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Chapter 4

Nonlinear Free Surface Flows
with Gravity and Surface Tension

J.-M. Vanden-Broeck
Department of Mathematics, University College London,

Gower Street, London, UK
j.vanden-broeck@ucl.ac.uk

This chapter is concerned with the computation of nonlinear free surface
flows. Both the effects of surface tension and gravity are included in
the dynamic boundary condition. Special attention is devoted to the
singular behaviour at the points where free surfaces intersect rigid walls.
Applications to bubbles rising in a fluid, flows emerging from a nozzle
and cavitating flows are presented. It is shown how physical solutions
are selected in the limit as the surface tension tends to zero.

1. Introduction

Free surface problems occur in many aspects of science and everyday
life. They can be defined as problems whose mathematical formula-
tion involves surfaces that have to be found as part of the solution.
Such surfaces are called free surfaces. Examples of free surface prob-
lems are waves on a beach, bubbles rising in a glass of champagne,
melting ice, flows pouring from a container and sails blowing in the
wind. In these examples the free surface is the surface of the sea, the
interface between the gas and the champagne, the surface of the ice,
the boundary of the pouring flow and the surface of the sail.

In this chapter we concentrate on applications arising in fluid
mechanics. We restrict our attention to steady, inviscid, irrotational
and two-dimensional flows. The effects of gravity and surface tension
are included in the nonlinear dynamic boundary condition.
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Free surface flows fall into two main classes. The first is the class of
such flows for which there are intersections between the free surface
and a rigid surface. The classic example in this class is the flow due to
a ship moving at the surface of a lake, which involves an intersection
between the free surface and a rigid surface (i.e., the hull of the ship).
Other examples are jets leaving a nozzle, bubbles attached to a wall
and flows under a sluice gate. In each case there is a rigid surface
(the nozzle, the obstacle, the wall or the gate) that intersects a free
surface. The second class contains free surface flows for which there
are no intersections between the free surface and a rigid wall. Here the
classic example is the flow due to a submerged object moving below
the surface of a lake. Other examples include free bubbles rising in a
fluid and solitary waves. This chapter is concerned with the theory of
free surface flows of the first class. We proceed in stages of increasing
complexity.

Due to space limitation, some of the details are omitted. The
reader is referred to the monograph “Gravity-Capillary Free Surface
Flows” (Vanden-Broeck5) for a complete presentation, more exam-
ples and more references. Some of the missing parts are also suggested
as exercises at the end of the chapter.

2. Basic Concepts

We first review some equations of fluid mechanics which will be used
in this chapter. For further details see for example Batchelor 2 or
Acheson.1 All the fluids considered are assumed to be inviscid and
to have constant density ρ (i.e., to be incompressible).

Conservation of momentum yields the Euler’s equations

Du
Dt

= −1
ρ
∇p + X, (1)

where u is the vector velocity, p is the pressure and X is the body
force. Here

D

Dt
=

∂

∂t
+ u ·∇, (2)



December 18, 2015 18:36 Fluid and Solid Mechanics 9in x 6in 2nd Reading b2300-ch04 page 111

Nonlinear Free Surface Flows with Gravity and Surface Tension 111

is the material derivative. We assume that the body force X derives
from a potential Ω, i.e.,

X = −∇Ω. (3)

The flows are assumed to be irrotational. Therefore

∇× u = 0. (4)

Relation (4) implies that we can introduce a potential function φ
such that

u = ∇φ. (5)

Conservation of mass gives

∇ · u = 0. (6)

Then (5) and (6) imply the Laplace equation

∇2φ = 0. (7)

Flows which satisfy (4)–(7) are refered to as potential flows.
After integration, (1) gives (after some algebra) the well known

Bernoulli equation

∂φ

∂t
+

u · u
2

+
p

ρ
+ Ω = F (t). (8)

Here, F (t) is an arbitrary function of t. It can be absorbed in the
definition of φ and (8) can be rewritten as

