Reps of GL_{2} lecture 4

Let V be an irreducible representation of $\mathrm{GL}_{2}(F)$ which is not one-dimensional. The quantity $c=c(V)$ occurring in Casselman's theorem is called the conductor of V. One can show that

$$
c(V)= \begin{cases}c(\chi)+c(\psi) & V=I(\chi, \psi) \\ \max \{1,2 c(\gamma)\} & V=\mathrm{St} \otimes \gamma \\ \geq 2 & V \text { supercuspidal }\end{cases}
$$

One can compute the isomorphism class of V from the Hecke operators acting on $V^{K_{c}}$ c.f. Loeffler-Weinstein 2012.

2 Adèle groups

2.1 Adèles and Idèles of \mathbb{Q}

Definition 2.1.1. Define

$$
\mathbb{A}_{f}=\prod_{\ell \text { prime }}^{\prime} \mathbb{Q}_{\ell}=\left\{\left(x_{\ell}\right) \in \prod_{\ell} \mathbb{Q}_{\ell}: x_{\ell} \in \mathbb{Z}_{\ell} \text { for almost all } \ell\right\}
$$

(almost all $=$ all but finitely many). We define $\mathbb{A}=\mathbb{A}_{f} \times \mathbb{R}$ but we won't use this much.
Topology on \mathbb{A}_{f} : open sets are products $\prod_{\ell} U_{\ell}$ of open sets such that $U_{\ell}=\mathbb{Z}_{\ell}$ for almost all ℓ. In particular

$$
\hat{\mathbb{Z}}:=\left\{\left(x_{\ell}\right): x_{\ell} \in \mathbb{Z}_{\ell} \forall \ell\right\}
$$

is open in \mathbb{A}_{f} and profinite. Thus $\left(\mathbb{A}_{f},+\right)$ is a locally profinite group.
Easy fact: \mathbb{Q} is dense in \mathbb{A}_{f} (by Chinese remainder theorem).
Definition 2.1.2. The finite idèles are define to be \mathbb{A}_{f}^{\times}with the topology given by the inclusion

$$
\begin{array}{r}
\mathbb{A}_{f}^{\times} \hookrightarrow \mathbb{A}_{f} \times \mathbb{A}_{f} \\
x
\end{array}>\left(x, x^{-1}\right) \text {. }
$$

(exercise: show this is really different from the subspace topology on \mathbb{A}_{f}). This makes \mathbb{A}_{f}^{\times}a locally profinite group.

Fact: \mathbb{Q}^{\times}is discrete in \mathbb{A}_{f}^{\times}(as $\mathbb{Q}^{\times} \cap \hat{\mathbb{Z}}^{\times}= \pm 1$ is finite).
Proposition 2.1.3. For any $U \subset \mathbb{A}_{f}^{\times}$open compact, the quotient $\mathbb{A}_{f}^{\times} / \mathbb{Q}_{>0}^{\times} U$ is finite. If $U=\hat{\mathbb{Z}}^{\times}$it is trivial. Proof. Suffices to prove the second statement. After some unravelling this amounts to the fact that for any collection of integers n_{p}, p prime, with $n_{p}=0$ for almost all p, there is $x \in \mathbb{Q}_{>0}^{\times}$such that $v_{p}(x)=n_{p}$ for all $p\left(\right.$ let $x=\prod p^{n_{p}}$).

Remark 2.1.4. For any number field F (or even any global field) one can analogously define $\mathbb{A}_{F}=\prod_{v}^{\prime} F_{v}$ where the restricted product is with respect to $\hat{\mathcal{O}}_{F}=\lim _{\hookleftarrow} \mathcal{O}_{F} / I$.

$2.2 \mathrm{GL}_{2}$ and SL_{2}

Proposition 2.2.1. For all $N \geq 1$, the reduction map

$$
\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N)
$$

is surjective.
Proof. Everyone knows how to do this.
Corollary 2.2.2 (Strong approximation). $\mathrm{SL}_{2}(\mathbb{Q})$ is dense in $\mathrm{SL}_{2}\left(\mathbb{A}_{f}\right)$.
Proof. Closure of $\mathrm{SL}_{2}(\mathbb{Q})$ contains $\mathrm{SL}_{2}(\hat{\mathbb{Z}})$ by proposition. But Cartan decomposition for $\mathrm{SL}_{2}\left(\mathbb{Q}_{N}\right)$ implies that

$$
\mathrm{SL}_{2}\left(\mathbb{A}_{f}\right)=\sqcup_{m \geq 1} \mathrm{SL}_{2}(\hat{\mathbb{Z}})\left({ }^{m}{ }_{m^{-1}}\right) \mathrm{SL}_{2}(\hat{\mathbb{Z}})
$$

so the closure of $\mathrm{SL}_{2}(\mathbb{Q})$ is everything.
Analogue for GL_{2} fails.

