LTCC Mathematical Biology - Mock

Question 1.

(a) Consider the motion of non-interacting particles along the x axis. Each particle i moves a distance $d x_{i}$ every time step, which lasts τ seconds. At time $t=0$, all particles are at $x=0$. Let N be the total number of particles, $x_{i}(n)$ be the position of particle i after n time steps, and $X(n)=\frac{1}{N} \sum_{i=1}^{N} x_{i}(n)$ be the average position of the particles after n time steps (i.e. at time $t=n \tau$).
i. Assume that every τ seconds, each particle i either a) moves a distance $d x_{i}=\delta$ with probability $1 / 3$, b) moves a distance $d x_{i}=-\delta$ with probability $1 / 3$, or c) does not move $\left(d x_{i}=0\right)$ with probability $1 / 3$. Calculate the mean displacement of the particles $E(X(n))$ after n steps.
Solution: The mean displacement of the particles after n steps is

$$
\begin{align*}
\langle X(n)\rangle & =\frac{1}{N} \sum_{i=1}^{N}\left\langle x_{i}(n)\right\rangle \\
& =\frac{1}{N} \sum_{i=1}^{N}\left[\left\langle x_{i}(n-1)\right\rangle+\left\langle d x_{i}\right\rangle\right] \\
& =\frac{1}{N} \sum_{i=1}^{N}\left[\left\langle x_{i}(n-1)\right\rangle+\delta \cdot \frac{1}{3}+(-\delta) \cdot \frac{1}{3}\right] \\
& =\frac{1}{N} \sum_{i=1}^{N}\left\langle x_{i}(n-1)\right\rangle \\
& =\langle X(n-1)\rangle . \tag{1}
\end{align*}
$$

Thus particles go nowhere on average and $E(X(n))=0$ from the initial condition.
ii. Assume that every τ seconds, each particle i either a) moves a distance $d x_{i}=\delta$ with probability $1 / 4$, or b) moves a distance $d x_{i}=-\delta$ with probability $3 / 4$. Calculate the mean displacement of the particles $E(X(n))$ after n steps. Write your answer in terms of n, δ and τ.

Solution: The mean displacement of the particles after n steps is

$$
\begin{align*}
\langle X(n)\rangle & =\frac{1}{N} \sum_{i=1}^{N}\left\langle x_{i}(n)\right\rangle \\
& =\frac{1}{N} \sum_{i=1}^{N}\left[\left\langle x_{i}(n-1)\right\rangle+\left\langle d x_{i}\right\rangle\right] \\
& =\frac{1}{N} \sum_{i=1}^{N}\left[\left\langle x_{i}(n-1)\right\rangle+\delta \cdot \frac{1}{4}+(-\delta) \cdot \frac{3}{4}\right] \\
& =\frac{1}{N} \sum_{i=1}^{N}\left\langle x_{i}(n-1)\right\rangle-\frac{\delta}{2} \\
& =\langle X(n-1)\rangle-\frac{\delta}{2} . \tag{2}
\end{align*}
$$

Repeated n times and applying the initial condition gives $E(X(n))=-n \delta / 2$.
As before, assume that every τ seconds, each particle i either a) moves a distance $d x_{i}=\delta$ with probability $1 / 4$, or b) moves a distance $d x_{i}=-\delta$ with probability $3 / 4$. Let $\mathrm{P}(\mathrm{x}, \mathrm{t})$ be the probability of finding a particle at point x at time t, with $p(x, t)$ the associated probability density.
iii. Write $p(x, t+\tau)$ in terms of $p(x-\delta, t)$ and $p(x+\delta, t)$.

Solution:

$$
\begin{equation*}
p(x, t+\tau)=\frac{3}{4} p(x+\delta, t)+\frac{1}{4} p(x-\delta, t) \tag{3}
\end{equation*}
$$

iv. Take your answer from part iii and Taylor expand each side with respect to the appropriate variable to write the equivalent of the diffusion equation in the limit $\delta \rightarrow 0$ and $\tau \rightarrow 0$ in this case.
Solution: Taylor expanding both sides with respect to the appropriate variable, and canceling terms, gives,

$$
\begin{aligned}
\tau \frac{\partial p}{\partial t} & =\left(-\frac{1}{4}+\frac{3}{4}\right) \delta \frac{\partial p}{\partial x}+\frac{\delta^{2}}{2} \frac{\partial^{2} p}{\partial x^{2}} \\
\frac{\partial p}{\partial t} & =\frac{\delta}{2 \tau} \frac{\partial p}{\partial x}+\frac{\delta^{2}}{2 \tau} \frac{\partial^{2} p}{\partial x^{2}}
\end{aligned}
$$

in the limit $\delta \rightarrow 0$ and $\tau \rightarrow 0$.
(b) Consider the diffusion equation for the concentration $n(x, t)$ of a cloud of particles

$$
\frac{\partial n}{\partial t}=D \frac{\partial^{2} n}{\partial x^{2}}
$$

where $D>0$. Consider the homogeneous steady solution $n_{0}=$ constant. Insert the wavelike perturbation

$$
n(x, t)=n_{0}+\tilde{n}(x, t), \quad \text { where } \tilde{n}=\epsilon e^{\sigma t+i k x}
$$

into the diffusion equation and derive the dispersion relation $\sigma(k)$. What does this tell you about the linear stability of n_{0} ?
Solution: Inserting this perturbation ansatz into the diffusion equation gives the dispersion relation

$$
\sigma(k)=-D k^{2} \leq 0,
$$

signalling that n_{0} is a stable solution, because all modes with $k>0$ become exponentially damped.