∂φ

∂t
+

u · u
2

+
p

ρ
+ Ω = B, (9)

where B is a constant. For steady flows (9) reduces to

u · u
2

+
p

ρ
+ Ω = B. (10)
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3. Two-Dimensional Flows

Many interesting free surface flows can be modelled as two-
dimensional flows. We then introduce Cartesian coordinates x and y
with the y-axis directed vertically upwards (we reserve the letter z to
denote the complex quantity x + iy). In the applications considered
in this chapter, the body potential in (8) is due to gravity. Assuming
that the acceleration of gravity g is acting in the negative y-direction,
we write Ω as

Ω = gy. (11)
An example of a two-dimensional free surface is illustrated in

Fig. 1. The fluid (e.g., water) is bounded below by the bottom and a
circular obstacle. The flow is from left to right. The upper curve is the
interface between the fluid and the atmosphere with is assumed to be
characterised by a constant atmospheric pressure pa. We refer to such
an interface as a free surface. The two-dimensional configuration of
Fig. 1 provides a good approximation for the three-dimensional free
surface flow past a long cylinder perpendicular to the plane of the
Figure (except near the ends of the cylinder). The cross section of
the cylinder is the half circle shown in Fig. 1.

For two-dimensional potential flows, (4) and (6) become
∂u

∂y
− ∂v

∂x
= 0 (12)

and
∂u

∂x
+
∂v

∂y
= 0. (13)

Here, u and v are the x and y components of the velocity vector u.

x

y

Fig. 1. Sketch of the two-dimensional free surface flow past a submerged circle
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We can introduce a streamfunction ψ by noting that (13) is sat-
isfied by writing

u =
∂ψ

∂y
, (14)

v = −∂ψ
∂x

. (15)

It then follows from (12) that

∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
= 0. (16)

For two-dimensional flows, Eqs. (5) and (7) give

u =
∂φ

∂x
, (17)

v =
∂φ

∂y
(18)

and

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
= 0. (19)

Combining (14), (15), (17) and (18) we obtain
∂φ

∂x
=
∂ψ

∂y
(20)

∂φ

∂y
= −∂ψ

∂x
. (21)

Equations (20) and (21) can be recognised as the classical Cauchy-
Riemann equations. They imply that the complex potential

f = φ+ iψ, (22)

is an analytic function of z = x+iy in the flow domain. This result is
particularly important since it implies that two-dimensional potential
flows can be investigated by using the theory of analytic functions.
This applies in particular to all two-dimensional potential free sur-
face flows with or without gravity or surface tension included in the
dynamic boundary condition. It does not however apply to axisym-
metric and three-dimensional free surface flows. Since the derivative
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of an analytic function is also an analytic function, it follows that
the complex velocity

u − iv =
∂φ

∂x
− i

∂φ

∂y
=
∂ψ

∂y
+ i

∂ψ

∂x
=

df

dz
, (23)

is also an analytic functions of z = x + iy. The theory of analytic
functions will be used intensively in the following sections to study
two-dimensional free surface flows.

We now show that for steady flows the streamfunction ψ is con-
stant along streamlines. A streamline is a line to which the velocity
vectors are tangent. Let us describe a streamline in parametric form
by x = X(s), y = Y (s), where s is the arclength. Then we have

−vX ′(s) + uY ′(s) = 0, (24)

where the primes denote derivatives with respect to s. Using (14)
and (15) we have

∂ψ

∂x
X ′(s) +

∂ψ

∂y
Y ′(s) =

dψ

ds
= 0, (25)

which implies that ψ is a constant along a streamline. For steady
flows the kinematic boundary condition implies that a free surface
is a streamline. The streamfunction is then constant along a free
surface.

