
3

Free surface flows that intersect walls

We continue our study of free surface flows by considering the two-dimensional
flow shown in Figure 3.1. The flow domain is bounded below by the hori-
zontal wall AB and above by the inclined walls CD and DE and the free
surface EF . The fluid is assumed to be incompressible and inviscid and the
flow is assumed to be irrotational and steady. We introduce cartesian cood-
inates with the x-axis along the horizontal wall AB and the y-axis through
the separation point E (here a separation point refers to an intersection of
a free surface and a rigid wall). The angles between the walls CD and DE
and the horizontal are denoted by γ1 and γ2 respectively.
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Fig. 3.1. A two-dimensional free surface flow bounded by the walls CD, DE and
AB and the free surface EF . The separation point E is defined as the point at
which the free surface EF meets the wall DE. The flow is from left to right.

The configuration of Figure 3.1 was chosen because it can be used to
describe many properties of free surface flows that intersect, i.e. adjoin,
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32 Free surface flows that intersect walls

rigid walls. These properties when understood for the flow of Figure 3.1 can
then be used to describe locally flows with more complex geometries.

There are various illustrations of the flow of Figure 3.1. The first is the
flow emerging from a container bounded by the walls CD, DE and AB.
When γ1 = γ2 = π/2, the configuration of Figure 3.1 models the flow under
an infinitely high gate (see Figure 3.2). Here the point D is irrelevant and
has been omitted from the figure.

A B

C

E

F

Fig. 3.2. The free surface flow under a gate. The flow is from left to right, and the
labels C, A, F and B indicate points at an infinite distance from E.

When γ1 = 0 and γ2 < 0, Figure 3.1 describes locally the flow near the
bow or the stern of a ship (see Figure 3.3). A clear distinction between
the stern and bow flows will be introduced in Chapter 8, when we discuss
gravity flows with a train of waves in the far field. Further particular cases
of Figure 3.1, which model bubbles rising in a fluid and jets falling from a
nozzle, are described in Section 3.3.2.
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Fig. 3.3. A model for the free surface flow near the bow or stern of a ship.

As mentioned in Chapter 1 we will proceed with problems of increasing
complexity. Section 3.1 is devoted to free surface flows with g = 0 and
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T = 0. Such flows are called free streamline flows and the corresponding
free surfaces are called free streamlines. In Section 3.2 we will study the
effect of surface tension (T != 0, g = 0). In Section 3.3 we will examine the
effect of gravity (T = 0, g != 0). The combined effects of gravity and surface
tension (T != 0, g != 0) are considered in Section 3.4.

3.1 Free streamline solutions
3.1.1 Forced separation

We consider the flow configuration of Figure 3.1. Here the effects of gravity
and surface tension will be neglected (T = 0, g = 0). We refer to this
problem as one of forced separation because the free surface is ‘forced’ to
separate at the point E where the wall DE terminates. We denote by u
and v the horizontal and vertical components of the velocity. Using the
incompressibility of the fluid and the irrotationality of the flow, we define
a potential function φ(x, y) and a streamfunction ψ(x, y). As shown in
Section 2.3, the complex potential f = φ + iψ and the complex velocity
w = u − iv = df/dz are both analytic functions of z = x + iy.

The wall AB is a streamline along which we choose ψ = 0. The walls CD
and DE and the free surface EF define another streamline, along which
the constant value of ψ is denoted by Q. We also choose φ = 0 at the
separation point E. These two choices (ψ = 0 on AB and φ = 0 at E)
can be made without loss of generality because φ and ψ are defined up to
arbitrary additive constants. Bernoulli’s equation (2.13) with Ω = 0 yields

1
2
(u2 + v2) +

p

ρ
= constant (3.1)

everywhere in the fluid. The free surface EF separates the fluid from the
atmosphere which is assumed to be characterised by a constant pressure pa.
In the absence of surface tension, which we are assuming, the pressure is
continuous across the free surface (see (2.19)). Therefore p = pa on the free
surface. It follows from (3.1) that

u2 + v2 = U2 on EF , (3.2)

where U is a constant.
A significant simplification in the formulation of the problem is obtained

by using φ and ψ as independent variables. This choice was used by Stokes
[144], to study gravity waves, and by Helmholtz [71] and Kirchhoff [90]
(see also [19] and [69]) to investigate free streamline flows. We shall use
it extensively in our studies of gravity–capillary free surface flows. The



34 Free surface flows that intersect walls

simplification comes from the fact that the flow domain is mapped into the
strip 0 < ψ < Q shown in Figure 3.4. The free surface EF (whose position
was unknown in the physical plane z = x + iy of Figure 3.1) is now part
of the known boundary ψ = Q in the f -plane. Since u − iv is an analytic
function of z and z is an analytic function of f (the inverse of an analytic
function is also an analytic function), u − iv is an analytic function of f .

BA

C D E F

φ

ψ

ψ = 0

ψ = Q

Fig. 3.4. The flow configuration of Figure 3.1 in the complex potential plane f =
φ + iψ.

A remarkable result is that many free streamline problems can be solved
in closed form (see Birkhoff and Zarantonello [19] and Gurevich [69]). These
exact solutions are obtained by using conformal mappings, and several meth-
ods have been derived to calculate them. The method we now choose to de-
scribe uses a mapping of the flow domain into the unit circle. It was chosen
because it yields naturally to the series truncation methods used in Sec-
tions 3.2–3.4 to solve numerically problems with gravity and surface tension
included.

In the absence of gravity and surface tension, the flow approaches a uni-
form stream of constant depth H as x → ∞. It follows from the dynamic
boundary condition (3.2) that this uniform stream is characterised by a
constant velocity U . Since ψ = 0 on AB and ψ = Q on EF , H = Q/U .

We define the logarithmic hodograph variable τ − iθ by the relation

w = u − iv = eτ−iθ . (3.3)

The function τ − iθ has some interesting properties. First, the quantity
τ = 1

2 ln(u2 +v2) is constant along free streamlines (see (3.2)). Second, θ can
be interpreted as the angle between the vector velocity and the horizontal.
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Third, (3.3) leads, for steady flows, to a very simple formula for the curvature
of a streamline. This formula can be derived as follows. Since the vector
velocity is tangent to streamlines, θ is the angle between the tangent to a
streamline and the horizontal. The curvature K of a streamline is given by
(2.45). Using the chain rule, we can rewrite (2.45) as

K = −∂θ

∂φ

∂φ

∂s
− ∂θ

∂ψ

∂ψ

∂s
. (3.4)

Along a streamline ψ is constant and therefore

∂ψ

∂s
= 0 and

∂φ

∂s
= eτ . (3.5)

Subsituting (3.5) into (3.4) yields the simple formula

K = −eτ ∂θ

∂φ
. (3.6)

We now introduce dimensionless variables by using U as the reference
velocity and H as the reference length. Therefore ψ = 1 on the walls CD
and DE and on the free surface EF . The dynamic boundary condition (3.2)
becomes

u2 + v2 = 1 on EF. (3.7)

We map the strip ABFC shown in Figure 3.4 into the unit circle in the
t-plane by the conformal mapping

e−πf =
(1 − t)2

4t
. (3.8)

The flow configuration in the t-plane is shown in Figure 3.5. It can easily
be checked that the points A and C are mapped into t = 0 and the points
B and F are mapped into t = 1. The value of t at the point D is d. The
free surface EF is mapped onto the portion

t = eiσ , 0 < σ < π, (3.9)

of the unit circle. This can easily by shown by noting that the substitution
of (3.9) into (3.8) gives, after some algebra,

φ = − 1
π

ln sin2 σ

2
on ψ = 1. (3.10)

As σ varies from 0 to π, φ varies from ∞ to 0, so that (3.9) is the image of
the free surface in the t-plane.
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ACDE
F
B

Fig. 3.5. The flow configuration of Figure 3.1 in the complex t-plane.

One might attempt to represent the complex velocity w = u − iv by the
series

w =
∞∑

n=0

antn. (3.11)

However, the series will not converge inside the unit circle |t| ≤ 1, because
singularities can be expected at the corner D and as x → −∞ (i.e. at t = 0).
Nevertheless we can generalise the representation (3.11) by writing

w = G(t)
∞∑

n=0

antn, (3.12)

where the function G(t) contains all the singularities of w. As we shall see
in Sections 3.2–3.4, this type of series representation enables the accurate
calculation of many free surface flows with gravity and surface tension in-
cluded. For the present problem we require G(t) to behave like w as t → 0
and as t → d. We can then expect the series in (3.12) to converge for |t| ≤ 1.

To construct G(t), we find the asymptotic behaviour of w near the singu-
larities by performing local asymptotic analysis near D and as x → −∞.

The flow near D is a flow inside a corner. We will find the nature of the
singularity at D by considering the general problem of a flow inside a corner
of angle γ (see Figure 3.6).

We introduce cartesian coordinates with the origin at the apex G of the
corner. We choose ψ = 0 on the streamline HGL and φ = 0 at x = y = 0.
Assuming without loss of generality that the flow is in the direction of the
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Fig. 3.6. Flow in a corner bounded by the walls GH and GL.

arrow, we have φ < 0 along the wall HG, φ > 0 along the wall GL and
ψ > 0 in the flow domain. The flow configuration in the complex potential
plane is shown in Figure 3.7.

H G
φ

L

ψ

Fig. 3.7. The flow configuration of Figure 3.6 in the complex potential plane. The
flow domain is the upper half-plane ψ > 0.

We seek a solution of the form

z = Aeiαfµ, (3.13)

where A > 0, µ and α are real constants. On the wall GL (where φ > 0),
the kinematic boundary condition can be written as arg z = 0. Therefore
(3.13) implies that

α = 0. (3.14)

On the wall GH (where φ < 0), the kinematic boundary condition can be
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written as arg z = γ. Writing φ = eiπ |φ| and using (3.13), we find that

α + πµ = γ. (3.15)

Relations (3.14) and (3.15) imply that

µ =
γ

π
; (3.16)

therefore (3.13) gives

z = Afγ/π . (3.17)

Since

w =
(

dz

df

)−1
(3.18)

we obtain the formula

w =
π

Aγ
f1−γ/π (3.19)

or, eliminating f between (3.17) and (3.19),

w =
π

γ
A−π/γzπ/γ−1. (3.20)

Flows inside corners will occur in many flow configurations described in this
book and we will refer often to the above local analysis. We note that the
formulae (3.17), (3.19) and (3.20) still hold if the boundary GL in Figure
3.6 is an arbitrary straight line through G (i.e. if the angle HGL is rotated).
The only difference is that α is then different from zero.

The velocity at the point G is equal to zero when γ < π and is unbounded
when γ > π see (3.20). We will refer to the flow of Figure 3.6 as a flow
inside a corner when γ < π and as a flow around a corner when γ > π.

For the flow of Figure 3.1, γ = π − γ2 + γ1 and (3.19) implies

w = O[(f − φD − i)(γ2−γ1 )/π)] as f → φD + i, (3.21)

where φD is the value of φ at the point D. Here we have used the classical
O notation to indicate an estimate of the behaviour of a function. We recall
that writing

f(x) = O[g(x)] as x → x0 (3.22)

means that
f(x)
g(x)

→ A as x → x0, (3.23)



3.1 Free streamline solutions 39

where A is a constant. Similarly,

f(x) = o[g(x)] as x → x0 (3.24)

means that
f(x)
g(x)

→ 0 as x → x0. (3.25)

Using (3.8) yields

f − φD − i = O[t − d] as f → φD + i. (3.26)

Combining (3.21) and (3.26) gives

w = O[(t − d)(γ2−γ1 )/π)] as t → d. (3.27)

This concludes our local analysis near the point D.
As x → −∞, the flow behaves like that due to a sink at x = y = 0.

Therefore

f ≈ −B ln z as x → −∞ (3.28)

where B is a positive constant. Differentiating (3.28) with respect to z gives

w =
df

dz
= −B

z
. (3.29)

Since the flux of the fluid coming from −∞ is 1 and the angle between the
walls CD and AB is γ1, we have

B =
1
γ1

. (3.30)

Eliminating z between (3.28) and (3.29) gives

w = O[eγ1f ] as f → −∞, (3.31)

and relation (3.8) then implies that

eπf = O(t) as f → −∞. (3.32)

Therefore (3.31) and (3.32) give

w = O(tγ1/π) as t → 0. (3.33)

Combining (3.27) and (3.33), we can choose

G(t) = (t − d)(γ2−γ1 )/πtγ1 /π (3.34)
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and write (3.12) as

w = (t − d)(γ2−γ1 )/πtγ1 /π
∞∑

n=0

antn. (3.35)

There are, of course, many other possible choices for G(t). For example G(t)
in (3.34) can be multiplied by any function analytic in |t| ≤ 1.

We now need to determine coefficients an in (3.35) such that the dynamic
boundary condition (3.7) is satisfied. This can be done numerically by trun-
cating the infinite series in (3.35) after N terms and finding the coefficients
an, n = 0, . . . , N − 1 by collocation. This is the approach we will use when
solving problems where the effects of gravity or surface tension are included
in the dynamic boundary condition. However, it can checked that

∞∑

n=0

antn =
(

1
1 − td

)(γ2−γ1 )/π

(3.36)

and therefore the present problem has the exact solution

w =
(

t − d

1 − td

)(γ2−γ1 )/π

tγ1 /π . (3.37)

The existence of an exact solution for the flow of Figure 3.1 follows from
the general theory of free streamline flows. This theory was developed by
Kirchhoff [90] and Helmholtz [71]; see Birkhoff and Zarantonello [19] or
Gurewich [69] for details.

The free surface profile is obtained by setting ψ = 1 in (3.8) and (3.37),
calculating the partial derivatives xφ and yφ from the identity

xφ + iyφ =
1
w

(3.38)

and integrating with respect to φ.
As a first example let us assume that γ1 = γ2 = π/2 (see Figure 3.2).

Then (3.37) reduces to

w = t1/2 (3.39)

and (3.9), (3.38) and (3.39) yield

xφ + iyφ = e−iσ/2, 0 < σ < π, (3.40)

along the free surface EF . Differentiating (3.10) with respect to σ and
applying the chain rule to (3.40) gives

xσ + iyσ = − 1
π

cotan
σ

2
e−iσ/2. (3.41)
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Integrating (3.41) with respect to σ and taking the real and imaginary parts
gives

x =
2
π

cotan
σ

2
+

σ

π
− 1 (3.42)

y =
2
π

sin
σ

2
+ 1. (3.43)

Relations (3.42) and (3.43) define the free surface profile in parametric form.
It is shown in Figure 3.8.
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Fig. 3.8. Free surface profile for the flow configuration of Figure 3.2. The position
of the separation point E is indicated by a small horizontal line. The vertical scale
has been exaggerated to show clearly the free surface profile.

A classical parameter associated with this flow is the contraction ratio Cc,
defined as the ratio yF /yE of the ordinates of the points F and E. Using
(3.43) with σ = π and σ = 0, we obtain

Cc =
π

π + 2
≈ 0.611. (3.44)

As a second example, let us assume γ1 = 0 and γ2 = π/2 (see Figure 3.9).
Then (3.37) becomes

w =
(

t − d

1 − td

)1/2
. (3.45)

Proceeding as in the previous example, we obtain

xσ + iyσ = − 1
π

cotan
σ

2

(
1 − eiσd

eiσ − d

)1/2

(3.46)

on the free surface EF .
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A B

C D

E

F

Fig. 3.9. A free surface flow emerging from a container bounded by the horizontal
walls CD and AB and by the verical wall DE.

