
This lecture

Bayes and selection.

– Should Bayesian inference be adjusted for selection?

• Dawid (1994). “Selection paradoxes of Bayesian inference”,
IMS Monograph, Multivariate Analysis and its Applications.

• Yekutieli (2012). “Adjusted Bayesian inference for selected
parameters”, JRSSB.

• Garcia Rasines, Young (2022). “Bayesian selective inference”,
Handbook of Statistics.

– Empirical Bayes:

• Point estimation: Efron (2011). “Tweedie’s formula and
selection bias”, JASA.

• Confidence intervals: Woody, Hernan Padilla, Scott (2022).
“Optimal post-selection inference for sparse signals: a
nonparametric empirical-Bayes approach”, Biometrika.
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Bayes and selection

So far we have analysed selection problems from the frequentist
perspective.

In this context, the effect of selection on the inference is evident, as it
alters the sampling distribution of the statistics.

From the Bayesian viewpoint, however, the matter is not so clear-cut:

– The traditional stance is that Bayesian methods are immune to
selection, as inference is carried out conditionally on the data and
in particular on any hypothetical selection event (Dawid, 1994).

– Recent work, most notably by Yekutieli (2012), challenges this idea,
arguing that, in some scenarios, Bayesian inference needs to be
selection-adjusted.
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Bayes and selection

Quoting A. P. Dawid:

Since Bayesian posterior distributions are already fully condi-
tioned on the data, the posterior distribution of any quantity
is the same, whether it was chosen in advance or selected in the
light of the data: that is, for a Bayesian, the face-value approach
is fully valid, and no further adjustment for selection is required.

→ The fact that the statistician decides to focus on certain aspects of
the data after it has been observed does not alter its sampling
distribution, which should therefore remain unchanged.
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Bayes and selection

The contrast between the Bayesian and the frequentist standpoints is
somewhat paradoxical.

In many situations, Bayesian analyses formally match, either exactly or
approximately, face-value frequentist analyses.

But it is universally agreed that the latter methods are not valid in the
presence of selection.

Why, then, would such results be correct if reached by a Bayesian
argument?
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Bayes and selection

From the previous point of view, only explanation of the paradox is a
poor prior specification.

Indeed, if we agree that:

– Whenever a frequentist approach is unreasonable, so is any Bayesian
approach that provides similar answers.

– The (unadjusted) likelihood is correct.

Then, necessarily, the problem lies in the prior.
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Bayes and selection

We can understand this through a simple example.

Suppose we provide inference for the mean of Y ∼ N(θ, 1) only if Y > 0.

Consider the standard class of conjugate priors for θ: {N(0, λ2) : λ > 0}.

The corresponding class of posteriors is

πλ(θ | y) ∼ N

(
λ2

1 + λ2
y ,

λ2

1 + λ2

)
. (1)

→ Small values of λ shrink the posterior around 0.

→ Large values of λ produce posterior inferences which are very similar
to those provided by a face-value frequentist approach.
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Bayes and selection

Let’s think of the same problem from a frequentist perspective:

– If true θ0 >> 0, selection is negligible; no adjustment is needed.

– Otherwise, Y will tend to overestimate θ0.

Thus, by the previous remarks:

– Bayesian analysis with a large λ is appropriate if we expect the true
θ is large.

– Otherwise, it will lead us astray if it is not.

Obvious, in a way: we would not adjust for selection if we believed a
priori that θ is large, and viceversa.
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Bayes and selection

Two conclusions:

– Prior choice is always important, but the impact of the prior on
the analysis is stronger under selection.

– Unclear how to carry out non-informative or weakly informative
analyses in these settings.

For non-selective inference on θ in Y ∼ N(θ, 1), lack of prior information
about θ can be dealt with by setting λ = ∞ (or λ >> 0), which
minimises the influence of the prior on the analysis.

In the presence of selection, however, such “non-informative” priors do in
fact entail critical information about the parameter: its likelihood to lie
in a region of the parameter space for which a selection
adjustment would be appropriate.

Daniel Garćıa Rasines LTCC: Selective Inference 8 / 52



Bayes and selection

Further problem: even if we are comfortable with the implications of the
prior, repeated-sampling properties are deteriorated under selection.