An important challenge in finding solutions for flows like that of
Fig. 1 is that the shape of the free surface is not known a priori: it
has to be found as part of the solution. It is then necessary to impose
an extra condition on the free surface. This is known as the dynamic
boundary condition. It can be derived as follows. First we introduce
the concept of surface tension by writing

p − pa =
T

K
. (26)

Here, p denotes the pressure just below the free surface, T the coeffi-
cient of surface tension (assumed to be constant) and K the curvature
of the free surface. The dynamic boundary condition is then obtained
by substituting (11) and (26) into (9) evaluated just below the free
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surface. This yields

∂φ

∂t
+

1
2
(φ2

x + φ2
y) + gy +

T

ρ
K = B. (27)

If we denote by θ the angle between the tangent to the free surface
and the horizontal, then the curvature K can be defined by

K = −dθ

ds
, (28)

where s denotes again the arclength. In particular if the (unknown)
equation of the free surface is y = η(x, t), then

tan θ = ηx and
dx

ds
=

1

(1 + η2
x)

1
2

. (29)

Using (28), (29) and the chain rule gives the formula

K = − ηxx

(1 + η2
x)

3
2

. (30)

4. The Mathematical Model

We shall study in details the two-dimensional free surface flow
sketched in Fig. 2. The flow domain is bounded below by the hor-
izontal wall AB and above by the inclined walls CD and DE and
by the free surface EF . The fluid is assumed to be steady. We intro-
duce Cartesian coordinates with the x-axis along the horizontal wall
AB and the y-axis through the separation point E (here a separa-
tion point refers to an intersection between a free surface and a rigid
wall). The angles between the walls CD and DE and the horizontal
are denoted by γ1 and γ2 respectively.

We denote by µ the angle between the free surface and the wall
at the point E. When µ = π, the free surface is tangent to the wall
at E. When 0 < µ < π, there is locally a flow inside an angle near E
and the velocity at E is zero. When µ > π, we have a flow around
an angle near E and the velocity at E is infinite. We shall see in the
next sections that these three cases can occur.

The configuration of Figure 2 was chosen not only because it is
simple but also because it can be used to describe many properties of
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x

y

µ

Fig. 2. A two-dimensional free surface flow bounded by the walls CD, DE and
AB and the free surface EF . The separation point E is defined as the point at
which the free surface EF intersects the wall DE. The points C, A, F and B are
at infinite distance from E. The flow is from left to right

A B

C

E

β F

Fig. 3. Sketch of the free surface flow under a gate. The flow is from left to right

free surface flows which intersect rigid walls. These properties when
understood for the flow of Figure 2 can then be used to describe
locally flows with more complex geometries.

There are various interpretations of the flow of Fig. 2. The first is
the flow emerging from a container bounded by the walls CD, DE
and AB. When γ1 = γ2 = π/2, the configuration of Fig. 2 models
the flow under a gate (see Fig. 3). Here the point D is irrelevant and
was omitted from the Fig. 3.
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Fig. 4. The free surface flow emerging from a nozzle

A C

B F

x

yE

Fig. 5. A “bubble” rising in a tube, viewed in a frame of reference moving with
bubble. Physical bubbles are characterised by a continuous slope at the apex

Further particular cases of Fig. 2, which model bubbles rising in
a fluid and jets falling from a nozzle are illustrated in Figs. 4 and 5.

As mentioned in the introduction we will proceed with problems
of increasing complexity. Section 5 is devoted to free surface flows
with g = 0 and T = 0. Such flows are called free streamline flows
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and the corresponding free surfaces, free streamlines. In Sec. 6 we
will study the effect of surface tension (T ̸= 0, g = 0). In Sec. 7
we will examine the effect of gravity (T = 0, g ̸= 0). The combined
effects of gravity and surface tension (T ̸= 0, g ̸= 0) are considered
in Sec. 8.

5. Free Streamline Flows: g = 0, T = 0

5.1. Forced separation

We consider the flow configuration of Fig. 2. The effects of gravity and
surface tension are neglected (T = 0, g = 0). We refer to this problem
as one of forced separation because the free surface is “forced” to
separate at the point E where the wall DE terminates. Following
the notations of Sec. 3 we introduce the complex potential function
f = φ+ iψ and the complex velocity u − iv.

