Practice exam and solutions

Claudia Garetto
LTCC module on pseudodifferential operators and applications to PDEs

March 2023

1) (i) Let $a \in S^{m_{1}}\left(\mathbb{R}^{2 n}\right)$ and $b \in S^{m_{2}}\left(\mathbb{R}^{2 n}\right)$. Let $A=a(x, D)$ and $B=b(x, D)$. What is the order of the symbol of the commutator $A B-B A$?
(ii) Let $a \in S^{m}\left(\mathbb{R}^{2 n}\right)$ be real-valued. Show that $A A^{*}-A^{*} A$, where $A=a(x, D)$, is a pseudodifferential operator with symbol of order $2 m-2$.
(iii) Let $a \in S^{m}\left(\mathbb{R}^{2 n}\right)$. Assume that $A=a(x, D)$ is self-adjoint, i.e., $A=A^{*}$. Show that $\operatorname{Re} a$ is a symbol of order m and that $\operatorname{Im} a$ is a symbol of order $m-1$.
2) In the sequel $x, \xi \in \mathbb{R}$.
(i) Let

$$
a(x, \xi)=(\cos x+2)\langle\xi\rangle^{m}+b(x, \xi),
$$

where $b \in S^{m^{\prime}}\left(\mathbb{R}^{2}\right)$ with $m^{\prime}<m$. Prove that a is an elliptic symbol.
(ii) Let $p(x, \xi)=\langle\xi\rangle$ and $q(x, \xi)=\sin x$. Prove that they are symbols and determine $p \sharp q$ modulo S^{-1}.
3) Let $a \in S^{m}\left(\mathbb{R}^{2 n}\right)$. Let $p, q \in S^{-m}\left(\mathbb{R}^{2 n}\right)$ such that the following equalities

$$
p(x, D) a(x, D)=I+r(x, D), \quad a(x, D) q(x, D)=I+s(x, D)
$$

holds on $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ for $r, s \in S^{-\infty}\left(\mathbb{R}^{2 n}\right)$. Show that $p-q \in S^{-\infty}\left(\mathbb{R}^{2 n}\right)$.
4) Let $s \in \mathbb{R}$ and $f \in H^{s}\left(\mathbb{R}^{n}\right)$. Solve the equation

$$
(1-\Delta) u=f
$$

in $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ by finding the inverse of the operator $1-\Delta$.

Solutions

1) Problem 5 in attachment.
2) (i) Discussed in class. The symbol a is elliptic since $(\cos x+2)\langle\xi\rangle$ is an elliptic symbol of order m and the order of b is strictly smaller than m. (ii) $p \in S^{1}$ and $q \in S^{0}$. From the asymptotic expansion of $p \sharp q \in S^{1}$ we have that

$$
p \sharp q=p q+\sum_{|\alpha|=1} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} p D_{x}^{\alpha} q=\sin x\langle\xi\rangle-i \partial_{\xi}\langle\xi\rangle \cos x
$$

modulo S^{-1}.
3) Done in class.
4) Done in class. The inverse of the operator $(1-\Delta)$ is the pseudodifferential operator with symbol $\lambda^{-2}(\xi)=\langle\xi\rangle^{-2}=\left(1+|\xi|^{2}\right)^{-1}$. Hence $u=\lambda^{-2}(D) f \in H^{s+2}\left(\mathbb{R}^{n}\right)$.

