LTCC Examination Paper, exam and solutions 2022-23

1. Let X be the set $\left\{\left.\frac{k}{2^{i}} \right\rvert\, i, k\right.$ are integers and $\left.k \neq 0\right\}$. For every integer i let $A_{i}=\left\{\left.\frac{k}{2^{i}} \right\rvert\, k\right.$ is odd. $\}$. Let $\mathcal{A}=\left\{A_{i} \mid i=\right.$ $1,2, \ldots\}$. What is $\sigma(\mathcal{A})$, the smallest sigma-algebra containing \mathcal{A} ?

The answer is simply all the subsets of \mathcal{A}. This is because for any $i \neq j$ the intersection $A_{i} \cap A_{j}$ is empty and $X \backslash A_{i}=$ $\cup_{j \neq i} A_{j}$.
2.Let A_{1}, A_{2}, \ldots be Lebesgue measurable sets with $\sum_{i=1}^{\infty} \lambda\left(A_{i}\right)<$ ∞. Show that $\lambda\left(\cap_{i=1}^{\infty} A_{i}\right)=0$.

Write $f_{i}(x)=1_{A_{i}}(x)$ for every i. The function $f=$ $\sum_{i=1}^{\infty} f_{i}$ is the monotone limit of Lebesgue measurable functions $f_{1}+f_{2}+\cdots+f_{n}$ whose integration is the limit of the $\sum_{i=1}^{n} \lambda\left(A_{i}\right)$, which is finite. If $\lambda\left(\cap_{i=1}^{\infty} A_{i}\right)$ were not 0 , the integration of f would be infinite, as there would be a subset of positive measure where the function is infinite.
3. True or false: if A_{1}, A_{2}, \ldots is a sequence of Lebesgue measurable sets with $\sum_{i=1}^{\infty} \lambda\left(A_{i}\right)=\infty$ with $A_{i} \subseteq[0,1]$ for every i, then $\lambda\left(\cap_{i=1}^{\infty} A_{i}\right)>0$. Justify your answer.
The answer is false. Let $A_{i}=\left[0, \frac{1}{i}\right]$. The infinite sum of its Lebesgue measures is infinite, and yet the infinite intersection is only the point $\{0\}$.
4. A real valued function f defined on a metric space is lower-semi-continuous if for every $\epsilon>0$ there is a $\delta>0$ such that $d(y, x)<\delta$ implies that $f(y)<f(x)+\epsilon$, where d is the distance function. Let f be a Lebesgue measurable
function defined on $[0,1]$ with values in $[0,1]$. Show that for every $\epsilon>0$ there is a lower-semi-continuous function g such that $g \geq f$ and $\int_{0}^{1}(g-f) d \lambda<\epsilon$.

Let $h>0$ be a simple and Lebesgue measurable function that approximates f from above (possible because f is bounded above and below). It suffices to show the same for h. For every value r_{i} obtained by the function h, find an open set A_{i} that covers $\left\{x \mid h(x)=r_{i}\right\}$ with $\lambda\left(A_{i}\right)<$ $\lambda\left(\left\{x \mid h(x)=r_{i}\right\}\right)+\frac{r_{i} \epsilon}{2^{2}}$. Now letting $g=\sum_{i} r_{i} 1_{A_{i}}$ we have our desired function.
5. Let A_{0} and A_{1} be two subsets of \mathbf{R} such that $A_{0} \cap A_{1}=\emptyset$, $A_{0}+A_{0} \subseteq A_{0}, A_{1}+A_{1} \subseteq A_{0}$ and $A_{0}+A_{1} \subseteq A_{1}$. Furthermore assume that both A_{i} are origin symmetric, meaning that $x \in A_{i}$ if and only if $-x \in A_{i}$. Show that either A_{1} is Lebesgue measurable and $\lambda\left(A_{1}\right)=0$ or A_{1} is not Lebesgue measurable.

Suppose for the sake of contradiction that A_{1} is Lebesgue measurable and $\lambda\left(A_{1}\right)>0$. As A_{1} is a symmetric set about 0 , it follows that $A_{1}-A_{1} \subseteq A_{0}$ contains an interval about 0 . But this means through repetitive addition that A_{0} must contain all of \mathbf{R}, a contradiction.
6. Let f_{1}, f_{2} be two bounded, real valued, and Lebesgue measurable functions defined on $[0,1]$. For all $x \in[0,1]$ let $g(x)$ be a function defined by $f(x)=\sup _{\alpha, y_{1}, y_{2}}\left[\alpha f_{1}\left(y_{1}\right)+(1-\right.$ $\left.\alpha) f_{2}\left(y_{2}\right)\right]$ under the condition that $\alpha y_{1}+(1-\alpha) y_{2}=x$ for $0 \leq \alpha \leq 1$ and $y_{1}, y_{2} \in[0,1]$. Show that g is Lebesgue measurable.

Both functions f_{1} and f_{2} can be approximated by simple

Lebesgue measurable functions from below. Given ϵ, let f_{ϵ}^{i} be two simple functions with finitely many sets A_{j}^{i} taking on the discrete values r_{j}^{i} for $i=1,2$ approximating f_{1} and f_{2} respectively, to within the value of ϵ. Taking any pair of j, k, and assuming without loss of generality that $r_{j}^{1} \geq r_{k}^{2}$, it is easy to see that $\sup _{y_{1}, y_{2}, \alpha}\left[\alpha r_{j}^{1} 1_{A_{j}^{1}}+(1-\alpha) r_{k}^{2} 1_{A_{k}^{2}}\right]$ over $\alpha y_{1}+(1-\alpha) y_{2}=x$ will be a piece-wise linear function defined by the infinum and supremum of the sets A_{j}^{1} and A_{k}^{2}. Then one takes the maximum of these functions over all choices of i, j and finally a sequence of such simple functions converging to f_{1} and f_{2}.
7. Assume that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ is measurable. On the set where the second derivative $f^{\prime \prime}$ is well defined show that it is Lebesgue measurable.
For every i consider the function $g_{i}(x)=i^{2}\left(f\left(x+\frac{1}{i}\right)+\right.$ $\left.f\left(x-\frac{1}{i}\right)-2 f(x)\right)$. As each such function g_{i} is measurable, the function $g(x)=\lim _{i \rightarrow \infty} g_{i}(x)$, where it exists, is measurable. Where $f^{\prime \prime}$ is well defined, so is $g(x)$ and they are equal.