The wall AB is a streamline along which we choose ψ = 0. The
walls CD and DE and the free surface EF define another streamline
along which the constant value of ψ is denoted by Q. We also choose
φ = 0 at the separation point E. These two choices (ψ = 0 on AB
and φ = 0 at E) can be made without loss of generality because
φ and ψ are defined up to arbitrary additive constants. Bernoulli’s
equation (10) with Ω = 0 yields

1
2
(u2 + v2) +

p

ρ
= constant (31)

everywhere in the fluid. The free surface EF separates the fluid from
the atmosphere which is assumed to be characterised by a constant
pressure pa. In the abscence of surface tension, the pressure is con-
tinuous across the free surface (see (26)). Therefore p = pa on the
free surface. It follows from (31) that

u2 + v2 = U2 on EF (32)

where U is a constant.
A significant simplification in the formulation of the problem is

obtained by using φ and ψ as independent variables. This choice was
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BA

C D E F

φ

ψ

ψ = 0

ψ = Q

Fig. 6. The flow configuration of Fig. 2 in the complex potential plane f = φ+iψ

used before by many investigators (see Vanden-Broeck 5 for refer-
ences). We shall use it extensively in our studies of gravity capillary
free surface flows. The simplification comes from the fact that the
flow domain is mapped into the strip 0 < ψ < Q shown in Figure 6.

The free surface EF (whose position was unknown in the physical
plane z = x+ iy of Fig. 2) is now part of the known boundary ψ = Q
in the f = φ+ iψ-plane. Since u− iv is an analytic function of z and
z is an analytic function of f (the inverse of an analytic function is
also an analytic function), u − iv is an analytic function of f .

A remarkable result is that many free streanline problems can be
solved in closed form (see Birkhoff and Zarantonello3 and Gurevich4).
These exact solutions are obtained by using conformal mappings and
several methods have been developed to calculate them. The method
we chose to describe, uses a mapping of the flow domain into the
unit circle. It was chosen because it yields naturally to the series
truncation methods used in Secs. 6, 7 and 8 to solve numerically
problems with gravity and surface tension included.

In the absence of gravity and surface tension, the flow approaches
a uniform stream of constant depth H as x → ∞. It follows from
the dynamic boundary condition (32) that this uniform stream is
characterised by a constant velocity U . Since ψ = 0 on AB and
ψ = Q on EF , H = Q/U . We introduce dimensionless variables
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by using U as the reference velocity and H as the reference length.
Therefore ψ = 1 on the walls CD and DE and on the free surface
EF . The dynamic boundary condition (32) becomes

u2 + v2 = 1 on EF. (33)

We define the logarithmic hodograph variable τ−iθ by the relation

u − iv = eτ−iθ. (34)

The function τ−iθ has some interesting properties. Firstly the quan-
tity τ = 1

2 ln(u2 + v2) is constant along free streamlines (see (32)).
Secondly θ can be interpreted as the angle between the vector veloc-
ity and the horizontal. Thirdly (34) leads, for steady flows, to a very
simple formula for the curvature of a streamline. This formula can be
derived as follows. Since the vector velocity is tangent to streamlines,
θ is the angle between the tangent to a streamline and the horizon-
tal. The curvature K of a streamline is then given by (28). Using the
chain rule we rewrite (28) as

K = −∂θ
∂φ

∂φ

∂s
− ∂θ

∂ψ

∂ψ

∂s
. (35)

Along a streamline ψ is constant and therefore

∂ψ

∂s
= 0 and

∂φ

∂s
= eτ . (36)

Substituting (36) into (35) yields the simple formula

K = −eτ ∂θ

∂φ
. (37)

We map the strip of Figure 6 into the unit circle in the t-plane by
the conformal mapping

e−πf =
(1 − t)2

4t
. (38)

The flow configuration in the t-plane is shown in Fig. 7. It can
easily be checked that the points A and C are mapped into t = 0
and that the points B and F are mapped into t = 1. The value of t
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ACDE
F
B

Fig. 7. The flow configuration of Fig. 6 in the complex t-plane. Here we sketch
values of the imaginary value of t versus the real part of t

at the point D is denoted by t = d. The free surface EF is mapped
onto the portion

t = eiσ, 0 < σ < π (39)

of the unit circle. This can easily be shown by noting that a substi-
tution of (39) into (38) gives after some algebra

φ = − 1
π

ln sin2 σ

2
, ψ = 1. (40)

As σ varies from 0 to π, φ varies from ∞ to 0, so that (39) is the
image of the free surface in the t-plane.