Let θ ∼ N(0, 1) and Y | θ ∼ N(θ, 0.2), and suppose we construct
equal-tailed 90% credible intervals for θ under two sampling regimes:

– A selective one, where only observations with Y > 0 are kept.

– A non-selective one, where intervals are constructed for all samples.
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Bayes and selection

Figure: Coverage of CIs as a function of θ with unadjusted posterior (selection;
no selection), and with selective posterior.
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→ All coverages have 90% expectation wrt the prior, but conditionally on
θ, the coverages under selection are much more sensitive.
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Bayes and selection

One solution inspired by the conditional approach: get rid of the
information used for selection by conditioning on the selection event.

That is, apply Bayes’ rule with the likelihood of the conditional model
Y | E , obtaining the posterior

π(θ | y) ∝ π(θ)f (y | θ)
φ(θ)

, φ(θ) = P(Y ∈ E | θ). (2)

Denote this the selective posterior.

Key idea: inference based on selective posteriors allows the injection of
prior information while avoiding potential problems arising from selection.
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Bayes and selection

Alternative interpretation: selective posterior follows from a standard
Bayesian updating of the modified prior

π∗(θ) ∝ π(θ)

φ(θ)
. (3)

→ Since unadjusted inference is imprecise for values of θ with small
selection probability φ(θ), assign a larger prior probability to those values
to achieve a higher protection in those regions.
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Bayes and selection

Figure: Coverage of CIs as a function of θ with unadjusted posterior (selection;
no selection), and with selective posterior.
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→ Robustness of the conditional coverage is recovered with the selective
posterior.
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Bayes and selection

Yekutieli (2012) provides a different take on the problem.

Suppose a parameter θ is analysed iff Y ∈ E .

In a Bayesian generative model with selection, the sampling and selection
mechanisms can interact in different ways, giving two different “regimes”:

– Fixed parameter regime:

• Sample θ ∼ π(θ).

• Sample Y | θ ∼ f (y | θ) until Y ∈ E .

– Random parameter regime:

• Sample (θ,Y ) ∼ π(θ)× f (y | θ) until Y ∈ E .
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Bayes and selection

With this explicit distinction the “correct” posterior distribution becomes
apparent.

– If θ is fixed, its marginal distribution is unaffected by selection, i.e.

π(θ | Y ∈ E ) = π(θ). (4)

– If θ is random, its marginal distribution is

π(θ | Y ∈ E ) =
P(Y ∈ E | θ)π(θ)

P(Y ∈ E )
∝ φ(θ)π(θ), (5)

i.e. selection favours observation of θ’s with larger selection
probability.
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Bayes and selection

In both cases, the likelihood is

f (y | θ,Y ∈ E ) =
f (y | θ)1(y ∈ E )

φ(θ)
. (6)

Therefore, if θ is fixed,

π(θ | y) ∝ π(θ)f (y ; θ)

φ(θ)
, (7)

which is the selective posterior, while if θ is random,

π(θ | y) ∝ π(θ)φ(θ)f (y ; θ)

φ(θ)
= π(θ)f (y ; θ), (8)

which is the standard, unadjusted posterior.
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Bayes and selection

Figure: Illustration for model θ ∼ N(0, 1), Y | θ ∼ N(θ, 1), selection event
Y > 0 and y = 0.1. Prior; Selective posterior; Unadjusted posterior.

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

θ

D
en

si
ty
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Bayes and selection

Thus, whether a correction for selection is needed depends on which
regime is appropriate for the given problem. Consider the following
examples:

– Let θ be the average academic ability of the students in school.

Each student takes an exam and gets a grade Yi ∼ N(θ, 1), and the
students for which Yi ≥ t are admitted to university.

If a person in the university, with access to the grades obtained by
the admitted students, wants to estimate θ, they should carry out a
fixed parameter analysis.

– Suppose instead that θ is student-specific, representing the student’s
academic ability.

If the person in the university wants to estimate each of the
academic abilities of the admitted students, then each estimated θ
should be treated as a random parameter.
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Bayes and selection

What about non-informative priors?