Integrating (3.46) gives x and y on the free surface as functions of σ.
There is a solution for each value of −1 < d < 0; the parameter d measures
the length of the vertical wall DE in the complex t-plane. This is an inverse
formulation in the sense that for each value of d the length of the wall DE
in the physical plane is found at the end of the calculations, in the following
way. We first calculate yφ for −1 < t < d by using (3.38) and (3.45). We
then evaluate yt for −1 < t < d by using (3.8) and the chain rule. The
length of the wall DE is then obtained by integrating with respect to t from
−1 to d. A typical solution for d = −0.5 is shown in Figure 3.10.
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0 1 2 3 4

Fig. 3.10. Computed free surface profile for the flow configuration of Figure 3.9
with d = −0.5. The position of the separation point E is indicated by a small
horizontal line. The vertical scale has been exaggerated to show clearly the free
surface profile.
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As d → 0, the length of the vertical wall DE tends to infinity and the
flow reduces to that of Figure 3.2. As d → −1, the length of the vertical
wall DE tends to zero and the flow reduces to a uniform stream.

As a third example, we assume γ2 < 0 and γ1 = 0 (see Figure 3.3). As
mentioned at the begining of this chapter, this configuration models the
flow due to a surface-piercing obstacle moving at a constant velocity when
viewed in a frame of reference moving with the obstacle. In particular it is
a simple model for the flow near the stern or the bow of a ship. Again using
(3.37), we obtain

w =
(

t − d

1 − td

)γ2 /π

. (3.47)

As in the previous two examples we use (3.47) to calculate xσ + iyσ on the
free surface. After integration we obtain the shape of the free surface in
parametric form. A typical free surface profile for d = −0.2 and γ2 = −π/3
is shown in Figure 3.11.
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Fig. 3.11. Computed free surface profile for the flow configuration of Figure 3.3
with d = −0.2 and γ2 = −π/3. The position of the separation point E is indicated
by a small horizontal line. The vertical scale has been exaggerated to show clearly
the free surface profile.

3.1.2 Free separation

In Figures 3.1 and 3.9, on the one hand, the free surface is forced to separate
from the rigid wall DE at E because the wall DE terminates at E. We refer
to this situation as forced separation. On the other hand, if the wall DE
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is replaced by a smooth curve then in principle the point of separation E
can be any point on the smooth curve (see Figure 3.12). We refer to this
situation as free separation.

A B

F

C

D

E

Fig. 3.12. The flow configuration of Figure 3.9 but with the vertical wall DE re-
placed by a smooth overhang.

We note that any solution corresponding to free separation represents also
a solution with forced separation if a smooth curve forming an overhang is
cut along a line through the separation point (see Figure 3.13). As we
shall see in Section 3.2, the distinction between forced and free separation
is important when studying the effects of surface tension.
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E

D

Fig. 3.13. The flow configuration of Figure 3.12 when the smooth surface is cut by
a vertical line.

3.1.2.1 Open cavities
We now consider some solutions with free separation which will be useful
in Section 3.2 when we consider the effects of surface tension. Figure 3.14
shows a particular case of Figure 3.12 for which the vertical rigid wall DE
of Figure 3.9 has been replaced by a smooth ‘elliptical’ wall with equation

(
x̃

ã

)1/2
+

(
ỹ

b̃

)1/2
= 1. (3.48)
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Here x̃ and ỹ refer to coordinates with the origin at the centre of the ellipse
and ã and b̃ are the semi-axes of the ellipse.

A B

E

F

C D

Fig. 3.14. The flow of Figure 3.9 when the vertical wall DE has been replaced by
a smooth semi-elliptical wall.

If ã ' b̃, the semi-ellipse is thin and the configuration of Figure 3.14 can
be viewed as that of Figure 3.9 but with the infinitely thin wall DE replaced
by a smooth wall of finite thickness. In other words, Figure 3.14 takes into
account the finite thickness of any real wall but approaches the configuration
of Figure 3.9 as ã/b̃ → 0. However, to study flows with free separation we
shall assume that b̃ = ã (i.e. that the semi-ellipse is a semicircle), so that
flows corresponding to different positions of the separation point E can be
clearly distinguished on the profiles.

The flow of Figure 3.14 can be reflected in the wall CD. This yields the
flow of Figure 3.15. It models a flow past a circular cylinder with a cavity
behind it (see for example Batchelor [8] for a discussion of cavitating flows).

Fig. 3.15. Cavitating flow past a circular object in a domain bounded by two hor-
izontal walls.

We shall study the flow of Figure 3.15 when the radius of the circle is very
small compared with the distance between the horizontal walls, so that the
circle can be assumed to be in a fluid unbounded in the vertical direction
(see Figure 3.16). The angle between the free surface and the circle at the
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separation points is denoted by β. For free streamline solutions β = 0. This
follows from (3.20) with γ = β, which shows that a value β != 0 would
generate a zero or an infinite velocity at the separation points. This would
contradict (3.2). However, we shall see in Sections 3.2 and 3.4 that values
β != 0 can occur when surface tension is taken into account.

C

B

G

x

A 

y

D

E

Fig. 3.16. The cavitating flow past a circle in an unbounded fluid domain. When
the surface tension T is zero, the free surfaces leave the circle tangentially and
β = 0. When T != 0, the angle β can be different from zero.

We define dimensionless variables by using the radius R of the circle as the
reference length and the constant velocity U far upstream as the reference
velocity. We introduce the potential function bφ, the streamfunction bψ and
the complex potential f = bφ + ibψ. Without loss of generality we may
choose φ = 0 at the point C and ψ = 0 on the streamlines ECAD and
ECBG. Here and in the remaining part of this section, the letters E, C, B,
G, A and D refer to Figure 3.16. The constant b is defined so that φ = 1
at the separation points A and B. The flow configuration in the complex
potential plane is illustrated in Figure 3.17.

We introduce the complex velocity u − iv and define the function τ − iθ
by the relation (3.3). Using (3.6), we have

K = −eτ

b

∂θ

∂φ
. (3.49)

We shall seek τ − iθ as an analytic function of φ + iψ in the half-plane
ψ < 0 (see Figure 3.17). The solution in ψ > 0 can then be obtained by
symmetry. The boundary conditions on ψ = 0 are given by

θ = 0 on ψ = 0, −∞ < φ < 0, (3.50)
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C DE

G

Fig. 3.17. The flow of Figure 3.16 in the complex potential plane.

eτ

b

∂θ

∂φ
= 1 on ψ = 0, 0 < φ < 1, (3.51)

τ = 0 on ψ = 0, 1 < φ < ∞. (3.52)

The condition (3.50) follows from symmetry. Equation (3.51) follows from
(3.49) and the fact that the curvature of the rigid boundary ACB is 1.
Relation (3.52) is the dynamic boundary condition rewritten in terms of τ .

This completes the formulation of the problem. We seek τ − iθ as an
analytic function of φ + iψ in ψ < 0 satisfying (3.50)–(3.52). We will solve
the problem by following the series truncation method introduced in Section
3.1.1 (see (3.12)). First we map the flow domain into the unit circle in the
complex t-plane by the transformation

f1/2 =
(

t − 1
t

)
1
2i

. (3.53)

The flow configuration in the t-plane in shown in Figure 3.18. The rigid
surface ACB is mapped onto the circle |t| = 1 and the free surfaces AD
and BG are mapped onto the imaginary axis. The conditions (3.50)–(3.52)
become

θ = 0 on 0 < t < 1, (3.54)

eτ

b

∂θ

∂φ
= 1 on t = eiσ , −π/2 < σ < 0, (3.55)

τ = 0 on t = ir, −1 < r < 0. (3.56)

Here we have described the unit circle |t| = 1 by t = eiσ , where σ is a real
parameter.

Following Brodetsky [23] and Vanden-Broeck [160] we represent τ − iθ by
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A
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C
D
G E

Fig. 3.18. Sketch of the flow of Figure 3.16 in the complex t-plane.

an expansion, as follows:

τ − iθ = − ln
1 + t

1 − t
−

∞∑

n=0

Bntn. (3.57)

The derivation of (3.57) follows that leading to (3.12). There is a singu-
larity at the point C where locally we have a flow inside a right angle corner
(see Figure 3.16). Therefore, (3.19) yields

u − iv ∼ f1/2 as f → 0. (3.58)

Using (3.3) and (3.53) yields τ − iθ ∼ ln(1 − t) as t → 1. Thus

τ − iθ + ln
1 + t

1 − t
(3.59)

is not singular and can be represented in the unit circle of the t-plane by a
Taylor expansion. This leads to (3.57). One might argue that other singu-
larities occur at the separation points A and B. However, these singularities
are automatically taken into account by (3.53). We note that (3.57) implies

u − iv = G(t) exp

(
−

∞∑

n=0

Bntn
)

, (3.60)

where

G(t) =
1 − t

1 + t
. (3.61)
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Therefore (3.60) is similar to (3.12). The only difference is that the series
has been rewritten as the exponential of a series.

It can easily be checked that (3.54) and (3.56) are satisfied by assuming
that the coefficient Bn is real and that Bn = 0 when n is even. Therefore
we can rewrite (3.57) as

τ − iθ = −ln
1 + t

1 − t
+

∞∑

n=1

Ant2n−1. (3.62)

We now determine coefficients An such that (3.55) is satisfied. This is done
numerically by series truncation and collocation. Thus we truncate the
infinite series in (3.62) after N terms, i.e. we write

τ − iθ ≈ −ln
1 + t

1 − t
+

N∑

n=1

Ant2n−1. (3.63)

Next, we satisfy (3.55) at the mesh points σ = σI , where

σI = − π

2N
I, I = 1, 2, . . . , N. (3.64)

This is achieved by using (3.62) to evaluate the values of τ , θ and ∂θ/∂φ at
the mesh points (3.64) and substituting these values into (3.55). This leads
to a system of N equations for the N + 1 unknowns An, n = 1, 2, . . . , N ,
and b. The last equation is obtained by fixing the position of the separation
point A. This is done by imposing

θ(σN ) = γ̄ − π

2
, (3.65)

where the angle γ̄ is defined in Figure 3.16.
The system of N + 1 nonlinear algebraic equations with N + 1 unknowns

needs to be solved numerically by iteration. In most problems considered in
this book, this is done by Newton’s method. This method can be described
as follows. Assume that we want to solve a system of M nonlinear algebraic
equations

fi(x1, x2, . . . , xM ) = 0, i = 1, 2, . . . , M, (3.66)

with M unknowns x1, x2, . . . , xM . Let (x(n)
1 , x(n)

2 , . . . , x(n)
M ) be the approxi-

mation of the solution at iteration n. Then we linearise the left-hand side
of (3.66) around this iteration as

fi(x
(n)
1 , x(n)

2 , . . . , x(n)
M ) +

M∑

j=1

(
xj − x(n)

j

)(
∂fi

∂xj

)(n)
. (3.67)
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The next approximation, (x(n+1)
1 , x(n+1)

2 , . . . , x(n+1)
M ), is obtained by equat-

ing (3.67) to zero and solving the resulting linear system for x1, x2, . . . , xM .
Each iteration is expensive since it requires solving a linear system of equa-
tions. However, the iterations usually converge quadratically so that only
a few iterations are needed to obtain an accurate solution. The method
also requires an initial guess (x(0)

1 , x(0)
2 , . . . , x(0)

M ) to start the iterative pro-
cess. When facing a problem with several solutions, the solution obtained
after convergence will depend on the initial guess chosen. The matrix with
elements

∂fi

∂xj
(3.68)

is called the Jacobian matrix; an attractive feature of Newton’s method is
that bifurcations from branches of solutions can be found by monitoring
the sign of its determinant. This is a consequence of the fact that the
determinant vanishes at a bifurcation point (Keller [84]).

The free surface profiles are then obtained by integrating numerically the
identity

1
b

(
∂x

∂φ
+ i

∂y

∂φ

)
= e−τ+iθ . (3.69)

The numerical results can be described in terms of the angle γ̄. Solutions
can be obtained for all values 0 < γ̄ < π. However, only the solutions for
γ∗ < γ̄ < γ∗∗, where γ∗ ≈ 55◦ and γ∗∗ ≈ 124◦, have a physical meaning for
cavitating flow past a circle.

For γ̄ < γ∗ the solutions are not acceptable because then the free surfaces
would enter the body (see the solution for γ̄ = 25◦ in Figure 3.19). They are
nevertheless useful in describing the cavitating flow past the body obtained
by cutting the circle along the straight line AB in Figure 3.16 and retaining
only the portion on the left of AB. This cutting of the circle is similar to
the cutting seen in Figure 3.13.

For γ̄ > γ∗∗ the solutions are not acceptable because the free surfaces
cross each other (see the solution for γ̄ = 150◦ in Figure 3.19). The last
acceptable solution, at γ̄ = γ∗∗, has free surfaces that approach the x-axis
asymptotically as x → ∞ (see Figure 3.20).

Physically acceptable solutions for γ̄ > γ∗∗ can be obtained by considering
cusped cavities. Cusped cavities were introduced numerically by Southwell
and Vaisey [142] and analytically by Lighthill [98] and [99]. They will be
calculated numerically by a boundary integral equation method in the next
section.
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Fig. 3.19. Computed free surface profiles for γ̄ = 25◦, γ̄ = γ∗ and γ̄ = 150◦.
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Fig. 3.20. The cavitating flow corresponding to γ̄ = γ∗∗ ≈ 124◦.

3.1.2.2 Cusped cavities
Unwanted intersections of free surfaces, such as those described above for
γ̄ > γ∗∗, occur in many applications. A classical example is the exact so-
lution of Crapper [37] for nonlinear capillary waves travelling at a constant
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velocity at the surface of a fluid of infinite depth (see Section 6.5.1 and
Figures 6.8–6.11). Crapper’s solutions form a one-parameter family of solu-
tions. The parameter can be chosen as the steepness s of the waves (i.e. the
difference in height of the crests and the troughs divided by the wavelength).
For small values of s, the waves are close to linear sine waves (see Figure
6.8). As s increases the waves develop rounded crests and sharp troughs (see
Figure 6.9). When s reaches the critical value s∗ ≈ 0.73, the free surface
develops a point of contact with itself and a small trapped bubble forms
at the trough of the wave (see Figure 6.10). For s > s∗, the free surface
is self-intersecting and the solutions lose their physical meaning (see Figure
6.11). Vanden-Broeck and Keller [185] showed that physically acceptable
solutions for s > s∗ can be obtained by preventing the free surface from
self-intersecting. The resulting free surface profiles for s > s∗ have trapped
bubbles at the troughs, as in Crapper’s solution for s = s∗. Since prevent-
ing self-intersection imposes an extra constraint on the solutions, an extra
unknown is needed. This is provided by the pressure in the trapped bubble,
which is found as part of the solution.

The calculations of Vanden-Broeck and Keller [185] will be described in
Section 6.5.1. Here we use a similar approach to find physically acceptable
cavitating flows for γ̄ > γ∗∗, by preventing the crossing of the streamlines
and seeking a family of cusped cavities (see Figure 3.21).