One might attempt to represent the complex velovity w = u− iv
by the series

w =
∞∑

n=0

antn. (41)

However the series will not converge inside the unit circle |t| ≤ 1,
because singularities can be expected at the corner D and as x → −∞
(i.e., at t = 0). We can however generalise the representation (41) by
writing

w = G(t)
∞∑

n=0

antn (42)
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where the function G(t) contains all the singularities of w. As we shall
see in Secs. 6–8 this type of series representation enables the accurate
calculation of many free surface flows with gravity and surface tension
included. For the present problem we require G(t) to behave like w
as t → 0 and as t → d. Here d is the value of t at the point D in
Fig. 7. We can then expect the series in (42) to converge for |t| ≤ 1.

To construct G(t), we find the asymptotic behaviour of w near
the singularities by performing local asymptotic analysis near D and
as x → −∞.

The flow near D is a flow inside a corner. It can be shown that
the general solution for a flow in a corner γ is

z ≈ Af
γ
π , (43)

where A is a constant. It follows from (43) that

w ≈ π

Aγ
f1− γ

π . (44)

When γ < π, the flow is inside at the angle and (44) implies that
the velocity at the apex is zero. When γ > π, the flow is around the
angle and (44) implies that the velocity at the apex is infinite.

For the flow of Figure 2, γ = π − γ2 + γ1 and (44) implies

w = (f − φD − i)
(

γ2−γ1
π

)
as f → φD + i (45)

where φD is the value of φ at the point D. Using (38), yields

f − φD − i ≈ t − d as f → φD + i. (46)

Combining (45) and (46) gives

w ≈ (t − d)
(

γ2−γ1
π

)
as t → d. (47)

This concludes our local analysis near the point D.
As x → −∞, the flow behaves like the flow due to a sink at

x = y = 0. Therefore

f ≈ −B ln z as x → −∞, (48)
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where B is a positive constant. Differentiating (48) with respect to
z gives

w =
df

dz
= −B

z
. (49)

Since the flux of the fluid coming from −∞ is 1 and the angle between
the walls CD and AB is γ1, we have

B =
1
γ1

. (50)

Eliminating z between (48) and (49) gives

w = O[eγ1f ] as f → −∞. (51)

Relation (38) implies

eπf = O(t) as f → −∞. (52)

Therefore (51) and (52) give

w = O(t
γ1
π ) as t → 0. (53)

Combining (47) and (53), we can choose

G(t) = (t − d)
(γ2−γ1)

π t
γ1
π (54)

and write (42) as

w = (t − d)(γ2−γ1)/πtγ1/π
∞∑

n=0

antn. (55)

There are of course many other possible choices for G(t). For exam-
ple, G(t) can be multiplied by any function analytic in |t| ≤ 1.

We now need to determine the coefficients an in (55) so that
the dynamic boundary condition (33) is satisfied. This can be done
numerically by truncating the infinite series in (55) after N terms
and finding the coefficients an, n = 0 . . . , N − 1 by collocation. This
is the approach we will use when solving problems with the effects of
gravity or surface tension included in the dynamic boundary condi-
tion. However it can checked that the problem has the exact solution

w =
[

t − d

1 − td

] (γ2−γ1)
π

t
γ1
π . (56)
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It then follows from (55) that
∞∑

n=1

antn =
[

1
1 − td

] (γ2−γ1)
π

. (57)

The existence of an exact solution follows from the general theory
of free streamline flows. This theory was developed by Kirchhoff and
Helmoltz (see Birkhoff and Zarantonello3 and Gurewich4 for details).