Both in the fixed and random parameter regimes, the appropriate
likelihood is constructed from the conditional distribution given
selection,

L(θ) ∝ f (y | θ)
φ(θ)

. (9)

Since all information about θ in a non-informative analysis comes from
the data, the posterior should be constructed with this likelihood.

Also, non-informative priors are designed to have certain properties wrt
the sampling model, so they need to be adjusted for selection.
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Bayes and selection

For example, consider location model {f (y ; θ) = g(y − θ) : θ ∈ R}.

The standard non-informative prior for θ in absence of selection is
π(θ) ∝ 1, which is

– Jeffreys invariant prior.

– The reference prior: minimises the prior influence.

– Probability matching: produces inferences with a valid frequentist
interpretation.

However, these properties don’t hold if inference for θ is only provided for
certain values of y , as the conditional model

{g(y − θ)1(y ∈ E )/φ(θ) : θ ∈ R} (10)

is not a location model.
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Bayes and selection

Non-informative priors in Gaussian selection models

Let Y = (Y1, . . . ,Yn) be IID N(θ, 1) and let E be the selection event.

Two (improper) prior densities are available to carry out a
non-informative analysis:

– Jeffreys prior from the conditional distribution:

πJ(θ) ∝
{
n +

∂2

∂θ2
logφ(θ)

}1/2

, φ(θ) = Pθ(Y ∈ E ). (11)

– Exact probability-matching prior (PMP):

πy (θ) ∝ −
∂
∂θH(θ; ȳ)
∂
∂ȳH(θ; ȳ)

, H(θ; ȳ) = Pθ

(
Ȳ ≥ ȳ | E

)
. (12)
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Bayes and selection

The PMP is derived as follows. The probability-matching requirement is

Pθ{θ ≤ Π−1(α|Ȳ )} = α (13)

for all α and θ, where Π(θ | ȳ) is the posterior CDF given the sufficient
statistic Ȳ . In particular, this implies that 1− α credible intervals are
also 1− α confidence intervals.

This is in fact equivalent to requiring that Π(θ | Ȳ ) ∼ U(0, 1) under θ.

By construction, the p-value function H(θ; Ȳ ) is uniformly distributed
under θ, so equating Π(θ | Ȳ ) = H(θ; Ȳ ) and solving for the prior gives
the PMP.

→ Note that this prior is data-dependent, unlike in the non-selective
setting.

Daniel Garćıa Rasines LTCC: Selective Inference 22 / 52



Bayes and selection

Figure: Left: uniform prior, probability-matching prior and Jeffreys prior, for
n = 20, ȳ = 0.2 and selection ȳ > 0. Right: corresponding posteriors for
ȳ = 0.2.
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Bayes and selection

These priors can be extended to univariate exponential families. Informal
argument is as follows.

Let Y1, . . . ,Yn from an exponential family, with PDF/PMF

f (yi ; θ) = h(yi ) exp {η(θ)s(yi )− A(θ)} . (14)

Let i(θ) = −Eθ[(∂
2/∂θ2) log f (Yi ; θ)] be FI of the non-selective model,

and let g(θ) satisfy g ′(θ) = i(θ)1/2. This is the variance-stabilising
transformation, for which

n1/2{g(θ̂)− g(θ)} d−→ N(0, 1). (15)

The idea is to impose a prior on ν ≡ g(θ) that “works well” in the
asymptotic model, so can take

πθ(θ) ∝ i(θ)1/2πν{g(θ)}, (16)

where πν(ν) is the Jeffreys/PMP prior in the ν-parametrisation.
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Bayes and selection

Figure: Illustration in model Yi ∼ Bernoulli(θ), with n = 10 and selection
Y1 + . . .+ Y8 > 8× 0.5. Left: non-selective Jeffreys prior, selective Jeffreys
prior and probability-matching prior, for sample with ȳ = 0.5. Right:
corresponding posteriors.
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Bayes and selection

Further remarks:

– Both priors admit natural extensions to general exponential families
with nuisance parameters.

– Jeffreys prior is more computationally stable, independent of the
data, and produces almost the same results as the PMP.

– Both priors depend on the sample size, unlike in non-selective
regimes. This is needed for correct asymptotic calibration: priors
independent of n overstate regions of the parameter space with low
selection probability.

