LTCC Examination Paper, exam and solutions 2022-23

1. Let X be the set $\{\frac{k}{2^i} \mid i, k \text{ are integers and } k \neq 0\}$. For every integer i let $A_i = \{\frac{k}{2^i} \mid k \text{ is odd.}\}$. Let $\mathcal{A} = \{A_i | i = 1, 2, ...\}$. What is $\sigma(\mathcal{A})$, the smallest sigma-algebra containing \mathcal{A} ?

The answer is simply all the subsets of \mathcal{A} . This is because for any $i \neq j$ the intersection $A_i \cap A_j$ is empty and $X \setminus A_i = \bigcup_{j \neq i} A_j$.

2. Let A_1, A_2, \ldots be Lebesgue measurable sets with $\sum_{i=1}^{\infty} \lambda(A_i) < \infty$. Show that $\lambda(\bigcap_{i=1}^{\infty} A_i) = 0$.

Write $f_i(x) = 1_{A_i}(x)$ for every *i*. The function $f = \sum_{i=1}^{\infty} f_i$ is the monotone limit of Lebesgue measurable functions $f_1 + f_2 + \cdots + f_n$ whose integration is the limit of the $\sum_{i=1}^{n} \lambda(A_i)$, which is finite. If $\lambda(\bigcap_{i=1}^{\infty} A_i)$ were not 0, the integration of f would be infinite, as there would be a subset of positive measure where the function is infinite.

3. True or false: if A_1, A_2, \ldots is a sequence of Lebesgue measurable sets with $\sum_{i=1}^{\infty} \lambda(A_i) = \infty$ with $A_i \subseteq [0, 1]$ for every *i*, then $\lambda(\bigcap_{i=1}^{\infty} A_i) > 0$. Justify your answer.

The answer is false. Let $A_i = [0, \frac{1}{i}]$. The infinite sum of its Lebesgue measures is infinite, and yet the infinite intersection is only the point $\{0\}$.

4. A real valued function f defined on a metric space is lower-semi-continuous if for every $\epsilon > 0$ there is a $\delta > 0$ such that $d(y,x) < \delta$ implies that $f(y) < f(x) + \epsilon$, where d is the distance function. Let f be a Lebesgue measurable function defined on [0,1] with values in [0,1]. Show that for every $\epsilon > 0$ there is a lower-semi-continuous function g such that $g \ge f$ and $\int_0^1 (g - f) d\lambda < \epsilon$.

Let h > 0 be a simple and Lebesgue measurable function that approximates f from above (possible because f is bounded above and below). It suffices to show the same for h. For every value r_i obtained by the function h, find an open set A_i that covers $\{x \mid h(x) = r_i\}$ with $\lambda(A_i) < \lambda(\{x \mid h(x) = r_i\}) + \frac{r_i \epsilon}{2^i}$. Now letting $g = \sum_i r_i \mathbf{1}_{A_i}$ we have our desired function.

5. Let A_0 and A_1 be two subsets of \mathbf{R} such that $A_0 \cap A_1 = \emptyset$, $A_0 + A_0 \subseteq A_0$, $A_1 + A_1 \subseteq A_0$ and $A_0 + A_1 \subseteq A_1$. Furthermore assume that both A_i are origin symmetric, meaning that $x \in A_i$ if and only if $-x \in A_i$. Show that either A_1 is Lebesgue measurable and $\lambda(A_1) = 0$ or A_1 is not Lebesgue measurable.

Suppose for the sake of contradiction that A_1 is Lebesgue measurable and $\lambda(A_1) > 0$. As A_1 is a symmetric set about 0, it follows that $A_1 - A_1 \subseteq A_0$ contains an interval about 0. But this means through repetitive addition that A_0 must contain all of **R**, a contradiction.

6. Let f_1, f_2 be two bounded, real valued, and Lebesgue measurable functions defined on [0, 1]. For all $x \in [0, 1]$ let g(x) be a function defined by $f(x) = \sup_{\alpha, y_1, y_2} [\alpha f_1(y_1) + (1 - \alpha) f_2(y_2)]$ under the condition that $\alpha y_1 + (1 - \alpha) y_2 = x$ for $0 \leq \alpha \leq 1$ and $y_1, y_2 \in [0, 1]$. Show that g is Lebesgue measurable.

Both functions f_1 and f_2 can be approximated by simple

Lebesgue measurable functions from below. Given ϵ , let f_{ϵ}^{i} be two simple functions with finitely many sets A_{j}^{i} taking on the discrete values r_{j}^{i} for i = 1, 2 approximating f_{1} and f_{2} respectively, to within the value of ϵ . Taking any pair of j, k, and assuming without loss of generality that $r_{j}^{1} \geq r_{k}^{2}$, it is easy to see that $\sup_{y_{1},y_{2},\alpha} [\alpha r_{j}^{1} 1_{A_{j}^{1}} + (1 - \alpha) r_{k}^{2} 1_{A_{k}^{2}}]$ over $\alpha y_{1} + (1 - \alpha) y_{2} = x$ will be a piece-wise linear function defined by the infinum and supremum of the sets A_{j}^{1} and A_{k}^{2} . Then one takes the maximum of these functions over all choices of i, j and finally a sequence of such simple functions converging to f_{1} and f_{2} .

7. Assume that the function $f : \mathbf{R} \to \mathbf{R}$ is measurable. On the set where the second derivative f'' is well defined show that it is Lebesgue measurable.

For every *i* consider the function $g_i(x) = i^2(f(x + \frac{1}{i}) + f(x - \frac{1}{i}) - 2f(x))$. As each such function g_i is measurable, the function $g(x) = \lim_{i \to \infty} g_i(x)$, where it exists, is measurable. Where f'' is well defined, so is g(x) and they are equal.