, hence $\int \lim_{i \to \infty} f_i = \infty$.

In the other case with $\int f < \infty$ then by the continuity of probability

 $\lim_{i\to\infty}\mu(B_i)=0.$

Because simple functions have finite values, f has a maximum finite value and it follows from $\lim_{i\to\infty} \mu(B_i) = 0$ that

 $\lim_{i \to \infty} \int g_i \ d\mu \ge -\epsilon + \int f \ d\mu.$

The rest follows by $g_i \leq f_i$ for every *i* and the arbitrary choice of ϵ . \Box

Let f be a measurable function $f : X \to [0, \infty]$.

The integral $\int f d\mu$ is defined to be $\sup_{g \in \mathcal{S}_+, g \leq f} \int g d\mu.$ **Lemma:** Let $f : X \to [0, \infty]$ be a measurable function

and let $f_1 \leq f_2 \leq \ldots$ be a sequence of simple functions in S_+

such that for each x

 $f(x) = \lim_{i \to \infty} f_i(x).$

Then $\int f d\mu = \lim_{i \to \infty} \int f_i d\mu$.

Proof: Assume first that $\int f d\mu < \infty$. For any given $\epsilon > 0$ let g be a simple function such that $g \leq f$ and

$$\int g \ d\mu \ge -\epsilon + \int f \ d\mu,$$

(by definition of the integral exists).

As the $\tilde{f}_i = f_i \wedge g$ are also simple functions with $\lim_{i\to\infty} \tilde{f}_i(x) = g(x)$ for all x,

it follows that

$$\lim_{i\to\infty} \int \tilde{f}_i \ d\mu = \int g \ d\mu \ge -\epsilon + \int f \ d\mu.$$

The rest follows from $\tilde{f}_i \leq f_i \Rightarrow$ $\lim_{i\to\infty} \int \tilde{f}_i \ d\mu \leq \lim_{\to\infty} \int f_i \ d\mu.$

And if $\int f d\mu = \infty$ do the same with any M > 0 and $0 \le g \le f$ with $\int g d\mu \ge M$.

Monotone Convergence Theorem:

Let $f : X \to [0, \infty]$ and $f_i : X \to [0, \infty]$ be measurable functions such that $f_1 \leq f_2 \leq \dots$ such that for each x $f(x) = \lim_{i \to \infty} f_i(x).$

Then $\int f \ d\mu = \lim_{i \to \infty} \int f_i \ d\mu$.

Proof: By previous lemma, there is a sequence $(g_l \mid l = 1, 2, ...)$ of simple functions with $g_l \leq f$ for every l. and $\lim_{l\to\infty} g_l(x) = f(x)$ for every x.

By the last lemma $\lim_{l\to\infty} \int g_l \, d\mu = \int f \, d\mu$.

For every $i = 1, 2, \ldots$ there are simple function $h_j^i \in \mathcal{S}_+$

with $h_1^i \leq h_2^i, \dots$ and $\lim_{j \to \infty} h_j^i(x) = f_i(x)$ and $\lim_{j \to \infty} \int h_j^i d\mu = \int f_i d\mu$.

For every l = 1, 2, ...define $f_k^l = \bigvee_{i,j \le k} (h_j^i \land g_l).$

We have $f_1^l \leq f_2^l \leq \ldots$ and $\forall i \quad f_i^l \leq f_i$.

Choosing any x and $\epsilon > 0$ there is an i such that $f_i(x) \ge f(x) - \frac{\epsilon}{2}$ and then there is a j such that $h_j^i(x) \ge f_i(x) - \frac{\epsilon}{2}$.

This means that $\lim_{j\to\infty} f_j^l(x) = g_l(x)$ and so $\lim_{j\to\infty} \int f_j^l d\mu = \int g_l d\mu$.

And with $f_j^l \leq f_j$ for all j it follows that $\lim_{j\to\infty} \int f_j \ d\mu \geq \int g_l \ d\mu.$

But with $\lim_{j\to\infty} \int f_j d\mu \leq \int f d\mu$ and $\lim_{l\to\infty} \int g_l d\mu = \int f d\mu$, $\Rightarrow \lim_{j\to\infty} \int f_j d\mu = \int f d\mu$.

Note: The same concluson holds for the more liberal condition $\lim_{i\to\infty} f_i(x) = f(x)$ for almost all x,

since one can restict all arguments to the set where the equality holds and the complement of this set contributes nothing to the integrals. Any measurable $f: X \to [-\infty, +\infty]$ is called *integrable* if

both $\int f^+ d\mu$ and $\int f^- d\mu$ are finite.

If either $\int f^+ d\mu$ or $\int f^- d\mu$ is finite, then $\int f d\mu$ is defined to be $\int f^+ d\mu - \int f^+ d\mu$

If A is a measurable set and f a measurable function

then $\int_A f d\mu = \int \chi_A f d\mu$, given that it is well defined.

Fatou's Lemma:

Let f_1, f_2, \ldots be a sequence of non-negative valued measurable functions.

Then $\int \liminf_n f_n d\mu \leq \liminf_n \int f_n d\mu$.

Proof: Let $g_n = \inf_{k=n}^{\infty} f_k$.

We have $g_1 \leq g_2 \leq \cdots \leq g_n \leq f_n$ and

 $\lim_{n \to \infty} g_n(x) = \liminf_n f_n(x) \text{ for all } x.$

By the monotone convergence theorem,

 $\int \liminf_n f_n \, d\mu = \int \lim_n g_n \, d\mu = \lim_n \int g_n \, d\mu =$ $\liminf_n \int g_n \, d\mu \leq \liminf_n \int f_n \, d\mu.$

Dominated Convergence Theorem

Let $g: X \to [0, \infty)$ be an integrable function and

let f and f_1, f_2, \ldots be $[-\infty, +\infty]$ valued measurable functions

such that $f(x) = \lim_{n \to \infty} f_n(x)$ almost everywhere

and $|f_n(x)| \leq g(x)$.

Then $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$.

Proof:

By Fatou's Lemma

 $\int \liminf_i (g+f_i) d\mu \leq \liminf_i \int (g+f_i) d\mu$

 $\int \liminf_i (g - f_i) d\mu \leq \liminf_i \int (g - f_i) d\mu.$

Therefore $\int \liminf_i f_i \, d\mu \leq \liminf_i \int f_i \, d\mu$ and $\int \limsup_i f_i \, d\mu \geq \limsup_i \int f_i \, d\mu$.

As $\limsup_i f_i = \liminf_i f_i$ all four values must be equal.