Daniel Garćıa Rasines LTCC: Selective Inference 26 / 52



Empirical Bayes: setup

Within the classical/random parameter view, inferences are immune to
selection, but can be very sensitive to prior misspecification.

This approach thus lends itself to implementation via empirical Bayes
methods, which estimate the true prior distribution using the data.

Suppose we observe Y1, . . . ,Yn independently from parametric models
f (yi ; θi ), where n is large.

As usual, inference is assumed to be provided only for a subset of the θi ’s
selected with the data; e.g. for the parameters of the top K observations.
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Empirical Bayes: setup

Figure: Exponential example: n = 5000, Yi ∼ N(θi , 1), θi ∼ Exp(1). Inference
sought for the means of the top 100 samples, indicated in blue (Efron, 2011).
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Point estimation

For point estimation of the selected effects, Tweedie’s formula
(Robbins, 1956) offers a simple yet powerful solution for exponential
family likelihoods.

Let θ ∼ π(θ), and Y | θ ∼ f (y | θ), where

f (y | θ) = f0(y)e
θy−A(θ). (17)

Bayes’ rule gives

π(θ | y) = π(θ)f (y | θ)
f (y)

, (18)

where f (y) is the marginal density

f (y) =

∫
Θ

π(θ)f (y | θ)dθ. (19)
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Point estimation

For the exponential family model, we get

π(θ | y) = eyθ−λ(y)
[
π(θ)e−A(θ)

]
, λ(y) = log

(
f (y)

f0(y)

)
, (20)

i.e. the class of posterior distributions is an exponential family with
natural parameter y and CGF λ(y).

Differentiating the CGF gives

E[θ | y ] = λ′(y), Var(θ | y) = λ′′(y), etc. (21)

In particular, letting l(y) = log f (y) and l0(y) = log f0(y),

E[θ | y ] = l ′(y)− l ′0(y). (22)

Daniel Garćıa Rasines LTCC: Selective Inference 30 / 52



Point estimation

We can easily check that

E[−l ′0(Y ) | θ] = θ, (23)

so that −l ′0(y) is an unbiased estimate for θ.

Therefore, we can write the posterior mean as

E[θ | y ] = −l ′0(y) + l ′(y) = Unbiased estimate + Bayes correction. (24)

In particular, for the Gaussian distribution with known variance,
Y | θ ∼ N(µ, σ2), where µ = σ2θ, we obtain

E[µ | y ] = y + σ2l ′(y). (25)
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Point estimation

Recall, in the “random parameter” setting, E[θ | y ] is unbiased under
selection regardless of the selection criterion, as

E [E[θ | Y ]− θ] = 0. (26)

However, this estimate is not computable as it requires knowledge of the
marginal density f (y), and therefore of the prior.

Empirical Bayes solution: estimate l ′(y) = (d/dy) log f (y) using the
data.

Unlike with most empirical Bayes procedures, here we estimate f (y)
directly rather than the prior π(θ).

Daniel Garćıa Rasines LTCC: Selective Inference 32 / 52



Point estimation

A smooth and non-parametric estimate of l(y) can be obtained with
Lindsey’s method.

Assume that l(y) is a J-th degree polynomial:

log fβ(y) =
J∑

i=0

βiy
j . (27)

This is equivalent to assuming that Y follows (marginally) a
J-dimensional exponential family distribution with natural parameter

β = (β1, . . . , βJ)
T . (28)

Note that β0 is a function of β through normalisation of fβ(y).
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Point estimation

The MLE of β can be approximated as follows by partitioning the sample
space into T bins, with counts

zt = #{yi ’s in t-th bin}, t = 1, . . . ,T , (29)

and fitting a Poisson regression model

zt ∼ Poisson(νt) independently, t = 1, . . . ,T , (30)

where νt = n × d × fβ(xt), d is the bin width, and the xt ’s are the bin
centers.
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Point estimation

Figure: Blue dots: log bin counts for data in the exponential example vs. bin
centers (zero counts indicated with empty dots). Green curve: MLE of l(y)
with J = 5 (Efron, 2011).
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Point estimation

Figure: Empirical Bayes estimate y + l̂ ′(y) as a function of y , where l̂(y) is the
previous estimate (Efron, 2011).
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Point estimation

Does empirical Bayes actually correct for selection bias? i.e. does
empirical estimation of l(y) break the unbiasedness of the true Bayes
estimator?