CE
γ

L

M

B

A

y

x
D

G

Fig. 3.21. Flow past a circle giving rise to a cusped cavity.

As we shall see there is a cusped cavity for each value of γ̄ > γ∗∗. These
solutions approach the solution in Figure 3.20 as γ̄ → γ∗∗. In other words
the x-coordinate of the cusp in Figure 3.21 tends to ∞ as γ̄ → γ∗∗ and the
corresponding solution approaches that of Figure 3.20. As γ̄ → 180◦, the
x-coordinate of the cusp tends to 2 and the cavity collapses to a point.
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Following the work of Vanden-Broeck and Keller [185], as mentioned above
we need to identify a new unknown to prevent the intersection of the free
streamlines. A natural choice is the pressure pc in the cavity. This is mo-
tivated by the fact that cusped cavities are closed (they do not extend to
infinity as do the open cavities of Figure 3.19) and so we do not have to
require that pc = pb. Therefore our dynamic boundary condition on the free
surfaces AL and BM of Figure 3.21 is

τ =
1
2

ln(1 + C), (3.70)

where the cavitation number C is found as part of the solution. We define
the potential function bφ and the streamfunction bψ and choose b so that
φ = 1 at the separation points B and A. The flow configuration in the
complex (φ, ψ)-plane is illustrated in Figure 3.22.

+1
A

B

C DE
G

Fig. 3.22. The flow of Figure 3.21 in the complex-potential plane.

We solve the problem by a boundary integral equation method. This
technique will be used extensively in the remaining part of the book. The
basic idea is to reformulate the problem as a system of integro-differential
equations that involves only unknowns on the boundary of the flow do-
main. This system is then discretised and the resultant algebraic equations
are solved by iteration (usually Newton iteration). The obvious advan-
tage is that mesh points are only needed on the boundary rather than in
the whole flow domain. In other words the two-dimensional flow problem
of Figure 3.21 is reduced to a one-dimensional problem on the boundary
ECALD. As we shall see in Chapter 10, boundary integral equation meth-
ods can also be used for solving fully three-dimensional problems. There the
three-dimensional problem is reduced to a two-dimensional problem on the
boundary. A convenient way of deriving the system of integro-differential
equations for two-dimensional flows is to use the Cauchy’s integral equa-
tion formula (see (2.38)–(2.41)). An alternative way which does not rely
on complex variables is to use Green’s theorem and Green’s functions. For
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three-dimensional problems, complex variables are not available and Green’s
theorem and Green’s functions are the only way to derive the system of
integro-differential equations.

We can derive such a system for the problem of Figure 3.21 by applying
the Cauchy integral equation formula in the (φ, ψ)-plane to the function
τ(φ, ψ)−iθ(φ, ψ) with a contour consisting of the axis ψ = 0 and a semicircle
in ψ < 0 centred on φ = ψ = 0 and of arbitrary large radius. Since τ(φ, ψ)−
iθ(φ, ψ) → 0 as ψ → −∞, there is no contribution from the semicircle and
we obtain

τ(φ, ψ)− iθ(φ, ψ) = − 1
2iπ

∫ ∞

−∞

τ(ϕ, 0) − iθ(ϕ, 0)
ϕ − φ − iψ

dϕ when ψ < 0. (3.71)

(see (2.40)). On the free surface, (2.41) gives

τ(φ, 0) − iθ(φ, 0) = − 1
iπ

∫ ∞

−∞

τ(ϕ, 0) − iθ(ϕ, 0)
ϕ − φ

dϕ. (3.72)

The integral in (3.72) is a Cauchy principal value. Taking the real and
imaginary parts of (3.72) gives

τ(φ, 0)) =
1
π

∫ ∞

−∞

θ(ϕ, 0)
ϕ − φ

dϕ, (3.73)

θ(φ, 0) = − 1
π

∫ ∞

−∞

τ(ϕ, 0)
ϕ − φ

dϕ. (3.74)

Relations (3.73) and (3.74) are known as Hilbert transforms. It can be
shown that one implies the other. Therefore we are free to choose either
(3.73) or (3.74). It turns out that (3.73) is the better choice because it leads
to a relation between τ and θ on the portion CAL of the streamline ψ = 0.
This follows from the fact that θ = 0 on EC and on LD. Therefore (3.73)
simplifies to

τ(φ, 0) =
1
π

∫ l

0

θ(ϕ, 0)
ϕ − φ

dϕ. (3.75)

Here l is the value of φ at the cusp L. If we restrict the values of φ in (3.75)
to 0 < φ < l, then (3.75) is a relation between τ and θ on CAL.

The kinematic boundary condition on CA and the dynamic boundary
condition (3.70) imply that

eτ

b

∂θ

∂φ
= 1, 0 < φ < 1, (3.76)

τ =
1
2

ln(1 + C), 1 < φ < l. (3.77)
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Finally, we impose y = 0 at the cusp by writing
∫ l

0
e−τ (ϕ,0) sin θ(ϕ, 0)dϕ = 0. (3.78)

This completes the reformulation of the problem as a system of nonlinear
integro-differential equations. We seek τ(φ, 0) and θ(φ, 0) such that (3.75)–
(3.78) are satisfied. Once τ(φ, 0) and θ(φ, 0) are known for 0 < φ < l, then
the shape of the cusped cavity and the velocity field in the flow domain can
be calculated by integration in the following way. First the shape of the
cavity is obtained in the parametric form x(φ, 0), y(φ, 0) by integrating the
identity

xφ + iyφ =
1

u − iv
= e−τ (φ,0)+iθ(φ,0). (3.79)

Next, τ(φ, 0) for φ < 0 and φ > l can be calculated from (3.75). The values
of τ(φ, 0) and θ(φ, 0) are then known for all −∞ < φ < ∞. Substituting
these values in (3.71), we can evaluate by integration τ(φ, ψ) and θ(φ, ψ)
everywhere in the flow domain. The velocity field is then given by (3.3).

We will solve the problem numerically. First we define the mesh points

φI =
I − 1
N − 1

, I = 1, . . . , M, (3.80)

and the corresponding unknowns

θI = θ(φI , 0), I = 1, . . . , M, (3.81)

where M and N are positive integers and l = (M − 1)/(N − 1). Since l > 1,
we require M > N . We also use the midpoints

φm
I =

φI + φI+1

2
, I = 1, . . . , M − 1. (3.82)

We calculate τ(φm
I ) in terms of the unknowns (3.81) by applying the trape-

zoidal rule to the integral in (3.75) and summing over the points (3.80). We
justify this discretisation by showing that the symmetry of the quadrature
and of the distribution of mesh points enable us to calculate the Cauchy
principal value as if it were an ordinary integral. First we rewrite the inte-
gral on the right-hand side of (3.75) (evaluated at φm

I ) as
∫ φI

0

θ(ϕ, 0)
ϕ − φm

I

dϕ +
∫ φI +1

φI

θ(ϕ, 0)
ϕ − φm

I

dϕ +
∫ l

φI +1

θ(ϕ, 0)
ϕ − φm

I

dϕ. (3.83)

The first and third integrals in (3.83) are ordinary integrals and can therefore
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be evaluated by the trapezoidal rule. The second integral in (3.83) is a
Cauchy principal value, which we rewrite as

∫ φI +1

φI

θ(ϕ, 0) − θ(φm
I , 0)

ϕ − φm
I

dϕ + θ(φm
I , 0)

∫ φI +1

φI

dϕ

ϕ − φm
I

. (3.84)

The second integral in (3.84) is also a Cauchy principal value. Simple inte-
gration shows that its value is zero. The first integral in (3.84) is an ordinary
integral and can be evaluated by the trapezoidal rule as

θI − θ(φm
I , 0)

φI − φm
I

h

2
+

θI+1 − θ(φm
I , 0)

φI+1 − φm
I

h

2
=

θI+1

φI+1 − φm
I

h

2
+

θI

φI − φm
I

h

2
. (3.85)

The right-hand side of (3.85) is just the integral
∫ φI +1

φI

θ(ϕ, 0)
ϕ − φm

I

dϕ

evaluated by the trapezoidal rule. Therefore the Cauchy principal value on
the right-hand side of (3.75) can be evaluated by the trapezoidal rule as if
it were an ordinary integral. This approach to evaluating Cauchy principal
values will be used often in this book. We note that the derivation (3.83)–
(3.85) can easily be extended to other integration formulae such as Simpson’s
rule or for mesh points φM

I that are not midpoints. The only differences are
that the second integral in (3.84) might not be zero and that the left-hand
side of (3.85) should be used instead of the right-hand side.

We now return to our problem and satisfy (3.76) at the mesh points φm
I ,

I = 2, . . . , N − 1, and (3.77) at the mesh points φm
I , I = N, . . . , M − 2. The

last three equations are given by (3.78) and by the geometric conditions

θ1 = −π

2
, θM = 0. (3.86)

This system of algebraic equations is solved by Newton’s method. Typical
free surface profiles are shown in Figure 3.23.

It can be seen that as γ̄ → γ∗∗, C → 0 and as γ̄ → 180◦, C → −∞.
We note that the numerical procedure presented here is not restricted to

a circular obstacle and can be generalised to ones of arbitrary shapes in
the following way. First we denote by F (x, y) = 0 the equation of the rigid
boundary CA (see Figure 3.21) and calculate x and y on CA by the formulae

x(φ, 0) =
∫ φ

0
e−τ (ϕ,0) cos θ(ϕ, 0)dϕ (3.87)
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Fig. 3.23. Three computed cusped cavities. The cavitation numbers C from the
smallest cavity to the largest are −0.55, −0.29 and −0.1 respectively.

and

y(φ, 0) =
∫ φ

0
e−τ (ϕ,0) sin θ(ϕ, 0)dϕ. (3.88)

We then apply the numerical procedure described above, the equations ob-
tained by satisfying (3.76) at the mesh points φm

I , I = 2, . . . , N − 1, being
replaced by the new equations

F [x(φm
I , 0), y(φm

I , 0)] = 0, I = 2, . . . , N − 1, (3.89)

where x(φ, 0) and y(φ, 0) are defined by (3.87) and (3.88).
The solutions derived in this section are examples of cavitating flows with

C < 0. Such cavities were considered analytically by Lighthill [98], [99].
Batchelor [8] notes that such cavities have not been observed, perhaps be-
cause the boundary layer at the rigid surface would separate before reaching
the low-velocity region where the free streamlines begin.

Before concluding this section, let us mention that there are many cavity
models with C > 0 (the Riabouchinsky model, the re-entrant jet model, the
Roskho model etc). The reader interested in these models is referred to the
books of Birkhoff and Zarantonello [19] and Gurevich [69].



58 Free surface flows that intersect walls

3.2 The effects of surface tension
In this section we will investigate the effects of the surface tension T on the
free streamline solutions of Section 3.1. We show that the limit T → 0 is
singular. When T != 0, discontinuities in slope can appear at the separation
points. In particular, values of β != 0 can occur in Figure 3.16. We shall
also show that the limit T → 0 can be used to select solutions.

3.2.1 Forced separation

We start our study by investigating the local behaviour of the flow of Figure
3.1 near the separation point E, in the absence of surface tension. For
simplicity we assume γ1 = γ2 = π/2, i.e. we consider the flow shown in
Figure 3.2. The point E corresponds to t = −1, ψ = 1 and φ = 0. Using
(3.8) we find

φ ≈ − 1
4π

(t + 1)2 as t → −1. (3.90)

Relation (3.39) gives

w ≈ i − i

2
(t + 1) as t → −1. (3.91)

Furthermore (3.3) gives

w ≈ i + θ +
π

2
as t → −1. (3.92)

Combining (3.90)–(3.92), we obtain

θ ≈ −π

2
+ (πφ)1/2. (3.93)

Since eτ = 1 at E, (3.6) implies that

K ≈ −Sφ−1/2 as φ → 0, (3.94)

where

S =
1
2
π1/2. (3.95)

Therefore the flow leaves the wall DE tangentially (see (3.93)) but the cur-
vature of the free surface at E is unbounded (see (3.94)). It can be shown
that (3.94) holds for γ1 != π/2 and γ2 != π/2. Of course, the value of S
depends on γ1 and γ2.

These free streamline results show that an infinite curvature can occur at
the separation points. This singularity does not invalidate the free stream-
line theory because the curvature does not appear explicitly in the equations
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and does not have a direct physical meaning. However, when surface tension
is taken into account, the condition p = pa on the free surface is replaced by

p = pa + TK, (3.96)

where T is the surface tension and K is the curvature of the free surface
(see (2.19)). It follows from (3.1) and (3.96) that the dynamic boundary
condition on the free surface becomes

1
2
(u2 + v2) +

T

ρ
K = constant. (3.97)

Equation (3.97) shows that an infinite curvature at the separation point
E implies an infinite velocity at E. This implies that solutions with T != 0
are qualitatively different from the solutions with T = 0 of Section 3.1.1. It
also suggests that the limit T → 0 is a singular limit. These two properties
are confirmed by the calculations below.

Ackerberg [2], Cumberbatch and Norbury [39], Vanden-Broeck ([159],
[160], [163], [164], [176]) and others studied the flow configuration of Fig-
ure 3.2 (and related free surface flows) in the limit as T → 0. The results
of Vanden-Broeck showed that the inclusion of surface tension in the free
streamline flows of Section 3.1.1 does not remove the infinite curvature at
the separation points. On the contrary, it makes the flow more singular
by introducing a discontinuity in slope at the separation points. In other
words there is an angle β != 0 between the tangent to the free surface at the
separation point and the wall (see Figure 3.24).

A B

C

E

β
F

Fig. 3.24. The flow under a gate with surface tension included in the dynamic
boundary condition. The free surface does not leave the gate tangentially: there is
an angle β != 0 between the free surface and the gate at the separation point E.

This angle β is a function of the surface tension. We now demonstrate
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these findings by presenting asymptotic results, for T small. We will present
later fully nonlinear computations for arbitrary values of T .

We assume that the flow in Figure 3.24 is characterised by a uniform
stream with constant velocity U as x → ∞. As in Section 3.1.1, we define
dimensionless variables by taking U as the unit velocity and H = Q/U (for
Q see Figure 3.4) as the unit length. The dynamic boundary condition (3.97)
in dimensionless form is then

1
2
(u2 + v2) +

1
α

K = constant, (3.98)

where

α =
ρU2H

T
. (3.99)

Since u2 + v2 → 1 and K → 0 as φ → ∞, the constant on the right-hand
side of (3.98) is equal to 1/2. Using (3.3) and (3.6), we rewrite (3.98) as

1
2
e2τ − 1

α
eτ ∂θ

∂φ
=

1
2
. (3.100)

If we assume φ = 0 at the separation point then the free streamline
solution (i.e. the solution for α = ∞) for the configuration of Figure 3.1 can
be described near the separation point by

θ ≈ θ0 − Cφ1/2 as φ → 0, (3.101)

where C is a constant. Here θ0 is the value of θ at the separation point when
α = ∞. For example, for the flow of Figure 3.24, (3.93) shows that

C = −π1/2 and θ0 = −π/2. (3.102)

Relation (3.101) implies that the curvature of the free surface near E behaves
like

K = −eτ ∂θ

∂φ
≈ 1

2
Cφ−1/2 as φ → 0. (3.103)

Therefore the curvature of the free surface is unbounded at the separation
point E unless C = 0.