2.3 Modular curves

Let \mathcal{H} denote the complex upper half-plane equipped with its usual action of $\mathrm{GL}_{2}(\mathbb{R})^{+}$by Möbius transformations. Let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a congruence $\operatorname{subgroup}\left(\Longleftrightarrow\right.$ closure $U=\bar{\Gamma}$ in $\mathrm{SL}_{2}(\hat{\mathbb{Z}})$ is open, and $\left.\Gamma=U \cap \mathrm{SL}_{2}(\mathbb{Q})\right)$.

Proposition 2.3.1. Let U be as above. The double coset space

$$
\mathrm{SL}_{2}(\mathbb{Q}) \backslash \mathrm{SL}_{2}\left(\mathbb{A}_{f}\right) \times \mathcal{H} / U
$$

where the action of $\mathrm{SL}_{2}(\mathbb{Q})$ is given by the diagonal left action and the action of U is given by the right action on $\mathrm{SL}_{2}\left(\mathbb{A}_{f}\right)$, is canonically isomorphic to $\Gamma \backslash \mathcal{H}$, via $\tau \mapsto(1, \tau)$.

Proof. Given any $(g, \tau) \in \mathrm{SL}_{2}\left(\mathbb{A}_{f}\right) \times \mathcal{H}$, density of $\mathrm{SL}_{2}(\mathbb{Q})$ tells us we have $U g^{-1} \cap \mathrm{SL}_{2}(\mathbb{Q}) \neq \emptyset$ and thus there is $\gamma \in \mathrm{SL}_{2}(\mathbb{Q})$ such that $\gamma g \in U$. Thus

$$
(g, \tau) \sim(\gamma g, \gamma \tau) \sim(1, \gamma \tau)
$$

On the other hand, if $(1, \tau) \sim\left(1, \tau^{\prime}\right)$, then there exists $\gamma \in \mathrm{SL}_{2}(\mathbb{Q}), u \in U$ such that

$$
\left(1, \tau^{\prime}\right)=(\gamma u, \gamma \tau)
$$

this implies that $\gamma \in U \cap \mathrm{SL}_{2}(\mathbb{Q})=\Gamma$.
We now consider GL_{2}. Strong approximation fails in this case, so adèlic objects give something new. Let $U \subset \mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)$ open compact, $\Gamma=I \cap \mathrm{GL}_{2}(\mathbb{Q})^{+}$doesn't uniquely determine U. for example, consider

$$
\begin{aligned}
U= & \left\{\left(\begin{array}{c}
* \\
* \\
1
\end{array}\right) \operatorname{sod} N\right\} \\
& \left\{\left(\begin{array}{c}
1 \underset{*}{*}
\end{array}\right) \bmod N\right\} \\
& \left\{\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right) \bmod N\right\}
\end{aligned}
$$

all satisfy $U \cap \mathrm{GL}_{2}^{+}(\mathbb{Q})=\Gamma_{1}(N)$.

Theorem 2.3.2. Let $U \subset \mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)$ open-compact. Then

$$
Y(U):=\mathrm{GL}_{2}^{+}(\mathbb{Q}) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{f}\right) \times \mathcal{H} / U
$$

is a manifold with finitely many connected components, each non-canonically isomorphic to a quotient of \mathcal{H}.
More precisely: Let g_{1}, \ldots, g_{n} be any set of elements of $\mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)$ whose determinants are representatives of $\mathbb{A}_{f}^{\times} / \mathbb{Q}_{>0}^{\times} \operatorname{det}(U)$. Then $\Gamma_{i}:=\mathrm{GL}_{2}^{+}(\mathbb{Q}) \cap g_{i} U g_{i}^{-1}$ is a subgroup of $\mathrm{SL}_{2}(\mathbb{Q})$ commensurable with $\mathrm{SL}_{2}(\mathbb{Z})$, and

$$
\begin{aligned}
\sqcup_{i=1}^{n} \Gamma_{i} \backslash \mathcal{H} & \rightarrow Y(U) \\
\tau \text { in ith component } & \mapsto\left(g_{i}, \tau\right) .
\end{aligned}
$$

Remark 2.3.3. We can also write

$$
Y(U)=\mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{f}\right) \times(\mathbb{C}-\mathbb{R}) / U
$$