Simulation:

→ 100 replications of the Exponential-Gaussian example with
n = 1000; l(y) estimated with J = 5.

→ Corrected estimates µ̂i = yi + l̂ ′(yi ) computed for 20 largest and 20
smallest yi ’s, giving a total of 2000 triplets (µi , yi , µ̂i ) for the largest
group, and similarly for the smallest group.
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Point estimation

Figure: Line histogram: uncorrected differences yi − µi ; Solid histogram:
corrected differences µ̂i − µi . Left: smallest observations; Right: largest
observations (Efron, 2011).
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Confidence intervals

Finally, we present the “frequentist assisted Bayes” framework of Woody
et al. (2022) for construction of confidence sets.

Same setting as before, with Y1, . . . ,Yn independently from f (yi ; θi ).

Inference is provided for θi iff Yi ∈ E .

Recall generic construction of frequentist CIs for the selected effects via
the conditional approach:

R(y) = {θ : q1 ≤ FE
θ (y) ≤ q2}, (31)

where q2 − q1 = 1− α, and F E
θ (y) = Pθ(Y ≤ y | E ).

For equal-tailed CIs, take q1 = α/2, q2 = 1− α/2.

Daniel Garćıa Rasines LTCC: Selective Inference 39 / 52



Confidence intervals

However, we need not restrict ourselves to equal-tailed intervals and can
instead consider more flexible quantile choices.

Consider the family [q1, q2] = [αw , αw +1−α], where w ∈ [0, 1] controls
the probability allocation in each tail, and let Rw (y) be the respective CI.

Objective: tune w so as to achieve the shortest expected length with
respect to a prior distribution π(θ).
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Confidence intervals

First, need to find a spending function w : R → [0, 1] such that Rw(θ)(Y )
has minimum expected length given θ.

Let

Aw (θ0) = {y : {F E
θ0}

−1(αw) ≤ y ≤ {FE
θ0}

−1(αw + 1− α)} (32)

be the acceptance region of H0 : θ = θ0 obtained by inversion of Rw (θ).

We can write the expected length risk as

r(θ;w) =

∫ ∫
1{y ∈ Aw (θ̃)}f (y | E ; θ)dθ̃dy . (33)
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Confidence intervals

For a given prior π(θ), the Bayes risk is thus given by

r(π,w) =

∫
r(θ;w)π(θ)dθ (34)

=

∫ ∫ ∫
1{y ∈ Aw (θ̃)}f (y | E ; θ)dyπ(θ)dθdθ̃ (35)

=

∫
P{Y ∈ Aw (θ̃)}dθ̃. (36)

The integrand P{Y ∈ Aw (θ)} ≡ H(w ; θ) is the marginal probability that
Y belongs to the acceptance region.
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Confidence intervals

Letting FE (y) = P(Y ≤ y | E ), we can write

H(w ; θ) = FE [{FE
θ }−1(αw + 1− α)]− FE [{F E

θ }−1(αw)]. (37)

The optimal spending function is then given by

w∗(θ) = arg min
w∈[0,1]

H(w ; θ). (38)

Finally, the optimal confidence regions are given by

Rw∗(θ)(y) = {θ : y ∈ Aw∗(θ)}. (39)

Note:

– In general, w∗ needs to be computed numerically.

– w∗ is not guaranteed to be monotonic, in which case the
corresponding confidence region is a union of disjoint intervals.
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Confidence intervals

As we saw before, the marginal distribution of Y depends on whether θ is
fixed or random.

For a fixed parameter,

f (y | E ) = 1(y ∈ E )

∫
π(θ)

f (y | θ)
P(E | θ)

dθ. (40)

For a random parameter,

f (y | E ) = 1(y ∈ E )f (y)

P(E )
. (41)

→Therefore the optimal spending function depends on how the selection
mechanism operates on the joint distribution of (θ,Y ).
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Confidence intervals

As an example, consider the two-groups prior

θ ∼ 0.1× N(0, 3) + 0.9× δ0, P(δ0 = 0) = 1. (42)

A total of 10000 pairs (θi , yi )’s where sampled from a random-parameter
model with Yi | θi ∼ N(θi , 1) and selection event |Yi | > 2.

