Practice exam and solutions

Claudia Garetto

LTCC module on pseudodifferential operators and applications to PDEs

March 2023

- 1) (i) Let $a \in S^{m_1}(\mathbb{R}^{2n})$ and $b \in S^{m_2}(\mathbb{R}^{2n})$. Let A = a(x, D) and B = b(x, D). What is the order of the symbol of the commutator AB BA?
 - (ii) Let $a \in S^m(\mathbb{R}^{2n})$ be real-valued. Show that $AA^* A^*A$, where A = a(x, D), is a pseudodifferential operator with symbol of order 2m 2.
 - (iii) Let $a \in S^m(\mathbb{R}^{2n})$. Assume that A = a(x, D) is self-adjoint, i.e., $A = A^*$. Show that $\operatorname{Re} a$ is a symbol of order m and that $\operatorname{Im} a$ is a symbol of order m 1.

2) In the sequel $x, \xi \in \mathbb{R}$.

(i) Let

$$a(x,\xi) = (\cos x + 2)\langle\xi\rangle^m + b(x,\xi),$$

where $b \in S^{m'}(\mathbb{R}^2)$ with m' < m. Prove that a is an elliptic symbol.

- (ii) Let $p(x,\xi) = \langle \xi \rangle$ and $q(x,\xi) = \sin x$. Prove that they are symbols and determine $p \sharp q$ modulo S^{-1} .
- 3) Let $a \in S^m(\mathbb{R}^{2n})$. Let $p, q \in S^{-m}(\mathbb{R}^{2n})$ such that the following equalities

$$p(x, D)a(x, D) = I + r(x, D),$$
 $a(x, D)q(x, D) = I + s(x, D)$

holds on $\mathscr{S}'(\mathbb{R}^n)$ for $r, s \in S^{-\infty}(\mathbb{R}^{2n})$. Show that $p - q \in S^{-\infty}(\mathbb{R}^{2n})$.

4) Let $s \in \mathbb{R}$ and $f \in H^s(\mathbb{R}^n)$. Solve the equation

$$(1 - \Delta)u = f$$

in $\mathscr{S}'(\mathbb{R}^n)$ by finding the inverse of the operator $1 - \Delta$.

Solutions

- 1) Problem 5 in attachment.
- 2) (i) Discussed in class. The symbol a is elliptic since $(\cos x + 2)\langle\xi\rangle$ is an elliptic symbol of order m and the order of b is strictly smaller than m. (ii) $p \in S^1$ and $q \in S^0$. From the asymptotic expansion of $p \sharp q \in S^1$ we have that

$$p \sharp q = pq + \sum_{|\alpha|=1} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} p D_x^{\alpha} q = \sin x \langle \xi \rangle - i \partial_{\xi} \langle \xi \rangle \cos x$$

modulo S^{-1} .

- 3) Done in class.
- 4) Done in class. The inverse of the operator (1Δ) is the pseudodifferential operator with symbol $\lambda^{-2}(\xi) = \langle \xi \rangle^{-2} = (1 + |\xi|^2)^{-1}$. Hence $u = \lambda^{-2}(D)f \in H^{s+2}(\mathbb{R}^n)$.