Following Ackerberg [2] we introduce the following scaling of the variables:

f∗ = αf, (3.104)

τ∗ − iθ∗ = α1/2(τ − iθ + iθ0). (3.105)

The function τ∗ satisfies Laplace’s equation in ψ∗ < 0. Thus

∂2τ∗

∂φ∗2 +
∂2τ∗

∂ψ∗2 = 0. (3.106)
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The kinematic and dynamic boundary conditions linearise in the limit α →
∞, so that the boundary conditions on ψ∗ = 0 are

∂τ∗

∂ψ∗ = 0 on ψ∗ = 0, φ∗ < 0, (3.107)

∂ψ∗

∂ψ∗ = 0 on ψ∗ = 0, φ∗ > 0. (3.108)

Relation (3.101) gives the outer behaviour

τ∗ ≈ )C(f∗)1/2 as |f∗| → ∞, (3.109)

where ) indicates the imaginary part of a function. Cumberbatch and Nor-
bury [39] showed that the solution of (3.106)–(3.108) not containing waves
and having the weakest singularity at the separation point φ∗ = 0 is given
on the free surface by

θ∗(φ∗) =
1
2
Cπ1/2 +

C

2π1/2 φ∗ lnφ∗ as φ∗ → 0, (3.110)

τ∗(φ∗) =
1

2π1/2 C lnφ∗ as φ∗ → 0. (3.111)

The solution (3.110), (3.111) is not valid near φ∗ = 0 because τ∗ is un-
bounded at φ∗ = 0 (an unbounded value of τ∗ invalidates the linearisation).

The asymptotic scheme can now be described as follows. For φ large we
have an outer solution whose first term is the free streamline solution (i.e.
the solution without surface tension). This solution merges with the solution
(3.110), (3.111) obtained for φ∗ ≈ 1, i.e. for φ ≈ α−1. Since the solution
(3.110), (3.111) becomes invalid as φ∗ → 0, we follow Vanden-Broeck [159]
and seek a local solution that corresponds to a flow past a corner of angle
γ0. Thus on the one hand, using (3.19) and (3.3), we can write

eτ =
π

Aγ0
φπ/γ0−1, (3.112)

which implies that, near φ = 0,

τ ≈
(
1 − γ0

π

)
lnφ. (3.113)

On the other hand (3.105) and (3.111) give

τ =
τ∗

α1/2 ≈ 1
2

1
(πα)1/2 C lnφ. (3.114)
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A comparison of (3.113) and (3.114) yields

γ0 = π − C

2

(π

α

)1/2
. (3.115)

Thus we have matched the solution (3.110), (3.111) with a local solution
corresponding to a flow in a corner of angle γ0 (cf. Figure 3.6).

The value of θ at the separation point is

θ = θ0 −
C

2

(π

α

)1/2
. (3.116)

If we denote by β the angle between the wall and the free surface at E (see
Figure 3.24) then (3.116) implies that

β = −C

2

(π

α

)1/2
. (3.117)

For the particular flow of Figure 3.24, (3.102) and (3.116) yield

β ≈ π

2α1/2 as α → ∞. (3.118)

We now present fully nonlinear solutions for arbitrary values of α. The
presence of surface tension changes drastically the dynamic boundary condi-
tion and invalidates the techniques used for streamline flows. Exact solutions
can no longer be expected and fully nonlinear solutions have to be calculated
numerically. There are, however, a few examples of exact solutions. Those
will be considered in Section 6.5.1.

We can calculate nonlinear solutions for the flow configuration of Figure
3.1 by modifying appropriately the series representation (3.35) to accommo-
date the singularity at t = −1. Using insight given by the asymptotic result
(3.117), we assume that the flow near t = −1 is a flow in an angle π + β.
Using (3.19) and (3.90) we obtain

w ∼ f−β/π as φ → 0 (3.119)

and

w ∼ (t + 1)−2β/π as t → −1. (3.120)

Therefore

w = (t − d)(γ2−γ1 )/πtγ1/π(t + 1)−2β/π
∞∑

n=0

antn (3.121)

is the appropriate generalisation of (3.35) when surface tension is included.
The asymptotic solution (3.117) for α large suggests that β should be found
as part of the solution.



3.2 The effects of surface tension 63

We now present explicit calculations in the particular case γ1 = γ2 = π/2.
In other words we consider the flow configuration of Figure 3.24. Then the
expression (3.121) becomes

w = t1/2(t + 1)−2β/π
∞∑

n=0

antn. (3.122)

The dynamic boundary condition is given in dimensionless variables by
(3.100), where α is defined in (3.99).

We truncate the infinite series in (3.122) after N terms and calculate the
coefficients an, n = 0, . . . , N − 1, and β by satisfying (3.100) at the N + 1
equally spaced mesh points

σI =
π

N + 1

(
I − 1

2

)
, I = 1, . . . , N + 1. (3.123)

This leads to a system of N + 1 equations with N + 1 unknowns, which can
be solved by Newton’s method. We present numerical results in terms of
the parameter

αv = 2α. (3.124)

The factor 2 in (3.124) has been introduced so that αv coincides with the
parameter α used by Vanden-Broeck [163].

Typical free surface profiles are shown in Figure 3.25. For αv = ∞, the
free surface profile reduces to the free streamline solution of Figure 3.8.
As αv → 0, the free surface profile approaches the horizontal line y = 1
(i.e. the horizontal line through the stagnation point E). This is consistent
with the fact that the dynamic boundary condition (3.100) predicts that the
curvature of the free surface tends to zero as αv → 0 (the straight line y = 1
has zero curvature).

Numerical values of β versus αv are shown in Figure 3.26. As αv varies
from 0 to ∞, β varies continuously from π/2 to 0. For α = ∞, the dynamic
boundary condition (3.100) reduces to the free streamline condition u2+v2 =
1. The solution is then given by

β = 0; a0 = 1, an = 0, n = 1, 2, . . . (3.125)

Subsituting (3.125) into (3.122) we obtain

w∞ = t1/2. (3.126)

This is the free streamline solution (3.39). Here the subscript ∞ refers to
the value of αv.



64 Free surface flows that intersect walls

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Fig. 3.25. Computed free surface profiles for the flow configuration of Figure 3.24.
The profiles from top to bottom correspond to αv = ∞, αv = 50, αv = 25, αv = 10
and αv = 5; αv is defined by (3.99) and (3.124).

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 5 10 15  20

Fig. 3.26. Values of the angle β between the free surface and the wall at the sepa-
ration point E (see Figure 3.24) versus αv .

As αv → 0, the free surface approaches a horizontal straight line. The
solution is then

β =
π

2
, a0 = 2; an = 0, n = 1, 2, 3, . . . (3.127)

Substituting (3.127) into (3.122) we obtain the following exact solution:

w0 =
2t1/2

t + 1
. (3.128)
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Again the subscript 0 refers to the value of αv.
As in Section 3.1.1, we can define the contraction ratio Cc as the ratio of

the ordinate of the free surface as x → ∞ and the ordinate of the separation
point E.

For αv = ∞, we have

Cc∞ =
π

π + 2
. (3.129)

(see (3.42)–(3.44) for an explicit derivation).
For αv = 0, the free surface is the horizontal line y = 1 and the ordi-

nates of E and of the level of the free surface as x → ∞ are equal to 1.
Therefore

Cc0 = 1. (3.130)

In Figure 3.27 we present numerical values of Cc versus αv. As αv de-
creases from infinity, the contraction ratio increases monotonically from Cc∞
to Cc0.
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Fig. 3.27. Values of the contraction ratio Cc versus αv for the flow configuration of
Figure 3.24.

As αv → ∞, the values of β are described by the asymptotic formula
(3.117). Combining (3.117) and (3.124) we obtain

β ≈ π

(2αv)1/2 as αv → ∞. (3.131)

The numerical values in Figure 3.26 are in good agreement with (3.131) for
αv large. For αv = 20, the value of β predicted by (3.131) agrees with the
numerical results within two per cent.
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We can also construct a perturbation solution for αv small by writing

τ = τ0 + αvτ1 + O(α2), (3.132)

θ = θ0 + αvθ1 + O(α2). (3.133)

Here τ0 and θ0 are defined by

τ0 − iθ0 = lnw0, (3.134)

where w0 is given by (3.128). Representing the free surface EF by (3.9), we
find from (3.134) that

τ0 = − ln cos
σ

2
, θ0 = 0, 0 < σ < π, (3.135)

on the free surface EF . Substituting (3.132) and (3.133) into (3.100) and
equating coefficients of αv, we obtain

∂θ1

∂φ
=

1
2

sin2(σ/2)
cos(σ/2)

. (3.136)

Using (3.10) and the chain rule we can rewrite (3.136) as

dθ1

dσ
= − 1

2π
sin

σ

2
. (3.137)

Integrating (3.137) and using the condition θ1 = 0 at σ = 0, we obtain

θ1 =
1
π

(
cos

σ

2
− 1

)
. (3.138)

In particular, (3.138) implies that

θ1 = − 1
π

at σ = π. (3.139)

Combining (3.117), (3.133) and (3.139) we obtain

β =
π

2
− αv

2π
as αv → 0. (3.140)

For αv = 1, the value of β predicted by (3.140) agrees with the numerical
results within two per cent.

3.2.2 Free separation

The behaviour (3.94) occurs for all free streamline problems near the inter-
section of a free surface with a rigid wall. The constant S depends on the
geometry of the problem. When S > 0, as in the flow of Figure 3.24, there
is locally a flow around a corner near the separation point E (see (3.93),
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(3.101), (3.102) and (3.118)). The velocity at the separation point E then
becomes infinite when surface tension is included. An interesting question is
whether there are free streamline flows for which S ≤ 0. Of particular inter-
est are flows for which S = 0 and therefore for which the singular behaviour
(3.94) disappears. For S < 0, the asymptotic analysis of the previous section
suggests that, when surface tension is included, the flow near the separation
point is a flow inside an angle with a stagnation point at the separation. In
this section we will show that there are free streamline flows with S ≤ 0
when the rigid boundaries are curved. The consideration of such flows will
enable us to introduce the concept of selection, which will be very useful
when we are studying gravity–capillary flows.

We consider the open-cavity model of Figure 3.16 but now with the effect
of the surface tension T included in the dynamic boundary condition. Pro-
ceeding as in Section 3.1.2 we seek τ − iθ as an analytic function of φ + iψ
in the lower half-plane, ψ < 0, of the domain shown in Figure 3.17. This
function must satisfy (3.50), (3.51) and

−eτ

b

∂θ

∂φ
=

α

2
(e2τ − 1) on ψ = 0, 1 < φ < ∞. (3.141)

Here α is defined by

α =
ρU2R

T
. (3.142)

We start our investigation by reconsidering the solutions of Section 3.1.2
and by calculating the curvature KA of the free surface at the separation
point A. Using (3.49) and (3.62), we find that

KA =
1
b

∂θ

∂φ
≈ −1

2
C(bφ − b)−1/2 as φ → 1, (3.143)

where

C = −b−1/2 − b−1/2
∞∑

n=1

(−1)n+1(2n − 1)An. (3.144)

Since the An are functions of γ, (3.144) defines C as a function of γ̄. A
graph of C versus the angular position γ̄ of the separation points is shown
in Figure 3.28. If the angle β is counted positive when shown as in Figure
3.16, a comparison of Figures 3.24 and 3.16 shows that (3.117) implies that

β =
C

2

(π

α

)1/2
. (3.145)

In other words β has opposite signs in Figures 3.16 and 3.24. This
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difference in sign has been maintained to be consistent with previously pub-
lished results.
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Fig. 3.28. Values of the constant C versus γ̄.

The constant C vanishes when γ̄ = γ∗ ≈ 55◦ (see Figure 3.28). Thus
(3.143) shows that the curvature of the free surface at the separation points
is infinite unless γ̄ = γ∗.

For γ̄ > γ∗, Figure 3.28 shows that C > 0 and (3.145) predicts β > 0. The
flow near B in Figure 3.16 is a flow inside an angle with zero velocity at B.
For γ̄ < γ∗, Figure 3.28 shows that C < 0 and the values of β predicted by
(3.145) are then negative. The flow near B is then a flow around a corner
with infinite velocity at B. These results are only valid for α large. As
α → 0, (3.141) shows that the curvature of the free surfaces tends to zero.
Since the flows are characterised by a constant velocity at infinity, the free
surfaces must approach two horizontal straight lines. Therefore

β → γ − π

2
as α → 0. (3.146)

Relation (3.146) shows that β < 0 in the limit α → 0 when γ̄ < π/2.
Relation (3.145) shows that β > 0 in the limit α → ∞ when γ̄ > γ∗. If
we assume that, for a given value of γ̄, β is a continuous function of α then
there must exist for each value of α a particular value of γ∗ < γ̄ < π/2
for which β = 0 (i.e. for which the flow leaves the circle tangentially). We
describe these particular values of γ̄ by the function

γ̄ = g(α). (3.147)

This conjecture is confirmed by the nonlinear computations below. In
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particular these results show that

g(α) → γ∗ as α → ∞. (3.148)

This implies that the limit T → 0 can be used to select a particular solution
with T = 0. In Section 3.1.2 we calculated solutions for T = 0. Then the
dynamic boundary condition implies β = 0. We obtained solutions for all
values of γ̄. When T != 0, solutions with β = 0 exist only for values of γ̄
satisfying (3.147). Taking the limit α → ∞, (3.146) shows that we should
select the solution corresponding to γ̄ = γ∗, which is known as the one
satisfying the Brillouin–Villat condition (see [22], [194], [19] and [69]). This
condition was introduced to select the position of the separation points in
the case of free separation without surface tension. It requires the pressure
to be minimal in the cavity. By Bernoulli’s equation (3.1), this is equivalent
to the condition that the velocity is a maximum on the free streamlines.
For the configuration of Figure 3.16, the Brillouin–Villat condition yields
γ̄ = γ∗.

The above analysis shows that the selection mechanism based on the
limit T → 0 provides a new physical interpretation of the Brillouin–Villat
condition.

We will now solve the problem numerically, calculate g(α) and demon-
strate (3.148). We first map the flow of Figure 3.16 into the unit circle in
the t-plane by the transformation

t =
1 + if1/2

1 − if1/2 . (3.149)

The flow configuration in the t-plane is shown in Figure 3.29.

A

CD
E

Fig. 3.29. The flow configuration of Figure 3.16 in the t-plane defined by (3.149).

Next we note that the flow near A is locally a flow inside a corner with
angle π − β and that the flow near C is a flow inside a right-angle corner
(see Figure 3.16). Therefore, using (3.149), we obtain

u − iv ∼ (t − i)β/π as t → i, (3.150)
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u − iv ∼ t − 1 as t → 1. (3.151)

Following the series truncation method of Section 3.1.2, we represent the
complex velocity by

u − iv = eτ−iθ = (1 − t)(1 + t2)β/π
∞∑

n=0

antn. (3.152)

The multiplicative factors in front of the series in (3.152) remove the singu-
larity (3.150). Therefore we can expect the series in (3.152) to converge in
the unit circle of the t-plane.