The following figure (Woody et al. 2022). shows the optimal spending
function (black), and the spending function for equal-tailed intervals
(gray).
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Confidence intervals

Figure: First plot: sizes of optimal 90% CIs (black) and equi-tailed CIs (gray)
as a function of |y |. On average, optimal CIs are 12% smaller. Second plot:
marginal distribution of Y | E (Woody et al. 2022).
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Confidence intervals

To implement this method in practice we need to elicit a prior
distribution.

Key result: plugging in an appropriate non-parametric estimator π̂(θ) of
the true prior can lead to a consistent approximation of the optimal
spending function, and consequently to valid CIs.

But, estimation of the prior is tricky: using the data both for estimation
of π(θ) and for construction of the CIs is not valid.

Solution via K -fold data splitting: split observations into K disjoint
subsets and construct CIs for selected parameters in a given split using a
spending function estimated with data from the remaining splits.

Actual estimation of π(θ) is via a predictive recursion algorithm (details
in Woody et al., 2022).

Daniel Garćıa Rasines LTCC: Selective Inference 47 / 52



Confidence intervals

Now, for a given estimate π̂(θ), the marginal PDF of Y is estimated by

f̂ (y | E ) = 1(y ∈ E )

∫
π̂(θ)

f (y | θ)
P(E | θ)

dθ (43)

for a fixed parameter, or by

f̂ (y | E ) = 1(y ∈ E )f̂ (y)

P̂(E )
, (44)

where

f̂ (y) =

∫
f (y | θ)π̂(θ)dθ and P̂(E ) =

∫ ∫
1(y ∈ E )f (y | θ)π̂(θ)dydθ,

(45)
for a random parameter.

This implies an approximate objective function Ĥ(θ;w) which can then
be minimised to obtain ŵ∗(θ).
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Confidence intervals

The following result establishes asymptotic validity of this approximation
in the random parameter setting.

Theorem

Assume E = {|y | ≥ t} for some fixed t > 0. In a random parameter
setting, under certain regularity conditions, for all fixed θ and every ε > 0,

lim
n→∞

P

(
sup
ŵ∗∈Ω̂

inf
w∗∈Ω0

|ŵ∗ − w∗| ≥ ε

)
= 0, (46)

where Ω̂, Ω0 are the sets of minimisers of Ĥ(·; θ) and H(·; θ), respectively.
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Confidence intervals

Simulation study

– Set n = 2000, α = 0.1, Yi | θi ∼ N(θi , 1), E = {|y | > 2}, and

θ ∼ p × N(0, τ 2) + (1− p)× δ0, P(δ0 = 0) = 1, (47)

with p = 0.2 and τ 2 = 3.

– 1000 batches of n samples generated under fixed and random
parameter regimes.

– Three different constructions of the spending function:

1. Oracle, where the prior is fully known.

2. Parametric EB, where the prior is assumed known up to the
hyperparameters (p, τ 2), and these are estimated via maximum
marginal likelihood estimation using 5-fold data splitting.

3. Nonparametric EB with 5-fold data splitting.

Daniel Garćıa Rasines LTCC: Selective Inference 50 / 52



Confidence intervals

Table: Results for fixed parameter.

Method Coverage Av. size
Oracle 0.9005 3.5138
PEB 0.9004 3.5113
NPEB 0.8999 3.5123
Eq.-tailed 0.8998 3.7441

Table: Results for random parameter.

Method Coverage Av. size
Oracle 0.8990 3.3493
PEB 0.8990 3.3510
NPEB 0.8995 3.3555
Eq.-tailed 0.8993 3.7399
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Overview:

– Extended “Bayes is unaffected by selection” view questionable in at
least some settings.

– In particular, non-informative analyses require a modification of
standard, off-the-shelf priors.

– In random parameter problems with many independent observations,
empirical Bayes can successfully remove estimation bias regardless of
the selection rule.

– Shorter CIs with conditional validity can be computed with EB
methods in some circumstances.
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