LTCC Examination Paper, 2022-23

1. Let X be the set $\left\{\left.\frac{k}{2^{i}} \right\rvert\, i, k\right.$ are integers and $\left.k \neq 0\right\}$. For every integer i let $A_{i}=\left\{\left.\frac{k}{2^{i}} \right\rvert\, k\right.$ is odd. $\}$. Let $\mathcal{A}=\left\{A_{i} \mid i=\right.$ $1,2, \ldots\}$. What is $\sigma(\mathcal{A})$, the smallest sigma-algebra containing \mathcal{A} ?
2. Let A_{1}, A_{2}, \ldots be Lebesgue measurable sets with $\sum_{i=1}^{\infty} \lambda\left(A_{i}\right)<$ ∞. Show that $\lambda\left(\cap_{i=1}^{\infty} A_{i}\right)=0$.
3. True or false: if A_{1}, A_{2}, \ldots is a sequence of Lebesgue measurable sets with $\sum_{i=1}^{\infty} \lambda\left(A_{i}\right)=\infty$ with $A_{i} \subseteq[0,1]$ for every i, then $\lambda\left(\cap_{i=1}^{\infty} A_{i}\right)>0$. Justify your answer.
4. A real valued function f defined on a metric space is lower-semi-continuous if for every $\epsilon>0$ there is a $\delta>0$ such that $d(y, x)<\delta$ implies that $f(y)<f(x)+\epsilon$, where d is the distance function. Let f be a Lebesgue measurable function defined on $[0,1]$ with values in $[0,1]$. Show that for every $\epsilon>0$ there is a lower-semi-continuous function g such that $g \geq f$ and $\int_{0}^{1}(g-f) d \lambda<\epsilon$.
5. Let A_{0} and A_{1} be two subsets of \mathbf{R} such that $A_{0} \cap A_{1}=\emptyset$, $A_{0}+A_{0} \subseteq A_{0}, A_{1}+A_{1} \subseteq A_{0}$ and $A_{0}+A_{1} \subseteq A_{1}$. Furthermore assume that both A_{i} are origin symmetric, meaning that $x \in A_{i}$ if and only if $-x \in A_{i}$. Show that either A_{1} is Lebesgue measurable and $\lambda\left(A_{1}\right)=0$ or A_{1} is not Lebesgue measurable.
6. Let f_{1}, f_{2} be two bounded, real valued, and Lebesgue measurable functions defined on $[0,1]$. For all $x \in[0,1]$ let
$g(x)$ be a function defined by $f(x)=\sup _{\alpha, y_{1}, y_{2}}\left[\alpha f_{1}\left(y_{1}\right)+\right.$ $\left.(1-\alpha) f_{2}\left(y_{2}\right)\right]$ under the condition that $\alpha y_{1}+(1-\alpha) y_{2}=x$ for $0 \leq \alpha \leq 1$ and $y_{1}, y_{2} \in[0,1]$. Show that g is Lebesgue measurable.
7. Assume that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ is measurable. On the set where the second derivative $f^{\prime \prime}$ is well defined show that it is Lebesgue measurable.