If we describe points on the unit circle by t = eiσ , 0 < σ < π, we can
rewrite (3.141) and (3.51) as

−eτ

b

cos3(σ/2)
sin(σ/2)

dθ

dσ
=

α

2
(e2τ − 1),

π

2
< σ < π, (3.153)

eτ

b

cos3(σ/2)
sin(σ/2)

dθ

dσ
= 1, 0 < σ <

π

2
. (3.154)

Coefficients an in (3.152) are found such that (3.153) and (3.154) are sat-
isfied. This is achieved by series truncation as in Section 3.1.2. We trun-
cate the infinite series in (3.152) after N terms and find the N coefficients
a0, a1, . . . , aN−1, the constant b and the angle β by collocation. Thus we
introduce the N mesh points

σI =
(

I − 1
2

)
π

N
, I = 1, . . . , N. (3.155)

In order to avoid the value σ = π/2 at which the expression (3.152) is
singular, we choose N to be even. Using (3.152) and (3.155) we obtain
τ̃(σ) and θ̃(σ) at the points σI in terms of the coefficients an. Substituting
these expressions into (3.153) and (3.154) we obtain N equations. An extra
equation is obtained by requiring the velocity to be unity at infinity. This
leads to

τ̃(π) = 0. (3.156)

The last equation relates γ and the angle θ at the separation point:

γ + [θ̃(σ)]σ=π/2 =
π

2
. (3.157)

This system of N + 1 equations with N + 1 unknowns can be solved by
Newton’s method. We used this numerical scheme to compute solutions
for various values of α and γ̄. The coefficients an were found to decrease
rapidly as n increases. For example, for γ = 30◦ and α = 10, a1 ≈ 0.6,
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a10 ≈ −0.3×10−2 and a40 ≈ 0.3×10−3. In Figure 3.30 we present numerical
values of β/π versus γ̄ for α = 1.
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Fig. 3.30. Values of β/π versus γ̄ (in degrees) for α = 1.

The curve in Figure 3.30 shows that for α = 1 there is exactly one value
of γ̄ at which β = 0. Similar results were found for other values of α (see
[176] and [183]). As α → 0, the free surfaces in figure 3.16 approach two
horizontal lines. Therefore the curve corresponding to α = 0 in Figure 3.30
is the straight line (not shown in the figure) of equation

β = γ̄ − π

2
. (3.158)

For α = ∞, the angle β is equal to zero for all values of γ̄ and the curve
corresponding to α = ∞ in Figure 3.30 is the horizontal line γ̄ = 0 (not
shown).

These results imply that, for each value of α != ∞, there is a particular
value γ̃ for which β = 0 (i.e. for which the free surface leaves the obstacle
tangentially). We denote these particular values of γ̄ by the function (3.147).
In Figure 3.31 we present computed values of γ̄ = g(α) versus α−1. As
α → 0, γ̃ → 90◦. As α → ∞, γ̃ → γ∗. Therefore the particular solution
that satisfies the Brillouin–Villat condition in the absence of surface tension
can be viewed as the limit of the family of solutions in Figure 3.31 as the
surface tension approaches zero.

So far we have mainly considered solutions with β = 0. It is of interest
to look at solutions with β != 0. The angle β can then be interpreted as
a contact angle whose value depends on the properties of the fluid and of
the rigid boundary. In Figure 3.32 we present values of γ̄ versus α−1 for
β = 0.04π.



72 Free surface flows that intersect walls
80

70

60

50

 0  0.2  0.4  0.6  0.8 1.0

Fig. 3.31. Values of γ̃ versus α−1 . The corresponding free surface profiles leave the
circular object tangentially, i.e. β = 0.
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Fig. 3.32. Values of γ̄ versus α−1 for β = 0.04π.

This curve can be viewed as the equivalent of the curve (3.147) but with
β = 0.04π instead of β = 0. One interesting property to note in Figure 3.32
is that now γ̄ is not a monotonic function of α−1. However, only one value
of γ̄ corresponds to each value of the surface tension (i.e. α−1). For α−1

small, γ̄ increases rapidly. This behaviour can be described by substituting
β = 0.04π into (3.145) and noting that

C = 2(0.04π)
(α

π

)1/2
. (3.159)
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Together with Figure 3.28, this predicts that γ̄ increases as α−1 decreases,
for α large.

3.3 The effects of gravity
In this section we study solutions for the flow configuration of Figure 3.1
with surface tension neglected but with gravity included in the dynamic
boundary condition. We assume that gravity acts in the direction defined
by the angle β1 (see Figure 3.33) and write the dynamic boundary condition
as

1
2
(u2 + v2) + gy sinβ1 − gx cos β1 = B, (3.160)

where B is the Bernoulli constant. In this section we will look for solutions
without waves on EF . Solutions with waves on EF will be studied in
Chapter 8.
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g
β1

y

x

Fig. 3.33. The flow configuration of Figure 3.1 with the effects of gravity included.

Two situations of particular interest are β1 = π/2 and β1 = 0. When
β1 = π/2, gravity is acting in the negative y-direction. One interpretation
of the flow of Figure 3.33 is then the flow emerging from a container with
gravity included. Another is the flow under a sluice gate, a classical topic in
hydraulics (see [11], [54], Larock [93], Chung [30], Vanden-Broeck [181] and
Binder and Vanden-Broeck [15], [16]).

There are now two free surfaces CD and EF (see Figure 3.34). The
model consists of replacing the upper free surface CD by a rigid lid (see
Figure 3.35). The configuration of Figure 3.35 is that of Figure 3.33 with
γ1 = 0. An accurate numerical study of the complete free surface flow of
Figure 3.34 is presented in Section 8.3.
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Fig. 3.34. A free surface flow under a sluice gate.
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Fig. 3.35. A model for the flow under a sluice gate, in which the free surface CD
has been replaced by a rigid lid.

When β1 = 0, gravity is acting in the positive x-direction. A realistic
view of the flow is obtained by rotating Figure 3.33 by 90◦ clockwise. If the
flow is then reflected in the wall AB, the result corresponds to a jet falling
from a nozzle (see Figure 3.36).

In Figures 3.33 and 3.36 we have assumed that the free surface EF leaves
the wall DE tangentially. As we shall see, there are in addition solutions
for which EF does not leave the wall DE tangentially.

There is then an angle µ between the wall DE and the free surface EF at
the separation point E (see Figure 3.37). There are only three possible values
for µ. One of them is µ = π; it corresponds to the case already mentioned
where the free surface leaves the wall tangentially. The existence of these
three values of µ is to be contrasted with the problems including surface
tension discussed in Section 3.2, where all values of µ were in principle
possible, and with the free streamline problems in Section 3.1, where only
the value µ = π was acceptable.

The existence of the two values of µ != π can be established by deriving
a local solution valid in the neighbourhood of the separation point E. The
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Fig. 3.36. The free surface flow emerging from a nozzle. This is the flow configura-
tion of Figure 3.33 rotated by 90◦ and reflected in the wall AB. Here γ1 = 0 and
β1 = 0.
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Fig. 3.37. The flow of Figure 3.33 with an angle µ between the free surface and the
wall at the separation point E.

analysis follows the work of Dagan and Tulin [40]. We define new local
coordinates x and y with the origin at the separation point and such that
gravity is acting in the negative y-direction. The local flow is illustrated in
Figure 3.38. Here the separation point is denoted by G, the wall by HG and
the free surface by GL. It can easily be seen that the flow of Figure 3.38
describes the flow near E in Figure 3.37 if

µ2 =
π

2
− β1 + γ2. (3.161)
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If µ = π, the free surface LG leaves the wall HG tangentially and the
velocity at G is finite and different from zero. If µ < π, the flow is locally
a flow inside a corner and the velocity at G is zero (i.e. G is a stagnation
point). If µ > π, the flow is locally a flow around a corner and the velocity
at G is infinite (see Figure 3.6 and (3.19)). Therefore values of µ > π are
not possible, since (3.160) requires the velocity at G to be finite.

x

y

G

L

H

µ

µ2

g

Fig. 3.38. Local-gravity free surface flow near the intersection of a wall HG with a
free surface GL.

We shall now determine the allowed values of µ when µ < π. We define
a potential function φ and a streamfunction ψ and choose φ = ψ = 0 at the
point G. The complex potential plane is shown in Figure 3.39.

H G
φ

L

ψ

Fig. 3.39. The flow of Figure 3.38 in the complex potential plane. The flow domain
is ψ < 0.

Using (3.17) we express the local solution in the form

z = Afµ/π . (3.162)

We write the complex constant A as

A = aeiα, (3.163)
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where a and α are real and α is such that the kinematic boundary condition
on the wall HG is satisfied. On the wall HG, arg z = π − µ2. However,
the argument of (3.162) evaluated on ψ = 0, φ < 0, gives arg z = −µ + α.
Equating the two expressions for arg z gives

α = π + µ − µ2. (3.164)

Substituting (3.163) and (3.164) into (3.162) yields

z = afµ/πei(π+µ−µ2 ). (3.165)

Before satisfying the dynamic boundary condition we need to improve the
local solution (3.165) by writing explicitly the next-order correction:

z = afµ/πei(π+µ−µ2 ) + bfνeiδ + · · · (3.166)

Here ν, b and δ are real constants. The second term in (3.166) takes into
account the deviation of the free surface from the straight line GL as φ in-
creases. Since we require the second term in (3.166) to be a small correction
to (3.165) in the limit f → 0, we impose

ν >
µ

π
. (3.167)

Taking the real and imaginary parts of (3.166) on ψ = 0, φ > 0, we obtain

x = aφµ/π cos(π + µ − µ2) + bφν cos δ + · · · , (3.168)

y = aφµ/π sin(π + µ − µ2) + bφν sin δ + · · · . (3.169)

Differentiating (3.168) and (3.169) with respect to φ yields

x2
φ + y2

φ =
(aµ

π

)2
φ2µ/π−2 + 2

aµ

π
bνφµ/π+ν−2

× cos(π + µ − µ2 − δ) + b2ν2φ2ν−2 + · · · . (3.170)

Since
2µ

π
− 2 <

µ

π
+ ν − 2 < 2ν − 2, (3.171)

the last term in (3.170) is of lower order and can be neglected. We can
rewrite (3.170) as

x2
φ + y2

φ =
(aµ

π

)2
φ2µ/π−2

[
1 +

2π

aµ
bνφν−µ/π cos(π + µ − µ2 − δ)

]
+ · · ·

(3.172)
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and express u2 + v2 in the limit f → 0 as

u2 + v2 =
1

x2
φ + y2

φ

=
(

π

aµ

)2
φ2−2µ/π

[
1 − 2π

aµ
bνφν−µ/π cos(π + µ − µ2 + δ)

]
+ · · · . (3.173)

We now substitute (3.169) and (3.173) into the dynamic boundary condi-
tion (3.160). First we note that β1 = π/2 since g is acting in the negative
y-direction in Figure 3.38 and that B = 0 since u = v = 0 at the point G.
This gives

1
2

(
π

aµ

)2
φ2−2µ/π + gaφµ/π sin(π + µ − µ2) + gbφν sin δ + · · · = 0. (3.174)

We then equate the coefficients of the leading-order terms in (3.174). If
π + µ − µ2 != π then the first and second terms in (3.174) give

µ

π
= 2 − 2µ

π
or µ =

2π

3
(3.175)

and

a =
[
1
2

π2

µ2
1

g sin(µ2 − µ − π)

]1/3

. (3.176)

Since µ = 2π/3, we require −π/3 < µ2 < 2π/3, for otherwise the free
surface in Figure 3.38 would descend towards the stagnation point G and
this would be in contradiction with the dynamic boundary condition (3.160)
with β1 = π/2, which implies that a stagnation point on a free surface is the
highest point on it. In the remaining part of this chapter we will assume
µ2 > 0; however, solutions with µ2 < 0 will be considered in Chapter 8 (see
Figure 8.5, where γ3 = −µ2). Furthermore, the solution with µ2 = −π/6
will be used in Section 6.5.2 to describe the singularity near the crests of
the highest gravity waves. If

π + µ − µ2 = π or µ = µ2, (3.177)

the second term in (3.174) vanishes and the balance of the remaining terms
gives

ν = 2 − 2µ

π
. (3.178)

The conditions (3.167), (3.177) and (3.178) yield

µ = µ2 <
2π

3
. (3.179)
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The condition (3.177) implies that the free surface LG is horizontal.
In summary we have the following possibilities. If µ2 ≤ 2π/3, there are

three possible values for µ: π, 2π/3 and µ2. However, if µ2 ≥ 2π/3 then the
only possible value for µ is π.

We note that on the one hand the solution (3.162) with µ = 2π/3 and
A defined by (3.163), (3.164) and (3.176) is an exact solution for the flow
configuration of Figure 3.38 for all values of z inside the angle HGL. On
the other hand the solution (3.162) with µ = µ2 is only a local solution in
the limit z → 0.

We shall solve the flow problem of Figure 3.37 numerically by using a series
truncation method similar to that used in Section 3.2. All the solutions
constructed in this section are waveless as x → ∞. Solutions with waves
as x → ∞ will be computed in Chapter 8. The flow configuration in the
complex potential plane is shown in Figure 3.4. As in Section 3.1.1, we map
the complex potential plane onto the inside of the unit circle in the t-plane
by using the transformation (3.8). The flow configuration in the t-plane is
illustrated in Figure 3.5. Next we represent the complex velocity w = u− iv
by the expansion (3.12) where G(t) contains all the singularities of w in
|t| ≤ 1. In this case there are two singularities: one is at the separation
point E and the other at t = 1 (i.e. as x → ∞).

The former corresponds to a flow inside an angle µ (see Figure 3.37) and
is described by

w ≈ f1−µ/π as f → 0 (3.180)

(see (3.19)). Using (3.8) we have

w ≈ (1 + t)2−2µ/π as t → −1. (3.181)

The singularity at t = 1 depends on the value of β1. It can be seen from
(3.160) that

u2 + v2 ≈ 2gx cos β1 as x → ∞ when β1 != π/2 (3.182)

and that

u2 + v2 ≈ constant as x → ∞ when β1 = π/2. (3.183)

In (3.183) we have used the fact that there are no waves as x → ∞.
We first examine the case β != π/2 (see Figure 3.37). Relation (3.182)

shows that u2 + v2 → ∞ as x → ∞. Since the flux between the free surface
EF and the wall AB is finite (and equal to Q), it follows by conservation
of mass that the free surface approaches the wall asymptotically as x → ∞.
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In other words the flow reduces to an arbitrarily thin jet in the x-direction
as x → ∞. Therefore u , v as x → ∞, and (3.182) implies that

u ≈ (2gx cos β1)1/2. (3.184)

If we denote by y = η(x) the equation of the free surface then from the
conservation of mass we have

uη(x) = Q. (3.185)

Combining (3.184) and (3.185) we have

η(x) ≈ Q(2gx cos β)−1/2. (3.186)

Writing successively φx and ψy for u in (3.184) gives

∂φ

∂x
= (2gx cos β)1/2, (3.187)

∂ψ

∂y
= (2gx cos β)1/2. (3.188)

Integrating (3.187) with respect to x and (3.188) with respect to y gives
expressions for φ and ψ. Combining them gives

f = φ + iψ = (2g cos β1)1/2
(

2
3
x3/2 + ix1/2y

)
. (3.189)

We note that, for x large,

z3/2 = x3/2
(

1 +
iy

x

)3/2
≈ x3/2

(
1 + i

3y

2x

)
= x3/2 + i

3x1/2y

2
. (3.190)

Combining (3.189) and (3.190) gives

f ∼ z3/2 or z ∼ f2/3. (3.191)

Differentiating (3.191) with respect to z and eliminating z by using the
second of the relations (3.191) yields

df

dz
= u − iv ∼ z1/2 ∼ f1/3. (3.192)

Next we examine the case β1 = π/2 (see Figure 3.37). Then the flow
approaches a uniform stream with constant velocity U and constant depth
H as x → ∞ (see (3.183)). The exact equations that describe the flow as
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x → ∞ are, in dimensional variables,

φxx + φyy = 0, 0 < y < H + η(x), (3.193)
φy = φxηx on y = H + η(x), (3.194)

1
2 (φ2

x + φ2
y) + gy = 1

2U2 + gH on y = H + η(x), (3.195)
φy = 0 on y = 0. (3.196)

Here y = H + η(x) is the equation of the free surface. Equations (3.194)
and (3.196) are the kinematic boundary conditions on the free surface and
on the bottom, and equation (3.195) is the dynamic boundary condition on
the free surface.