The free surface profile is obtained by setting ψ = 1 in (56),
calculating xφ and yφ from the identity

xφ + iyφ =
1
w

(58)

and integrating with respect to φ.
As an example let us assume that γ1 = γ2 = π/2 (see Figure 3).

Then (56) reduces to

w = t
1
2 (59)

and (39), (58) and (59) yield

xφ + iyφ = e−
iσ
2 on 0 < σ < π (60)

on the free surface EF . Differentiating (40) with respect to σ and
applying the chain rule to (60) gives

xσ + iyσ = − 1
π

cotan
σ

2
e−

iσ
2 . (61)

Integrating (61) gives the free profile in parametric form. It is shown
in Fig. 8.

5.2. Free separation

In Figs. 2 and 3 the free surface is forced to separate from the rigid
wall DE at E because the wall DE terminates at E. We refer to this
situation as forced separation. On the other hand, if the wall DE is
replaced by a smooth curve then the point of separation E can be in
principle any point on the smooth curve. We refer to this situation
as free separation.

A typical example of free separation is the cavitating flow past a
circle (see Fig. 9).



December 18, 2015 18:36 Fluid and Solid Mechanics 9in x 6in 2nd Reading b2300-ch04 page 125

Nonlinear Free Surface Flows with Gravity and Surface Tension 125

0

0.5

1.0

1.5

2.0

0–2 2 4 6 8

Fig. 8. Computed free surface profile (values of y versus x) for the flow configu-
ration of Figure 3. The position of the separation point E is indicated by a small
horizontal line. The vertical scale has been exagerated to show clearly the free
surface profile. The bottom is on y = 0
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Fig. 9. The cavitating flow past a circle in an unbounded fluid domain. When
the surface tension T is equal to zero the free surfaces leave the circle tangentially
and β = 0. When T ̸= 0 the angle β can be different from zero

The cavity is bounded by the two free surfaces BG and AD. It
is characterised by a constant pressure pa and it is open as x →
∞. The position of the separation points A and B is characterised
by the angle γ̄. The angle between the free surfaces and the circle at
the separation points B and A is denoted by β. Since we assumed in
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this section that g = 0 and T = 0, we have β = 0. We will see in the
next sections that β can be different from zero when T ̸= 0. There
no exact solution for the flow of Fig. 9 because the rigid boundaries
are not polygonal. However solutions can be calculated numerically
by series truncation. Details can be found in Vanden-Broeck.5 The
results show that the value of the angle γ̄ does not come as part of the
solution. In other words there is a flow for each value of γ̄. A natural
question is: which value of γ̄ will be selected in an experiment? One
way to select a solution is to impose an extra condition known as the
Brioullin condition (see Birkhoff and Zarantonello3 and Gurewich4

for details). It leads to the values
γ∗ ≈ 550. (62)

As we shall see in Sec. 6.2 an alternative way to achieve this selection
is to introduce the surface tension T in the problem and then to take
the limit T → 0.

6. Pure Capillary Free Surface Flows: g = 0, T ̸= 0

6.1. Forced separation

In this section we will investigate the effects of the surface tension
T on the free streamline solutions of Sec. 5. We show that the limit
T → 0 is singular. When T ̸= 0 discontinuities can appear at the
separation points. In particular vales of µ ̸= π and β ̸= 0 can occur
in Figures 2 and 3.

We can calculate nonlinear solutions for the flow configuration of
Fig. 2 by modifying appropriately the series representation (55) to
accomodate the singularity at t = −1. The flow near t = −1 is a flow
in an angle µ. Using (44) we obtain

w ∼ f1−µ
π as φ→ 0. (63)

Using (38) we have

w ∼ (t + 1)2−
2µ
π as t → −1. (64)

Therefore

w = (t − d)
(γ2−γ1)

π t
γ1
π (t + 1)2−

2µ
π

∞∑

n=0

antn (65)
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is the appropriate generalisation of (55) when surface tension is
included.