The delicate step in the proof of the above theorem is to prove that the map

$$
\sqcup_{i=1}^{n} \Gamma_{i} \backslash \mathcal{H} \rightarrow Y(U)
$$

is surjective i.e. that

$$
\mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)=\cup_{i=1}^{r} \mathrm{GL}_{2}^{+}(\mathbb{Q}) g_{i} U
$$

this comes from strong approximation for SL_{2}. In particular: if $\operatorname{det}(U)=\hat{\mathbb{Z}}^{\times}$, then

$$
Y(U)=\Gamma \backslash \mathcal{H}, \Gamma=U \cap \mathrm{GL}_{2}^{+}(\mathbb{Q})
$$

but there are many U with the same Γ in general if $U=\left\{\left(\right.\right.$ * $\left.\left._{*}^{*}{ }_{1}^{*}\right) \bmod N\right\}, U=\left\{\left(\begin{array}{c}1_{*}^{*}\end{array}\right) \bmod N\right\}$ then $Y(U), Y\left(U^{\prime}\right)$ are both $\Gamma_{1}(N) \backslash \mathcal{H}$ but action of $\left\{\binom{x}{x}: x \in \hat{\mathbb{Z}}^{\times}\right\}$is different.

3 Modular forms via adèles

3.1 Recap of modular forms

For $f: \mathcal{H} \rightarrow \mathbb{C}, g \in \mathrm{GL}_{2}^{+}(\mathbb{R}), k \in \mathbb{Z}, t \in \mathbb{R}$, define

$$
\left(\left.f\right|_{(k, t)} g\right)=\operatorname{det}(g)^{t}(c \tau+d)^{-k} f\left(\frac{a \tau+b}{c \tau+d}\right)
$$

where $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
Definition 3.1.1. For $\Gamma \subset \mathrm{GL}_{2}^{+}(\mathbb{Q})$ commensurable with $\mathrm{SL}_{2}(\mathbb{Z})$ (i.e. $\Gamma \cap \mathrm{SL}_{2}(\mathbb{Z})$ has finite index in Γ and $\left.\mathrm{SL}_{2}(\mathbb{Z})\right)$ a modular form of level Γ and weight (k, t) is a function $f: \mathcal{H} \rightarrow \mathbb{C}$ such that:

- f is holomorphic
- $\left.F\right|_{k, t} \gamma=f$ for all $\gamma \in \Gamma$.
- $\left(\left.f\right|_{k, t} \gamma\right)(\tau)$ bounded as $\operatorname{Im} \tau \rightarrow \infty$ for all $\Gamma \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$.

If $\left(\left.f\right|_{k, t} \gamma\right)(\tau) \rightarrow 0$ for all γ we say that f is a cusp form. Standard fact: $S_{k, t}(\Gamma), M_{k, t}(\Gamma)$ are finite dimensional and there is a natural inner product on $S_{k, t}(\Gamma)$.

3.2 Adèlic picture

Choose $(k, t) \in \mathbb{Z} \times \mathbb{R}$ as before.
Definition 3.2.1. An adèlic modular form of weight (k, t) is a function

$$
F: \mathrm{GL}_{2}\left(\mathbb{A}_{f}\right) \times \mathcal{H} \rightarrow \mathbb{C}
$$

such that

1. $F(g, \tau)$ is holomorphic in τ for all g.
2. $F(g u, \tau)=F(g, \tau)$ for all $g \in \mathrm{GL}_{2}\left(\mathbb{A}_{f}\right), \tau \in \mathcal{H}, u \in U$ for some open-compact U (depending on F).
3. $F(\gamma g,-)=\left.F(g,-)\right|_{k, t} \gamma^{-1}$ for all $\gamma \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$.
4. For all $g \in \mathrm{GL}_{2}\left(\mathbb{A}_{f}\right), F(g, \tau)$ bounded as $\operatorname{Im}(\tau) \rightarrow \infty$.

If $F(g, \tau) \rightarrow 0$ for all g say F is a cusp form.
This gives spaces $M_{k, t} \supset S_{k, t}$ which are $\mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)$-representations.
Fact: These are admissible smooth and if $t=k / 2, S_{k, t}$ is unitarisable i.e. there exists a G-invariant, conjugate symmetric, positive definite pairing on $S_{k, k / 2}$.
Proposition 3.2.2. If $U \subset \mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)$ open compact, g_{1}, \ldots, g_{n} as before, then

$$
\left(S_{k, t}\right)^{U}=\bigoplus_{i=1}^{n} S_{k, t}\left(\Gamma_{i}\right)
$$

via evaluation at g_{1}, \ldots, g_{r} (in particular, it's finite dimensional which implies admissibility). Similary for $M_{k, t}$.