We write

w = U + w̃ + · · · , (3.197)

φ = Ux + φ̃ + · · · , (3.198)

η = η̃ + · · · , (3.199)

where w̃, φ̃ and η̃ are assumed to be small perturbations. We have assumed
as before that the flow approaches a uniform stream as x → ∞. Substituting
(3.197)–(3.199) into (3.193)–(3.196) and linearising yields

φ̃xx + φ̃yy = 0, (3.200)

U η̃x = φ̃y on y = H, (3.201)

U φ̃x + gη̃ = 0 on y = H, (3.202)

φ̃y = 0 on y = 0. (3.203)

Eliminating η between (3.201) and (3.202) gives

U φ̃xx +
g

U
φ̃y = 0 on y = H. (3.204)

We use separation of variables, to find a solution of (3.200) in the form

φ̃(x, y) = X(x)Y (y). (3.205)

Substituting (3.205) in (3.200) and in (3.203) yields the ordinary differential
equations

X ′′(x)
X(x)

= −Y ′′(y)
Y (y)

= µ̃2 (3.206)
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and the boundary condition

Y ′(0) = 0. (3.207)

Here µ̃2 is the separation constant. The solutions of the two differential
equations (3.206) satisfying (3.207) are

X(x) = Be−µ̃x + Ceµ̃x, (3.208)

Y (y) = D cos µ̃y, (3.209)

where B, C and D are constants. We set C = 0, so that φ̃ remains bounded
as x → ∞. Multiplying (3.208) and (3.209) yields the solution

φ̃ = Ae−µ̄x cos µ̄y, (3.210)

where A = DB is a constant. Substituting (3.210) into (3.204) yields

µ̄H =
1

F 2 tan µ̄H, (3.211)

where

F =
U

(gH)1/2 (3.212)

is the Froude number. We note that the derivation leading to (3.210) is
similar to that leading to (2.74) and (2.75) in the theory of linear waves.
The main difference is that we chose a negative separation constant in (2.72)
whereas we have chosen a positive one in (3.206).

Substituting (3.210) into (3.198) and differentiating with respect to x gives

w =
∂φ

∂x
− i

∂φ

∂y
= U − Aµ̄e−µ̄z . (3.213)

Next we rewrite (3.213) in terms of t. Using (3.8) we obtain, as z → ∞
or equivalently as t → 1,

e−f ≈ (1 − t)2/π as t → 1. (3.214)

Combining (3.213) and (3.214) and using the dimensionless variables U = 1,
H = 1, we have

w ≈ 1 − Aµ̄(1 − t)2µ̄/π as t → 1. (3.215)

Similarly (3.211) gives in dimensionless variables

µ̄ =
1

F 2 tan µ̄. (3.216)
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Relations (3.215) and (3.216) define the singular behaviour of w as t → 1
for β1 = π/2.

Finally we use (3.214) to rewrite (3.192) as

w ≈ [−ln(1 − t)]1/3 as t → 1. (3.217)

This demonstrates the singular behaviour of w as t → 1 when β != π/2.

3.3.1 Solutions with β1 = 0 (funnels)

We first consider the configuration of Figure 3.37 with β1 = 0. Following
the approach of Sections 3.1.1 and 3.2, we find that the complex velocity w
is represented by the expression

w =
(

t − d

1 − td

)(γ2−γ1 )/π

tγ1 /π [− lnCp(1 − t)]1/3

(− lnCp)1/3 (1 + t)2−2µ/πḠ(t), (3.218)

where t is defined by (3.8). Here Cp is an arbitrary constant. The vari-
ous factors appearing in the numerator of the expression multiplying Ḡ(t)
remove the singularities in w at t = 0 (see (3.33)), t = 1 (see (3.217)),
t = d (see (3.27)) and t = −1 (see (3.181)). The factors appearing in
the denominator of the expression multiplying Ḡ(t) are not essential and
the computations could have been performed without them. The function
Ḡ(t) in (3.218) is then free of singularities and can be written as the Taylor
expansion

Ḡ(t) =
∞∑

n=0

antn. (3.219)

There are of course alternative representations for Ḡ(t). For example we
shall see in Section 3.3.2 that another convenient representation for Ḡ(t) is

Ḡ(t) = exp

( ∞∑

n=0

antn
)

(3.220)

(see also (3.60)). We choose 0 < Cp < 0.5 in (3.218), so that

[− lnCp(1 − t)]1/3

is real for −1 < t < 1. Then it can be easily checked that the kinematic
boundary conditions on the walls CD, DE and AB are automatically satis-
fied by assuming that the coefficients an in (3.219) are real. For the compu-
tation presented we chose Cp = 0.2. We note that different values of Cp and
different choices for Ḡ(t) (see (3.219) or (3.220)) will yield different values
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for the coefficients an. However these various series representations yield
the same values of w provided that, all the singularities in the unit circle of
the complex t-plane have been properly removed.

We present explicit solutions for γ1 = γ2 != 0 (the analysis follows Lee
and Vanden-Broeck [94]). After reflection in the wall AB, this models a jet
of fluid emerging from a funnel (see Figure 3.40).

A

B F

E

C

µ

γ2

y
x

Fig. 3.40. A free surface flow emerging from a funnel. Gravity is acting vertically
downwards. This flow can be obtained by rotating the flow of Figure 3.33 by 90◦
and reflecting it in the wall AB.

The expression (3.218) reduces to

w = tγ2 /π [− lnCp(1 − t)]1/3

(− lnCp)1/3 (1 + t)2−2µ/πḠ(t), (3.221)

where Ḡ(t) is defined by (3.219). The dynamic boundary condition (3.160)
with β1 = 0 gives

1
2 (u2 + v2) − gx = B. (3.222)

We define dimensionless variables by using (Q2/g)1/3 as the unit length and
(Qg)1/3 as the unit velocity; here Q is the value of ψ on the streamline CEF.
This scaling is different from that used in Sections 3.1.1 and 3.2 since the
velocity tends to infinity as x → ∞ instead of approaching a constant U . In
dimensionless variables (3.222) becomes

1
2 (u2 + v2) − x = B. (3.223)

The flow domain in the f = (φ+ iψ)-plane is, as before, the strip 0 < ψ < 1
(see Figure 3.4). Here the point D is irrelevant since γ1 = γ2.
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We will find the coefficients an by truncating the series in (3.221) and
satisfying (3.223) at suitably chosen collocation points. Therefore we need to
express x in (3.223) in terms of w = u−iv. This is achieved by differentiating
(3.223) with respect to σ and using (3.10) and (3.38). Then the chain rule
gives

uuσ + vvσ +
1
π

cotan
σ

2
u

u2 + v2 = 0. (3.224)

The local analysis near E described at the beginning of this chapter shows
that there are three possible values of µ: π, 2π/3 and π/2 + γ2. Numeri-
cal experimentation shows that, for a given value of γ1 = γ2, the solutions
corresponding to µ = π and µ = π/2+γ2 form a one-parameter family of so-
lutions whereas there is only one solution corresponding to µ = 2π/3. Here,
and in the remaining part of the book, we use the expression to mean the
computing of solutions for varying numbers of parameters. In this case,
‘numerical experimentation’ in the series representation fixing fewer, or
more, parameters leads either coefficients an that do not decrease as n be-
comes very large or a divergence of the iterations.

A convenient choice for the parameter is

H̄ =
1
W

, (3.225)

where W is the dimensionless distance between the separation point E and
the wall AB. Therefore

H̄ =
1

y(π)
, (3.226)

where y(π) denotes the value of y at σ = π.
For µ = π and µ = π/2+γ2, we truncate the infinite series within (3.221)

after N terms and satisfy (3.224) at the N − 1 collocation points

σI =
π

2(N − 1)

(
I − 1

2

)
, I = 1, 2, . . . , N − 1. (3.227)

An extra equation is obtained by satisfying (3.226), where H̄ is given. The
value of y(π) in (3.226) is obtained by integrating numerically the identity
(3.38), where w is defined by (3.221). This gives a system of N algebraic
equations for the N unknowns a0, a1, . . . , aN−1. This system is solved by
Newton’s method.

For β = 2π/3, there is one fewer equation since now we do not have to
satisfy (3.226). Therefore again we truncate the infinite series within (3.221)
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after N terms but satisfy (3.224) at the N collocation points

σI =
1

2N

(
I − 1

2

)
, I = 1, 2, . . . , N. (3.228)

As before, this gives a system of N nonlinear algebraic equations that can be
solved by Newton’s method. We find that there are solutions for all values
of H̄ > 0. Different behaviours are found for γ2 > π/6 and γ2 < π/6.

For γ2 < π/6, there is a solution with µ = 2π/3 for a particular value, say
H̄c, of H̄. Solutions with µ = π and µ = π/2 + γ2 occur for H̄ > H̄c and
H̄ < H̄c respectively. Therefore

µ = π when H̄ > H̄c, (3.229)

µ =
2π

3
when H̄ = H̄c, (3.230)

µ =
π

2
+

γ2

2
when H̄ < H̄c. (3.231)

The solutions corresponding to (3.229) and (3.231) approach the solution
corresponding to (3.230) as H̄ approaches H̄c from above and from below
respectively. The value of H̄c depends on the value of γ2.

For γ2 > π/6, all solutions with H̄ > 0 are characterised by µ = π. This
is consistent with the fact that the local analysis (see Figure 3.38) shows
that there are no solutions with µ = 2π/3 or µ = π/2 + γ2 when γ2 > π/6.

These results are illustrated in Figure 3.41, where we plot values of the
velocity qE at the separation point E versus H̄ for various values of γ2.

The solutions with µ = 2π/3 and µ = π/2 + γ2 have stagnation
point at E and are therefore characterised by qE = 0. For γ2 ≥ π/6,
qE != 0 for all H̄ > 0 and qE → 0 as H̄ → 0. For γ < π/6, qE → 0 as
H̄ → H̄c and qE = 0 for H̄ < H̄c. Therefore the curves corresponding to
γ2 = π/4 and γ2 = π/6 approach 0 as H̄ → 0, whereas the curve corre-
sponding to γ2 = π/12 intersects the horizontal axis at the value H̄ = H̄c ≈
0.528.

Typical free surface profiles are shown in Figures 3.42–3.45.
The three profiles of Figures 3.42–3.44 are for γ2 = π/12. Figure 3.42

corresponds to H̄ = 0.81, i.e. the case (3.229). The free surface leaves the
wall tangentially. Both the free surface and the wall position can be seen
in the figure (the separation point E corresponds to the point on the curve
with ordinate y = 0). Figure 3.43 shows the profile for H̄ = H̄c ≈ 0.528
(case (3.230)). There is a 2π/3 angle between the free surface and the wall
at the separation point. Figure 3.44 is the solution for H̄ = 0.25. Since
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Fig. 3.41. Values of the dimensionless velocity qE at the separation point E versus
H̄ (see (3.225)). The values of γ2 corresponding to the curves from left to right are
π/4, π/6 and π/12.

H̄ < H̄c, it corresponds to the case (3.231). The free surface is horizontal
at the separation point.

The profile in Figure 3.45 corresponds to γ2 = π/6 and qE = 0.5. The
free surface leaves the wall tangentially. This profile is typical in the sense
that all the solutions with γ2 = π/6 leave the wall tangentially (see Figure
3.41).

0

1

 1  2  3  4  5  6

Fig. 3.42. A free surface profile EF of Figure 3.40 for γ2 = π/12. The ordinate of
the separation point is zero. The dimensionless velocity qE at the separation point
is 0.5. The free surface leaves the wall tangentially and µ = π.
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0

1

 1  2  3  4  5  6

Fig. 3.43. A free surface profile EF of Figure 3.40 for γ2 = π/12. The ordinate of
the separation point is zero. This profile corresponds to µ = 2π/3 and H̄ = H̄c ≈
0.528.
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Fig. 3.44. A free surface profile EF of Figure 3.40 for γ2 = π/12 and H̄ = 0.25.
The ordinate of the separation point is zero. The free surface is horizontal at the
separation point.

3.3.2 Solutions with β1 = 0 (nozzles and bubbles)

Next we present computations for γ1 = γ2 = 0 (see Figure 3.46). This
configuration differs from that of Figure 3.40 because the flow approaches a
uniform stream with constant velocity U as x → −∞ instead of approaching
a zero velocity. This problem was considered by many investigators (see [18],
[62], [63], [165], [166], [169] and others). The study presented below follows
Vanden-Broeck [165], [166] and [169].

We will describe the problem by reverting to dimensionless variables in
which the unit length is H = Q/U and the unit velocity is U . Then the
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Fig. 3.45. A free surface profile EF of Figure 3.40 for γ2 = π/6. The ordinate of
the separation point is zero. The dimensionless velocity qE at the separation point
is 0.5. The free surface leaves the wall tangentially.
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Fig. 3.46. The free surface flow from a nozzle.

dynamic boundary condition (3.160) becomes, in dimensionless variables,

u2 + v2 − 1
F 2 x = B, (3.232)

where F is the Froude number defined by

F =
U

(2gH)1/2 . (3.233)
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We note that F is related to H̄ in (3.225) by

F =
(

H̄3

2

)1/2

. (3.234)

The factor 21/2 in (3.233) was introduced for consistency with previous cal-
culations. Similarly (3.224) becomes

2uuσ + 2vvσ +
1

πF 2 cotan
σ

2
u

u2 + v2 = 0. (3.235)

The flow of Figure 3.46 has interesting applications. First, it clearly mod-
els a jet emerging from a nozzle. Second, it models a bubble rising in a tube
when viewed in a frame of reference moving with the bubble (see Figure
3.47). This follows from the symmetry of the flow: the portion EF of
the bubble surface in Figure 3.47 is identical, for the same value of the
Froude number F , to the portion EF of the jet surface in Figure 3.46.

A C

B F

x

yE

Fig. 3.47. A ‘bubble’ rising in a tube, viewed in a frame of reference moving with
the bubble. Physical bubbles are characterised by a continuous slope at the apex.

Returning to our calculation, we represent the complex velocity w by the
expansion

w =
[− lnC(1 − t)]1/3

(− lnC)1/3 (1 + t)2−2µ/πḠ(t). (3.236)

We shall now do new calculations, representing Ḡ(t) by (3.220) instead of
(3.219). Therefore we write

Ḡ(t) = exp

( ∞∑

n=1

antn
)

, (3.237)

where we have set a0 = 0 so that w = 1 at t = 0.