We present explicit calculations in the particular case γ1 = γ2 =
π/2. In other words we consider the flow configuration of Figure 3.
The expression (65) becomes

w = t
1
2 (t + 1)−

2β
π

∞∑

n=0

antn, (66)

where β is defined in Fig. 3.
The dynamic boundary condition is given in dimensionless vari-

ables (U = 1, H = 1) by

1
2
(u2 + v2) +

2
αv

K = constant, (67)

where αv is defined by

αv =
2ρU2H

T
. (68)

Since u2 + v2 → 1 and K → 0 as φ → ∞, the constant on the
right-hand side of (67) is equal to 1/2.

We truncate the infinite series in (66) after N terms. We calculate
the coefficients an, n = 0, . . . , N − 1 and β by satisfying (67) (with
K rewritten in terms of u and v by using (37)) at the N + 1 equally
spaced mesh points

σI =
π

N + 1
(I − 1

2
) I = 1, . . . , N + 1. (69)

This leads a system of N + 1 equations with N + 1 unknowns which
is solved by Newton’s method.

Typical free surface profiles are shown in 10. For αv = ∞, the
free surface profile reduces to the free streamline solution of Fig. 8.
As αv → 0, the free surface profile approaches the horizontal line
y = 1. This is consistent with the fact that the dynamic boundary
condition (67) predicts that the curvature of the free surface tends
to zero as αv → 0 (the line y = 1 has zero curvature).

Numerical values of β versus αv are shown in Figure 11.
As αv varies from 0 to ∞, β varies continuously from π/2 to 0.
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Fig. 10. Computed free surface profiles (values of y versus x) for the flow con-
figuration of Figure 3. The profiles from top to bottom correspond to αv = ∞,
αv = 50, αv = 25, αv = 10 and αv = 5. The bottom is on y = 0
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Fig. 11. Values of the angle β between the free surface and the wall at the
separation point E (see Figure 3) versus αv

6.2. Free separation

We now consider the open cavity model of Fig. 9 with the effect of
the surface tension T included in the dynamic boundary condition.
The results presented in the previous section suggests that the angle
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Fig. 12. Values of β/π versus γ̄ for ᾱ = 1

β in Fig. 9 will be different from zero when T ̸= 0. This is confirmed
by solving the problem numerically by using the series truncation
procedure outlined in Sec. 5.1. The reader is referred to Vanden-
Broeck5 for details. We present in Fig. 12 values β/π versus γ̄ for
ᾱ = 1. Here, ᾱ is defined by

ᾱ =
ρU2R

T
, (70)

where R is the radius of the circle.
Figure 12 illustrates the fact that for each value ᾱ (i.e., for each

value of T ) there is only one value of γ̄ for which β = 0. We describe
these particular values of γ̄ by the function γ̄ = g(ᾱ). This means
that for γ̄ = g(ᾱ) the free surface leaves the circle tangentially. The
numerical calculations show that

g(ᾱ) → γ∗ α→ ∞ (71)

where γ∗ is defined in (62).
Therefore a unique solution is obtained in the limit as T tends to

zero. This shows that the solution satisfying the Brioullin condition
can be selected by including surface tension in the problem and then
taking the limit T → 0.



December 18, 2015 18:36 Fluid and Solid Mechanics 9in x 6in 2nd Reading b2300-ch04 page 130

130 J.-M. Vanden-Broeck

7. Pure Gravity Free Surface Flows: g ̸= 0, T = 0

For pure gravity flows, the angles µ and β in Figs. 2 and 3 come
also as part of the solution. However they are restricted to a few
values. For example for the flow of Fig. 4, µ can only take one of the
three values π/2, 2π/3 and π. Here (and in the remaining part of
this chapter) we assume that gravity is acting vertically downwards.
Numerical solutions can be obtained by adapting appropriately the
series truncation method of Secs. 5 and 6. Details can be found in
Vanden-Broeck.5

