LTCC

"MORSE THEORY, TOPOLOGY AND ROBOTICS" EXAM 2022-2023

EXAMINER: PROFESSOR MICHAEL FARBER

1.

(a) Give the definition of a vector field on a manifold,

A vector field is a function which associates a tangent vector to every point of the manifold. In other words, it is a section of the tangent bundle.
(b) What is meant by a 1-parameter group of diffeomorphisms,

A 1-parameter group of diffeomorphisms is a family $\phi_{t}: M \rightarrow M$ of diffeomorphisms, where $t \in \mathbb{R}$, such that $\phi_{t} \circ \phi_{s}=\phi_{t+s}$ for $t, s \in \mathbf{R}$.
(c) State the theorem about 1-parameter group of diffeomorphisms generated by a vector field.

Every smooth vector field with a compact support generates a 1-parameter group of diffeomorphisms.
2.
(a) Give the definition of a Morse critical point;

A critical point $p \in M$ of a smooth function $f: M \rightarrow \mathbf{R}$ is a Morse critical point if the Hessian matrix

$$
\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(p)\right)
$$

1
is non-degenerate.
(b) State the Morse Lemma;

Morse Lemma states that in the neighbourhood of a Morse critical point one may find a local coordinate system such that the function has the form

$$
-x_{1}^{2}-x_{2}^{2}-\cdots-x_{\lambda}^{2}+x_{\lambda+1}^{2}+\cdots+x_{n}^{2} .
$$

Here λ is the Morse index of p.
(c) State the theorem about changes in the sub-level set when crossing a non-degenerate critical level.

If the interval $[a, b]$ contains a single critical level $f(p)$ where p is non-degenerate in the sense of Morse and has Morse index λ then the sublevel set $M^{b}=f^{-1}((-\infty, b])$ is homotopy equivalent to M^{a} with a cell of dimension λ attached.
(d) State the Morse inequalities.

In the simplest form the Morse inequalities state that a Morse function on a compact manifold M has at least $b_{i}(M)$ critical points of index i, for every $i=$ $0,1, \ldots, n=\operatorname{dim} M$.
(e) What is the minimal number of critical points of a Morse function on a closed orientable surface of genus g ?

$$
2 g+2 .
$$

3.

(a) Describe a Morse function on $\mathbb{C P}^{n}$ and find all its critical points.

Points of the complex projective space $\mathbb{C P}^{n}$ are equivalence classes of $(n+1)$ tuples $\left(z_{0}, z_{1}, \ldots, z_{n}\right) \neq 0$ where $\left(z_{0}, z_{1}, \ldots, z_{n}\right) \sim\left(z_{0}^{\prime}, z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right)$ if for some $\lambda \in \mathbb{C}^{*}$ one has $z_{i}=z_{i}^{\prime}$. Equivalently, we may consider only the tuples $\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ satisfying

$$
\sum_{i=0}^{n}\left|z_{i}\right|^{2}=1
$$

and define the equivalence relation $\left(z_{0}, z_{1}, \ldots, z_{n}\right) \sim\left(z_{0}^{\prime}, z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right)$ as $z_{i}=\lambda z_{i}^{\prime}$ for some $\lambda=e^{i \phi} \in \mathbb{C}$ and for all $i=0, \ldots, n$. Using the second presentation we may define a function

$$
f: \mathbb{C P}^{n} \rightarrow \mathbb{R}
$$

by $f\left(z_{0}, \ldots, z_{n}\right)=\sum_{i=0}^{n} c_{i}\left|z_{i}\right|^{2}$ where $c_{0}<c_{1}<\cdots<c_{n}$ is a sequence of real numbers.

In the chart $U_{k} \subset \mathbb{C P}^{n}$ defined by $z_{k} \neq 0$ the coordinates are given by the functions z_{i} with $i \neq k$ and the function in these coordinates has the form

$$
f=c_{k}+\sum_{j \neq k}\left(c_{j}-c_{k}\right)\left|z_{j}\right|^{2}
$$

We see that the point $\left(z_{0}, z_{1}, \ldots, z_{n}\right) \in \mathbb{C P}^{n}$, where $z_{k}=1$ and $z_{i}=0$ for all $i \neq k$, is the only critical point in U_{k}. Its Morse index equals $2 k$.
(b) Give the definition of Lusternik - Schnirelmann category.

The number $\operatorname{cat}(X)$ is defined as the minimal integer k such that X admits an open cover $X=U_{0} \cup U_{1} \cup \cdots \cup U_{k}$ with the property that each inclusion $U_{i} \rightarrow X$ is null-homotopic.
(c) State the category of the sphere S^{2}, torus T^{2}, surface of genus 2 ?

$$
\begin{aligned}
& \operatorname{cat}\left(S^{2}\right)=1, \\
& \operatorname{cat}\left(T^{2}\right)=2, \\
& \operatorname{cat}(\Sigma)=2, \text { where } \Sigma \text { is a compact orientable surface of genus } 2 .
\end{aligned}
$$

4.

(a) Give the definition of a linkage;

A planar linkage is a mechanism consisting of several bars connected by revolving joints. The cyclic linkage consists of n bars forming a closed polygonal chain.
(b) Describe the configuration space of a planar linkage.

The configuration space of a cyclic linkage with n bars of length $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ is defined as

$$
\left\{\left(u_{1}, \ldots, u_{n}\right) \in S^{1} \times S^{1} \times \cdots \times S^{1} ; \sum_{i=1}^{n} \ell_{i} u_{i}=0\right\} / \mathrm{SO}(2) .
$$

(c) What is meant by the length vector of a linkage?

The length vector of a linkage is the vector $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right)$; its components are the lengths of the bars of the linkage.
(d) When do we say that the length vector is generic?

The length vector $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right)$ is generic if for any choice of the numbers $\epsilon_{i}= \pm 1$, where $i=1,2, \ldots n$, one has

$$
\sum_{i=1}^{n} \epsilon_{i} \ell_{i} \neq 0
$$

(e) State the theorem about Betti numbers of moduli spaces of planar linkages.

The i-dimensional Betti number of the configuration space of the linkage equals

$$
a_{i}+a_{n-3-i}+b_{i}
$$

where a_{i} is the number of short subsets of $\{1,2, \ldots, n\}$ of cardinality $i+1$ containing 1 and b_{i} is the number of median subsets of $\{1,2, \ldots, n\}$ of cardinality $i+1$ containing 1. Here we assume that $\ell_{1} \geq \ell_{j}$ for all j.