3.3 The effects of gravity 91

As for the previous solutions with γ1 = γ2 != 0, there are solutions with
µ = π, µ = 2π/3 and µ = π/2 + γ2 = π/2. The solution for µ = 2π/3 cor-
responds to a critical value Fc ≈ 0.3578 of the Froude number F . Solutions
with µ = π occur for F > Fc, and those with µ = π/2 + γ2 = π/2 occur for
F < Fc. Therefore we have

µ = π when F > Fc, (3.238)

µ =
2π

3
when F = Fc, (3.239)

µ =
π

2
when F < Fc. (3.240)

As expected these solutions are the limit of those of Figure 3.40 as γ2 → 0.
In particular, the three values (3.229)–(3.231) reduce to (3.238)–(3.240) as
γ2 → 0, with

Hc = (2F 2
c )1/3. (3.241)

For the solutions with µ = π and µ = π/2, we truncate the series (3.237)
after N terms and satisfy (3.235) at the N collocation points (3.228). For
a given value of F , this gives a system of N algebraic equations with N
unknowns. This system is solved by Newton’s method. For µ = 2π/3, F is
one unknown. Therefore we truncate the series (3.237) after N − 1 terms
and satisfy (3.235) at the N collocation points (3.228). This leads again to
a system of N algebraic equations with N unknowns.

 0

 0  0.2  0.4

Fig. 3.48. Rising bubble in a tube for F = 0.1.

The solutions we have computed model the flow emerging from a nozzle
(see Figure 3.46) or a bubble rising in a tube (see Figures 3.47–3.52). On
physical grounds we expect a bubble to be characterised by a continuous
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0

 0  0.2  0.4

Fig. 3.49. Rising bubble in a tube for F = 0.3.
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 0  0.2  0.4

Fig. 3.50. Rising bubble in a tube for F = Fc . There is a 120◦ angle at the apex
of the bubble.

slope at its apex. This implies that µ = π. Therefore all the solutions for
0 < F < Fc should model a rising bubble. However, experiments (see [32]
and [107]) showed that bubbles are only observed for a unique value,

Fe ≈ 0.25, (3.242)

of the Froude number. Clearly the value Fe is in the interval 0 < F < Fc
for which we have computed bubbles but the question is to find what is
special about the value Fe. This is an example of a ‘selection problem’. We
have already encountered such a problem in Section 3.2.2. There we found
that cavitating flow past a circular cylinder could be calculated for all values
γ∗ < γ̄ < γ∗∗ when surface tension was neglected. We then showed that a
unique solution, for γ̄ ≈ 55◦, could be selected by solving the problem with
T != 0 and then taking the limit as T → 0. We shall show in Section 3.4
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Fig. 3.51. Rising bubble in a tube for F = 0.4. A cusp has appeared at the apex.

 0

 0  0.2  0.4

Fig. 3.52. Rising bubble in a tube for F = 1. There is a cusp at the apex of the
free surface profile.

that a unique bubble can again be selected by introducing surface tension
and then taking the limit as T → 0.

We conclude this section by mentioning that our findings with T = 0 are
consistent with analytical results derived by Garabedian [62]. Garabedian
[62] proved that there are mathematical solutions describing ‘bubbles’ with
a continous slope at the apex for all values of F smaller than a critical value
Fc. He then used an energy argument to suggest that the only physically
significant solution is the one for which F = Fc. In addition he showed that
Fc > 0.2363. However, our computations using series truncation showed that
Fc ≈ 0.36. This value is about 40 percent higher than the experimental value
(3.242). Furthermore the solution corresponding to F = Fc does not have
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a continuous slope at the apex since µ = 2π/3 (see Figure 3.50). Therefore
Garabedian’s energy argument does not select the relevant solution.

3.3.3 Solutions with β1 = π/2 (flow under a gate with gravity)

In this section we consider solutions for the flow configuration of Figure
3.37 with β1 = π/2. The analysis follows [171] and [94]. We introduce
dimensionless variables by using U as the unit velocity and H as the unit
length. The Bernoulli equation (3.160) can be written as

1
2
(u2 + v2) +

1
F 2 y = B, (3.243)

where

F =
U

(gH)1/2 . (3.244)
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y

Fig. 3.53. The flow under a gate showing, the angle µ between the free surface EF
and the wall CE.

We represent the complex velocity w by

w =
(

t − d

1 − td

)(γ2−γ1 )/π

tγ1 /π (t + 1)
2

2−2µ/π

eA(1−t)2 µ̄
G(t), (3.245)

where A is a real constant to be found as part of the solution. The function
G(t) is free of singularities. The condition w = 1 at t = 1 implies that
G(1) = 0. Therefore we can write

G(t) = e
∑∞

n =1 an (tn −1). (3.246)

Following the derivation leading to (3.224) we rewrite (3.243) as

uuσ + vvσ − 1
πF 2 cotan

σ

2
v

u2 + v2 = 0. (3.247)
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We now present explicit computations for γ1 = γ2 = π/2 (i.e. for the flow
configuration of Figure 3.53). As we shall see, these numerical computations
show that there are solutions corresponding to the three possible values π,
π/2 and 2π/3 of µ.

We first calculate the solutions corresponding to µ = π (i.e. solutions for
which the free surface leaves the wall tangentially). We truncate the infinite
series in (3.245) after N−2 terms and introduce the N−1 collocation points

σI =
π

N − 1

(
I − 1

2

)
, I = 1, 2, . . . , N − 1. (3.248)

We then use (3.245) to evaluate u− iv at the mesh points (3.248) and obtain
N − 1 algebraic equations by satisfying (3.247) at these points. One more
equation is given by (3.216). The final equation is obtained by fixing a
parameter characterising the flow. An obvious choice for this parameter is
the Froude number F . However, the computations reveal that there can be
several solutions corresponding to the same value of the Froude number; a
better choice for the parameter is the dimensionless velocity at the separation
point E. Therefore we set

qE = |(w)t=−1|. (3.249)

This leads to a system of N +1 equations for the N +1 unknowns a1, a2, . . . ,
aN−2, A, F and µ̄.

Typical profiles are presented in Figures 3.54 and 3.55.
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 0  1  2  3

Fig. 3.54. Computed free surface profile for the flow under a gate with F = 2. The
angle µ is equal to π.

The values of the dimensionless velocity qE at the separation point E
versus the Froude number F are shown in Figure 3.56.
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Fig. 3.55. Computed free surface profile for the flow under a gate with F = 1.8.
The angle µ is equal to π.
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Fig. 3.56. Values of the dimensionless velocity qE at the separation E versus the
Froude number F .

As F → ∞, so qE → 1 and the solution reduces to the free streamline
solution (3.39). As qE decreases from 1, the Froude number F first decreases
to a minimum value F2 ≈ 1.8 and then increases up to the value F1 ≈ 1.87.
The value F = F1 corresponds to qE = 0. These results show that a unique
solution with µ = π exists for all values of F > F1. For F2 < F < F1,
two different solutions with µ = π are possible. For F < F2, there are no
solutions with µ = π. The coefficients an were found to decrease rapidly as
n increases. However, as qE approches zero, the rate of convergence of the
series deteriorates and larger and larger values of N are needed to obtain
accurate solutions. This is due to the fact that solutions with qE = 0 must
correspond to µ = π/2 or µ = 2π/3. Therefore they cannot be computed
by the expansion (3.245), (3.246) with µ = 0.
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We now consider solutions with µ = 2π/3. Numerical experimentation
shows that there is only one solution. This is the limit of the family of
solutions with µ = π as qE → 0. To calculate it, we set µ = 2π/3 in (3.245),
truncate the infinite series in (3.246) after N −3 terms and satisfy (3.247) at
the mesh points (3.248). This leads to N − 1 equations for the N unknowns
a1, a2, . . . , aN−3, A, F and µ̄. The last equation is (3.216). The resulting
numerical solution is shown in Figure 3.57.
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Fig. 3.57. Computed free surface profile for the flow under a gate with µ = 2π/3.
The solution is unique and the corresponding value of the Froude number is F =
F1 ≈ 1.86.

Finally, we look for solutions with µ = π/2. Numerical experimentation
shows that there is a one-parameter family of solutions (the parameter can
be chosen as the Froude number F ). This family exists for F > F1. As
F → F1, the solutions approach the solution corresponding to F = F2
and qE = 0. A typical free surface profile is shown in Figure 3.58. To
compute these solutions we set µ = π/2 in (3.245), truncate the infinite
series in (3.246) after N − 2 terms and again satisfy (3.247) at the mesh
points (3.248). For a given value of F , this leads to N − 1 equations for the
N unknowns a1, a2, . . . , aN−2, A and µ̄. The last equation is given as before
by (3.216).

Although these solutions are mathematically interesting they are unstable
since in them the heavy fluid is lying on top of the light one.

Values of the contraction ratio Cc versus F for the solution branch with
µ = π are shown in Figure 3.59.

Budden and Norbury [24] derived the following asymptotic solution for
Cc:

Cc =
π

π + 2
− (4j + 2)π2 + π3

(π + 2)5 α − 0.0007α2 + · · · (3.250)



98 Free surface flows that intersect walls

0

1

2

3

0 1.0 2.0

Fig. 3.58. Computed free surface profile for the flow under a gate with µ = π/2.
The value of the Froude number is F ≈ 1.9.
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Fig. 3.59. Values of the contraction ratio Cc versus the Froude number F .

Here j = 0.915 0965 · · · and α is defined by

α =
F 4

4

(
1 − δ2 +

2
F 2

)3
. (3.251)

For F = 2, the value of the contraction ratio predicted by (3.250) agrees
with the numerical results within one per cent.

3.4 The combined effects of gravity and surface tension

When gravity is included in the dynamic boundary condition and surface
tension is neglected, only three values of the angle µ between the free surface
EF and the rigid wall DE are allowed for the flow configuration of Figure
3.37 (µ = π, µ = 2π/3 and µ = π/2 + γ2). When surface tension is included
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and gravity neglected, all values of µ are in principle possible. Therefore we
can expect interesting behaviours to occur when both gravity and surface
tension are taken into account, especially in the limit T → 0.

3.4.1 Rising bubbles in a tube

We present our main findings for the flow of Figure 3.46. The analysis follows
Vanden-Broeck [166]. We recall that this configuration also models the flow
past a bubble in a tube (see Figure 3.47). As in Section 3.3.2 we assume
without loss of generality that there is an angle µ between the wall CE and
the free surface EF at the point E (see Figure 3.46). If the free surface
leaves the wall tangentially then µ = π. If µ < π then the flow near E is
locally a flow inside an angle and the speed at E is zero. If µ > π then the
flow near E is locally a flow around a corner and the speed at E is infinite.
Following the analysis in Section 3.3.2, we introduce dimensionless variables
by taking the constant velocity U at x = ∞ as the reference velocity and
the distance H between AB and CE as the reference length. The dynamic
boundary condition on the free surface EF can be written in dimensionless
variables as

1
2
q2 − 1

F 2 x +
2
α

K = B. (3.252)

Here q is the magnitude of the velocity variable, K the curvature of the
free surface EF , B the Bernoulli constant, F the Froude number defined in
(3.233) and α the Weber number, defined by

α =
2ρU2H

T
. (3.253)

As noted in Section 3.3.2 only values of µ ≤ π are allowed when T = 0
because the dynamic boundary condition (3.160) requires the velocity qE

at the point E in Figure 3.46 to be finite. However, when T != 0, values
of µ > π are in principle possible because an infinite value of q in (3.252)
can be balanced by an infinite value of the curvature. Examples of such
flows with surface tension included and gravity neglected were covered in
Section 3.2. In this section we show examples of gravity–capillary flows
for which qE is infinite. The physical relevance of such flows can of course
be questioned. However, we shall see that their consideration is crucial in
constructing systematically other physical solutions.

The flow configuration in the complex potential plane is shown in Figure
3.4. We map it into the complex t-plane by using (3.8). The complex
t-plane is illustrated in Figure 3.5. Proceeding as in Section 3.3.1, we write
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the complex velocity w as

w =
[− lnCp(1 − t)]1/3

(− ln Cp)1/3 (1 + t)2−2µ/πG(t), (3.254)

where
G(t) = e

∑∞
n =1 an tn . (3.255)
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Fig. 3.60. Values of ν versus F for the flow configuration of Figure 3.47 when
α = ∞, i.e. T = 0.
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Fig. 3.61. Values of ν versus F for the flow configuration of Figure 3.47 when
α = 10.

Next we differentiate (3.252) with respect to φ and use (3.10) and the
chain rule to obtain

2uuσ + 2vvσ +
1

πF 2 cotan
σ

2
u

u2 + v2 +
4π

α

∂

∂σ

[
tan

σ

2
uvσ − vuσ

(u2 + v2)1/2

]
= 0.

(3.256)
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Fig. 3.62. Enlargement of part of Figure 3.61 showing clearly oscillations around
1.0.
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Fig. 3.63. The selected bubble for T = 0. The value of the Froude number is
F = F ∗ ≈ 0.23.

We truncate the infinite series in (3.255) after N−1 terms and satisfy (3.256)
at the mesh points

σI =
1

2N

(
I − 1

2

)
, I = 1, . . . , N. (3.257)

This is achieved by substituting (3.254) and its derivative with respect to
σ into (3.256). It leads to N nonlinear equations for the N unknowns
a1, . . . , aN−1 and µ. This system is solved by Newton’s method for given
values of F and α.

We start the presentation of the numerical results by recalling the findings
of Section 3.3.2 when T = 0 (i.e. α = ∞). They are shown graphically in
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Figure 3.60 where we plot the parameter

ν = 2
π − µ

π
(3.258)

versus F . There is a unique solution with µ = 2π/3 (i.e. ν = 2/3) for
F = Fc ≈ 0.36. Solutions with µ = π/2 (i.e. ν = 1) and µ = π (i.e. ν = 0)
occur for F < Fc and F > Fc respectively. The curve of Figure 3.60 is
discontinuous with a jump at F = Fc. When surface tension is included
in the dynamic boundary condition, the discontinuity disappears and the
curve of Figure 3.60 is replaced by a continuous one. This is illustrated
in Figure 3.61, where we present values of ν versus F for α = 10. An
interesting feature is that the curve of Figure 3.61 oscillates infinitely often
around ν = 1. An enlargement of Figure 3.61 is shown in Figure 3.62. As F
decreases, the amplitude and wavelength of the oscillations decrease. These
results suggest that there is a countably infinite set of values of F for which
ν = 1. We denote this set by

F ∗
i , i = 1, 2, . . . , (3.259)

where

F ∗
1 > F ∗

2 > F ∗
3 > · · · .

We recall that physically relevant bubbles are identified as those for which
ν = 1. Therefore all bubbles with F < Fc are physically relevant when
T = 0 whereas only those corresponding to the set (3.259) are physically
relevant when T != 0.

The numerical computations show that, for each given value of i,

F ∗
i → F ∗ as α → ∞, (3.260)

where

F ∗ ≈ 0.23. (3.261)

This is shown in Figure 3.64, where we plot values of F1 versus α−1. As
T → 0 (i.e. α−1 → 0), F1 → F ∗ in agrrement with (3.260).