We present results for the flow sketched in Figs. 4 and 5. We
first note that these two flows are equivalent by symmetry: the free
surfaces EF in Figs. 4 and 5 are identical. We chose to describe
the results by refering to Fig. 5. Following the notations in Vanden-
Broeck,5 we introduce the Froude number

F =
U√
gh

(72)

and the parameter

ν = 2
π − µ

π
, (73)

where h is the distance between the two vertical walls in Figure 5.
Figure 13 shows numerical values of ν versus F . These results

imply

ν = 1, µ =
π

2
for 0 < F < Fc (74)

ν =
2
3
, µ =

2π
3

for F = Fc (75)

ν = 0, µ = π for F > Fc (76)
where

Fc ≈ 0.3578. (77)
Physically relevant bubbles should have a continuous slope at

their apex. This occurs for all values of 0 < F < Fc. Experiments
show that bubbles are only observed for

Fe ≈ 0.25. (78)
This value is clearly in the interval 0 < F < Fc. However we do not
have at this stage any criterion to select this particular solution. The
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Fig. 13. Values of ν versus F when T = 0

selection will again be achieved in the next section by introducing
the surface tension T and taking the limit T → 0.

8. Gravity-Capillary Free Surface Flows: g ̸= 0, T ̸= 0

When g ̸= 0 and T ̸= 0, the angles µ and β are again found as part of
the solution. However they can take in principle any values as it was
the case in Sec. 6 where T ̸= 0 and g = 0. This is to be contrasted to
the case g ̸= 0 and T = 0 of Sec. 7 where the angle µ was restricted
to three values. We can therefore expect the limit T → 0 to be a
singular limit.

We present explicit results for the flow of Fig. 5. We first introduce
the parameter

α∗ =
ρU2h

T
. (79)

Values of ν versus F for α∗ = 10 are presented in Figs. 14 and
15. These results show that there is a countably infinite set of values
of F for which ν = 1. This is to be contrasted to the case T = 0
(i.e., α∗ = ∞) for which ν = 1 for all values 0 < F < Fc. More
interestingly it can be shown that this discrete set of values coalesce
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Fig. 14. Values of ν versus F for α∗ = 10
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Fig. 15. Enlargement of Figure 14 showing clearly the oscillations

to a unique value
F ∗∗ ≈ 0.23 as T → 0 (80)

(see Vanden-Broeck 5). This is illustrated in Fig. 16 where we plot
the value F ∗

1 of the largest value of the discrete set versus 1/α∗. As
T → 0 (i.e., as 1/α∗ → 0), F1 → F ∗∗ in agreement with (80). The
value of F ∗∗ is close to the experimental value (78). This shows that
the physically relevant bubble is selected by including the surface
tension T and taking the limit T → 0.
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Fig. 16. Values of 1/α∗ versus F ∗
1 . As 1/α∗ → 0, F ∗

1 → F ∗∗ ≈ 0.23
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Fig. 17. The selected bubble

The selected profile is shown in Fig. 17.

9. Some Exercises

(1) Derive equation (38). Hint: first map the strip of Figure (6) onto
to the lower half-plane.

(2) Derive equation (43).
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(3) Use the result in (1) to derive (44).
(4) Define the contraction ratio yF /yE in Fig. 3. Consider now the

flow in Fig. 8. Show that the contraction ratio is π
2+π .

(5) Derive the appropriate generalisation of (66) for the flow of
Fig. 4. Assume T = 0 and g ̸= 0.

10. Conclusions

We have studied some nonlinear gravity-capillary free surface flows.
Special attention was devoted to problems for which the free surfaces
intersect rigid surfaces. We hope to have convinced the reader of the
mathematical beauty of these flows. Due to the space limitation we
restricted our attention to steady waveless potential flows. Further
extensions to rotational flows, free surface flows with waves, time
dependent problems and three-dimensional flows can be found in
Vanden-Broeck5 and in the references cited there.
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