In particular, if $U=\left\{\left(\right.\right.$ * $\left.\left._{1}^{*}\right) \bmod N\right\}$ we recover $S_{k, t}\left(\Gamma_{1}(N)\right)$ as invariants in an admissible smooth representation of $\mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)$.
Proposition 3.2.3. If $U_{1}(N)$ is above subgroup and $\varpi=$ idèle which is 1 at all places except p and a uniformiser at p, then $\left[U_{1}(N)\left({ }^{\left({ }^{W}\right.}{ }_{1}\right) U_{1}(N)\right]$ acts on $\left(M_{k, t}\right)^{U_{1}(N)}$ as the classical Hecke operator $p^{1-t} U_{p}$ resp $p^{1-t} T_{p}$:

$$
\left[U\left({ }^{(}{ }_{1}\right) U\right]=p^{1-t} \begin{cases}U_{p} & p \mid N \\ T_{p} & p \nmid N\end{cases}
$$

Proof. Assume $p \mid N$ first. Then

$$
\left[U\left({ }^{\infty}{ }_{1}\right) U\right] f=\sum_{a \in \mathbb{Z} / p}\binom{\varpi_{1}^{a}}{1} f .
$$

Evaluate at $(1, \tau)$:

$$
\begin{aligned}
\sum_{a} f\left(\left(\begin{array}{cc}
\infty & a \\
1
\end{array}\right), \tau\right) & =\sum_{a} f\left(\binom{p a}{1}, \tau\right) \\
& =\sum_{a}\left(\left.f(1,-)\right|_{k, t}\binom{p a}{1}^{-1}\right)(\tau) \\
& =\sum_{a} p^{-t} f\left(1, \frac{\tau-a}{p}\right) \\
& =p^{1-t} U_{p}(f(1,-))(\tau) .
\end{aligned}
$$

Similar when $p \nmid N$ with one extra coset (${ }^{1}{ }_{\omega_{p}}$) ; massage by multiplying on the right by U to get something in $\mathrm{GL}_{2}^{+}(\mathbb{Q})$.

Similary $\left[U_{1}(N)\left({ }^{(}{ }_{\omega}\right) U_{1}(N)\right], p \nmid N$ is $p^{k-2 t}\langle p\rangle$ (Exercise: what if $p \mid N$??), so nebentype character of a classical modular form encodes the action of the centre.

4 Multiplicty one

4.1 Restricted tensor products

Recall 'almost all' = 'all but finitely many'. Let F be a number field.
Definition 4.1.1. Suppose we have a collection of vector spaces X_{v} for v a prime of F and vectors $x_{v}^{\circ} \in X_{v}$ (non-trivial for most v). Define $\bigotimes_{v}^{\prime}\left(X_{v}, x_{v}^{\circ}\right)$ as a subspace of $\bigotimes_{v} X_{v}$ spanned by tensors $\otimes_{v} x_{v}$ such that $x_{v}=x_{v}^{\circ}$ for almost all v. We will often drop x_{v}° from the notation and write

$$
\bigotimes_{v}^{\prime} X_{v}
$$

There are two key examples of this contruction:

- Hecke algebras: $X_{v}=\mathcal{H}\left(\mathrm{GL}_{2}\left(F_{v}\right)\right), x_{v}^{\circ}=e_{K_{v}}, K_{v}=\mathrm{GL}_{2}\left(\mathcal{O}_{v}\right)$. Then

$$
\bigotimes_{v}^{\prime}\left(X_{v}, x_{v}^{\circ}\right)=\mathcal{H}\left(\mathrm{GL}_{2}\left(\mathbb{A}_{F, f}\right)\right)
$$

- Irreducible representations: Let Π be an irreducible smooth $\mathrm{GL}_{2}\left(\mathbb{A}_{F, f}\right)$-representation.

Theorem 4.1.2 (Flath's tensor product theorem). There exist uniquely determined irreducible representations $\Pi_{v} \circlearrowright \mathrm{GL}_{2}\left(F_{v}\right)$ and $\phi_{v}^{\circ} \in\left(\pi_{v}\right)^{K_{v}}$ (almost all non-zero) such that

$$
\Pi \cong \bigotimes_{v}^{\prime}\left(\Pi_{v}, \phi_{v}^{\circ}\right)
$$

In particular, if $\Pi \subset S_{k, t}$ is an irreducible subrepresentation, get smooth irreducible representations Π_{v} for every prime v and almost all Π_{v} are spherical. If U is a subgroup of the form $U_{v} \times U^{v}$ with $U_{v} \subset \mathrm{GL}_{2}\left(F_{v}\right)$ and $U^{v} \subset \prod_{w \neq v}^{\prime} \mathrm{GL}_{2}\left(F_{w}\right)$ then

$$
\Pi^{U} \cong \text { Sum of finitely many copies of } \Pi_{v}^{U_{v}} \text { as } \mathcal{H}\left(\mathrm{GL}_{2}\left(F_{v}\right), U_{v}\right) \text { representation }
$$

Note that $\mathcal{H}\left(\mathrm{GL}_{2}\left(F_{v}\right), U_{v}\right) \subset \mathcal{H}\left(\mathrm{GL}_{2}\left(\mathbb{A}_{F, f}\right), U\right)$