Our findings can be summarised as follows. When T = 0, there is a bubble
(with µ = π) for each value of 0 < F < Fc. When T != 0, there is a bubble
(with µ = π) for a discrete set of values of F (see (3.259)). As T → 0,
the discrete set reduces to a unique value F = F ∗ of F . Therefore we have
succeeded in selecting a unique solution by including surface tension and
taking the limit as T → 0. Moreover the selected value F ∗ ≈ 0.23 is close
to the experimental value Fe ≈ 0.25 (see [32] and [107]).
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Fig. 3.64. Values of α−1 versus F ∗
1 . As α−1 → 0, F1 → F ∗ ≈ 0.23.

3.4.2 Fingering in a Hele Shaw cell

Another classical example of the selection of solutions via surface tension
occurs in the study of fingering in a Hele Shaw cell, This problem can be mo-
tivated as follows. It is well known that an instability may occur in a porous
medium when a less viscous fluid drives a more viscous fluid (Saffman and
Taylor [132]). To study this instability, experiments have been performed
in a Hele Shaw cell, a channel formed by two closely spaced parallel glass
plates; this provides a model of a two-dimensional flow through a porous
medium. It was found that the unstable interface develops a number of
‘fingers’. After some time, one finger dominates and suppresses the growth
of the others and the flow reaches a steady state in which a single finger
propagates without change of shape. McLean and Saffman [109] modelled
this finger by a two-dimensional potential flow with surface tension included
at the interface (see Figure 3.65). They denoted by U the velocity of the
finger, 2a the lateral width of the channel, b the transverse thickness, T
the surface tension and µ̃ the viscosity (here we use a tilde to avoid con-
fusion with the angle µ used earlier in this section). In addition they de-
noted the ratio of the width of the finger and the width of the channel
by λ.

Taking a as the unit length and (1−λ)U as the unit velocity, McLean and
Saffman derived a nonlinear integro-differential equation for the unknown
shape S of the free surface:

ln q(S) = −S

π

∫ 1

0

θ(S′)
S′(S′ − S)

dS′, (3.262)
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Fig. 3.65. Model for a finger in a Hele Shaw cell. Only half the finger is shown.

κqS
d

dS

(
qS

dθ

dS

)
− q = − cos θ, (3.263)

θ(0) = 0, q(0) = 1, (3.264)

θ(1) = −π

2
, q(1) = 0. (3.265)

Here

θ = θ̂ − π, (3.266)

q = (1 − λ)q̂, (3.267)

κ =
Tb2π2

12µUa2(1 − λ)2 . (3.268)

The integral in (3.262) is of Cauchy principal-value form. The variables
θ̂ and q̂ in (3.266) and (3.267) are defined in terms of the dimensionless
complex velocity û − iv̂ by the relation

û − iv̂ = q̂e−iθ̂ . (3.269)

The flow configuration is illustrated in Figure 3.65. The x̂-axis is parallel
to the walls of the channel and is the axis of symmetry of the finger. The
points A and B correspond to S = 0 and S = 1 respectively.

After a solution for θ and q is obtained, the shape of the finger is given
by

x̂(S) + iŷ(S) = −1 − λ

π

∫ 1

0

eiθ

Sq
dS. (3.270)
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For κ = 0 (i.e. in the absence of surface tension), Saffman and Taylor
[132] obtained the following exact solution:

q =
[

(1 − S)/(1 − λ)2

(1 − λ)2 + S(2λ − 1)

]1/2

, (3.271)

θ = cos−1q. (3.272)

The solution (3.271), (3.272) leaves the parameter λ undetermined. In other
words a solution can be found for each value of 0 < λ < 1. This finding
is not consistent with experiments, which show that for small values of the
surface tension there is only one finger, corresponding to λ ≈ 0.5. This is
again a selection problem and can be resolved by solving the problem with
surface tension and then taking the limit as the surface tension approaches
zero.

Early numerical calculations with κ != 0 were performed by McLean and
Saffman [109], who identified one family of solutions. Romero [129] then
found two other families. As we shall see there is in fact a countably infinite
set of families of solutions.

There is a strong analogy between the fingering problem and the bubble
problem of Figure 3.47. The procedure to find the discrete set (3.259) al-
lowed the angle µ to be found as part of the solution. Therefore we shall use
a similar approach for the fingering problem. The analysis follows Vanden-
Broeck [161].

We define a modified problem that has solutions for all values of λ and κ.
This modified problem is obtained by replacing (3.265) simply by

q(1) = 0. (3.273)

Therefore θ(1) becomes an unknown to be found as part of the solution.
We solve the modified problem defined by (3.262)–(3.264) and (3.273) and

obtain solutions for all values of λ and κ. We will then obtain solutions of the
original problem by selecting among the solutions of the modified problem
those for which θ1 = −π/2.

Following McLean and Saffman [109] we introduce the change of variables

Sτ = 1 − ζγ . (3.274)

Here τ is the smallest root of

1
τ 2 cotan πτ = κ. (3.275)



106 Free surface flows that intersect walls

With (3.274), θ is twice differentiable with respect to ζ at both end points.
McLean and Saffman [109] chose γ = 2 in (3.274). In order to solve the
modified problem we will choose γ = 4.

We introduce the N mesh points

ζI =
I − 1
N

, I = 1, . . . , N. (3.276)

We also define the unknowns

θI = θ(1 − ζν
I ), I = 1, . . . , N. (3.277)

We discretise the system (3.262)–(3.264) and (3.273) by following the
procedure outlined by McLean and Saffman [109]. Thus we obtain N − 1
nonlinear algebraic equations for the N − 1 unknowns θI , I = 2, . . . , N . For
given values of λ and κ this system is solved by Newton’s method.

In Figure 3.66 we present numerical values of θ(1) versus λ for κ = 0.273.
As λ approaches zero, θ(1) → −π and the finger collapses on the negative
x̃-axis. As λ approaches unity, θ(1) oscillates infinitely often around −π/2.
An enlargement of part of Figure 3.66 is shown in Figure 3.67 to illustrate
the oscillations clearly.

Figures 3.66 and 3.67 show that there is a countably infinite set of values
of λ for which θ(1) = −π/2. We denote this set by

λi, i = 1, 2, 3, . . . (3.278)

where

λ1 > λ2 > λ3 · · · .
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Fig. 3.66. Values of θ(1) versus λ for κ = 0.273.
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The solutions corresponding to the values (3.278) of λ are the solutions
of the original problem.

1.569

1.570

1.571

1.572

0.70  0.75 0.80 0.85 0.90

Fig. 3.67. Enlargement of part of Figure 3.66 showing clearly the oscillations around
π/2.

Vanden-Broeck [161] showed numerically that, for a given value of i,

λi →
1
2

as κ → 0. (3.279)

It can be seen from relation (3.279) that a unique solution corresponding
to λ = 1/2 is selected in the limit as the surface tension tends to zero. We
note that (3.279) is comparable with (3.260). This finding is illustrated in
Figure 3.68, where values of λ1, λ2 and λ3 versus κ are plotted. As κ → 0,
the three curves approach λ = 1/2.
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Fig. 3.68. Values of λ versus κ.
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3.4.3 Further examples involving rising bubbles

We now return to potential flows and present three other examples of free
surface flows for which a unique solution can be selected by taking the
limit T → 0. These flows are similar to the flow past a bubble shown in
Figure 3.47. The first two are given in Figures 3.69 and 3.70. They model
a two-dimensional bubble rising at a constant velocity U in an unbounded
fluid when viewed in a frame of reference moving with the bubble. Both
configurations include a model for the wake behind the bubble. In that
sense they are improvements on the flow of Figure 2.2, in which the wake
was neglected. The free surface flows of Figures 3.69 and 3.70 can be solved
by series truncation methods similar to those used earlier in this section.
Details can be found in [170] and [174] respectively. We summarise here the
main results.
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A y
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E

S S'

J'J
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Fig. 3.69. A free streamline model for a rising bubble.

In Figure 3.69, a free streamline model (similar to the cavitating models
of Section 3.1.2) is used. This implies that the velocity is equal to U on
the boundaries SJ and S′J ′ of the wake. When surface tension is neglected
there is one solution for each value of the Froude number

F =
U

(gD)1/2 , (3.280)

where D is defined in Figure 3.69. If we denote by µ the angle between the
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Fig. 3.70. Joukovskii’s model for a rising bubble.

symmetry line EA and the free surface AS then it is found that

µ =
π

2
when F < Fc, (3.281)

µ =
2π

3
when F = Fc, (3.282)

µ = π when F > Fc, (3.283)

where

Fc ≈ 0.9. (3.284)

These findings are very similar to those obtained in (3.238)–(3.240) for
the flow of Figure 3.47. Introducing the surface tension T on the surface
SAS′ of the bubble yields a discrete set of values of F for which µ = π/2.
A unique solution for which F ≈ 0.51 is then obtained by taking the limit
T → 0 (see [170] for details).

The flow of Figure 3.70 is similar to that of Figure 3.69 except that the
boundary of the wake is now approximated by two vertical lines, SJ and
S′J ′. This flow can be characterised by the Froude number

F =
U

gL
, (3.285)
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where L is defined in Figure 3.70. This is a crude model for the wake. It is,
however, of mathematical interest because Joukovskii (see [69]) found an ex-
act solution in the absence of surface tension. This solution is characterised
by F = (2π)−1/2. The results obtained for the flow of Figure 3.69 suggest
by analogy that there is a solution for each value of F and that Joukosvkii’s
solution is just a member of this family of solutions. This was confirmed
by the numerical computations in [174], where it was shown that there is a
solution for the flow configuration of Figure 3.70 for 0 < F < ∞ satisfying
(3.281)–(3.283), where µ is the angle between EA and AS in Figure 3.70
and where Fc ≈ 0.66. As before a unique solution with µ = π/2 can be
selected by introducing surface tension and taking the limit T → 0. Inter-
estingly, the numerical computations suggest that the selected solution is
Joukovskii’s exact solution (see [174]).

The third example is a generalisation of the problem of a bubble rising
in a tube considered in Sections 3.3.2 and 3.4.1. The flow configuration is
shown in Figure 3.71(a). Gravity is acting vertically downwards. The angle
between the left-hand wall and the horizontal is denoted by β, and the angle
between the negative x-axis and the tangent line to the free surface JS at
J is denoted by γ. When β < π/2, Figure 3.71(a) models a physical bubble
rising in an inclined tube.

1.5

1.0

0.5

0

(a)
0 0.5

S

I
U

J

y
x

H

J'

I'

1.5

1.0

0.5

0

(b)
0 0.5

S

I
U

J

y
x

J'

I'

Fig. 3.71. The flow domain and the coordinates. This is a computed profile for
β = 7π/12, F = 0.11 and ω = 10.

This problem was studied experimentally by Maneri [107] and has been
studied theoretically in [36] and [95]. The flow configuration of Figure
3.71(a) also describes a jet emerging from a nozzle and falling down along
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a wall. In this case the flow is viewed as bounded on the left by an infinite
wall and on the right by a semi-infinite wall and a free surface (see Figure
3.71(b)).

The flow can be characterised by the Froude number

F =
U

(gH)1/2 (3.286)

and the Weber number

ω =
ρU2H

T
. (3.287)

Here ρ is the density of the fluid, U the velocity as x → ∞ and H the width
of the tube.

When T = 0 (i.e. ω = ∞), the admissible values of γ depend on β and
can be predicted by the local analysis of Section 3.3 (see Figure 3.38). When
0 < β < 2π/3, there is a critical value Fc of the Froude number F such that
solutions with γ = 0, γ = π/3 and γ = π − β occur for F > Fc, F = Fc
and F < Fc respectively. Values of Fc versus β are shown in Figure 3.72.
However, for 2π/3 ≤ β ≤ π there is no such critical value of F , and γ = 0
for all 0 < F < ∞ (see [95]).
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Fig. 3.72. Values of Fc versus β.

We note that these results include those of Section 3.3.2 as a particular
case, since the flow of Figure 3.71(a) is simply half that of Figure 3.47.
Figure 3.72 predicts Fc ≈ 0.506. Dividing this value by

√
2 to take into

account the different definitions of H in Figures 3.3.2 and 3.71(a) gives 0.36,
in agreement with the value obtained in Section 3.3.2.
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We now consider in more detail the problem of a bubble rising in an
inclined tube (i.e. the flow of Figure 3.71(a)). The experimental data of
Manieri [107] showed that for each value of 0 < β < π/2, there is only one
value of F for which a bubble exists. This does not agree with the numerical
results, which predict a solution for each value of F and 0 < β < π/2.
This discrepancy can be removed by generalising the procedure described in
Section 3.4.1. Thus again we introduce surface tension and take the limit as
the surface tension tends to zero. Couët and Strumolo [36] chose for each
value of β and ω the particular solution corresponding to the largest value
of F for which γ = π/2. The selected results were found to be in good
agreement with experiment.

The results in [95] summarised above show that the only possible values
of γ when T = 0 are π−β, π/3 and 0. Therefore there are no solutions with
γ = π/2 when T = 0 unless β = π/2. This implies that the criterion, in [36]
has to be used with T small but different from zero.

Here we follow [95] and use a different selection criterion, in which we take
the limit T → 0 instead of keeping T != 0 as in [36]. The numerical results
in [95] show that for each value of 0 < β ≤ π/2 and ω there is a discrete set
of values

F ∗
i , i = 1, 2, . . . , (3.288)

where

F ∗
1 > F ∗

2 > F ∗
3 > · · · , (3.289)

for which γ = π − β. This finding reduces to (3.259) when β = π/2. The
numerical computations show that for a given value of i

F ∗
i → F ∗ as ω → ∞. (3.290)

The selected values of F ∗ and the corresponding profiles are found to be
in close agreement with the experimental data of Manieri [107] (see [95] for
details). A typical selected profile for β = π/3 is shown in Figure 3.73.

3.4.4 Exponential asymptotics

Since the fingering problem of Section 3.4.2 has an exact solution when
T != 0 (see (3.271), (3.272)), it is tempting to try to construct asymptotic
solutions for T small in the form of a power series in T . This was achieved
by McLean and Saffman [109], who showed that an arbitrary number of
terms can be calculated. However, they found that this expansion leads
to solutions for each value of 0 < λ < 1. This is to be contrasted with
the discrete set of solutions (3.278) found by direct numerical computation.
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Fig. 3.73. Computed solution for β = π/3 and F = F ∗ ≈ 0.527. The dots are the
experimental values of Manieri [107].

This paradox was resolved by noting that the selection mechanism leading
to (3.278) is associated with exponentially small terms in T . Such terms are
smaller than any positive integer power of T as T → 0 and therefore cannot
be calculated by a power series in T . Exponential asymptotics has been
used by many investigators to study this problem analytically (see Saffman
[131] for a review and references).

Vanden-Broeck showed that the selection mechanism for a rising bubble
that leads to (3.259) (see Section 3.4.1) is also associated with exponentially
small terms.

Over the last 30 years, it has been found that exponentially small terms
play a surprisingly significant part in free surface flow problems. We will
encounter further examples later in this book. One example concerns the
effect of surface tension on solitary waves (see Chapter 6). Other examples
are the free surface flows generated by moving disturbances for small values
of the Froude number or small values of the surface tension (see Chapter 8).


