Reps of GL_2 lecture 4

1

Let V be an irreducible representation of $\operatorname{GL}_2(F)$ which is not one-dimensional. The quantity c = c(V) occurring in Casselman's theorem is called the *conductor* of V. One can show that

$$c(V) = \begin{cases} c(\chi) + c(\psi) & V = I(\chi, \psi) \\ \max\{1, 2c(\gamma)\} & V = \operatorname{St} \otimes \gamma \\ \ge 2 & V \text{ supercuspidal.} \end{cases}$$

One can compute the isomorphism class of V from the Hecke operators acting on V^{K_c} c.f. Loeffler–Weinstein 2012.

2 Adèle groups

2.1 Adèles and Idèles of \mathbb{Q}

Definition 2.1.1. Define

$$\mathbb{A}_f = \prod_{\ell \text{ prime}}' \mathbb{Q}_\ell = \{ (x_\ell) \in \prod_{\ell} \mathbb{Q}_\ell : x_\ell \in \mathbb{Z}_\ell \text{ for almost all } \ell \}$$

(almost all = all but finitely many). We define $\mathbb{A} = \mathbb{A}_f \times \mathbb{R}$ but we won't use this much.

Topology on \mathbb{A}_f : open sets are products $\prod_{\ell} U_{\ell}$ of open sets such that $U_{\ell} = \mathbb{Z}_{\ell}$ for almost all ℓ . In particular

$$\hat{\mathbb{Z}} := \{ (x_{\ell}) : x_{\ell} \in \mathbb{Z}_{\ell} \ \forall \ell \}$$

is open in \mathbb{A}_f and profinite. Thus $(\mathbb{A}_f, +)$ is a locally profinite group.

Easy fact: \mathbb{Q} is dense in \mathbb{A}_f (by Chinese remainder theorem).

Definition 2.1.2. The *finite idèles* are define to be \mathbb{A}_f^{\times} with the topology given by the inclusion

$$\mathbb{A}_f^{\times} \hookrightarrow \mathbb{A}_f \times \mathbb{A}_f \\ x \mapsto (x, x^{-1})$$

(exercise: show this is really different from the subspace topology on \mathbb{A}_f). This makes \mathbb{A}_f^{\times} a locally profinite group.

Fact: \mathbb{Q}^{\times} is discrete in \mathbb{A}_{f}^{\times} (as $\mathbb{Q}^{\times} \cap \hat{\mathbb{Z}}^{\times} = \pm 1$ is finite).

Proposition 2.1.3. For any $U \subset \mathbb{A}_{f}^{\times}$ open compact, the quotient $\mathbb{A}_{f}^{\times}/\mathbb{Q}_{>0}^{\times}U$ is finite. If $U = \hat{\mathbb{Z}}^{\times}$ it is trivial. *Proof.* Suffices to prove the second statement. After some unravelling this amounts to the fact that for any collection of integers n_{p} , p prime, with $n_{p} = 0$ for almost all p, there is $x \in \mathbb{Q}_{>0}^{\times}$ such that $v_{p}(x) = n_{p}$ for all p (let $x = \prod p^{n_{p}}$).

Remark 2.1.4. For any number field F (or even any global field) one can analogously define $\mathbb{A}_F = \prod'_v F_v$ where the restricted product is with respect to $\hat{\mathcal{O}}_F = \lim \mathcal{O}_F / I$.

2.2 GL_2 and SL_2

Proposition 2.2.1. For all $N \ge 1$, the reduction map

 $\operatorname{SL}_2(\mathbb{Z}) \to \operatorname{SL}_2(\mathbb{Z}/N)$

is surjective.

Proof. Everyone knows how to do this.

Corollary 2.2.2 (Strong approximation). $SL_2(\mathbb{Q})$ is dense in $SL_2(\mathbb{A}_f)$.

Proof. Closure of $SL_2(\mathbb{Q})$ contains $SL_2(\hat{\mathbb{Z}})$ by proposition. But Cartan decomposition for $SL_2(\mathbb{Q}_N)$ implies that

$$\operatorname{SL}_2(\mathbb{A}_f) = \sqcup_{m \ge 1} \operatorname{SL}_2(\mathbb{Z}) \begin{pmatrix} m \\ m^{-1} \end{pmatrix} \operatorname{SL}_2(\mathbb{Z})$$

so the closure of $SL_2(\mathbb{Q})$ is everything.

Analogue for GL_2 fails.

2.3 Modular curves

Let \mathcal{H} denote the complex upper half-plane equipped with its usual action of $\operatorname{GL}_2(\mathbb{R})^+$ by Möbius transformations. Let $\Gamma \subset \operatorname{SL}_2(\mathbb{Z})$ be a congruence subgroup (\iff closure $U = \overline{\Gamma}$ in $\operatorname{SL}_2(\widehat{\mathbb{Z}})$ is open, and $\Gamma = U \cap \operatorname{SL}_2(\mathbb{Q})$).

Proposition 2.3.1. Let U be as above. The double coset space

$$\operatorname{SL}_2(\mathbb{Q}) \setminus \operatorname{SL}_2(\mathbb{A}_f) \times \mathcal{H}/U$$

where the action of $SL_2(\mathbb{Q})$ is given by the diagonal left action and the action of U is given by the right action on $SL_2(\mathbb{A}_f)$, is canonically isomorphic to $\Gamma \setminus \mathcal{H}$, via $\tau \mapsto (1, \tau)$.

Proof. Given any $(g,\tau) \in \mathrm{SL}_2(\mathbb{A}_f) \times \mathcal{H}$, density of $\mathrm{SL}_2(\mathbb{Q})$ tells us we have $Ug^{-1} \cap \mathrm{SL}_2(\mathbb{Q}) \neq \emptyset$ and thus there is $\gamma \in \mathrm{SL}_2(\mathbb{Q})$ such that $\gamma g \in U$. Thus

$$(g,\tau) \sim (\gamma g,\gamma \tau) \sim (1,\gamma \tau).$$

On the other hand, if $(1, \tau) \sim (1, \tau')$, then there exists $\gamma \in SL_2(\mathbb{Q}), u \in U$ such that

$$(1,\tau') = (\gamma u, \gamma \tau)$$

this implies that $\gamma \in U \cap \mathrm{SL}_2(\mathbb{Q}) = \Gamma$.

We now consider GL_2 . Strong approximation fails in this case, so adèlic objects give something new. Let $U \subset \operatorname{GL}_2(\mathbb{A}_f)$ open compact, $\Gamma = I \cap \operatorname{GL}_2(\mathbb{Q})^+$ doesn't uniquely determine U. for example, consider

$$U = \{ \binom{* \ 1}{1} \mod N \}$$
$$\{ \binom{1 \ *}{1} \mod N \}$$
$$\{ \binom{1 \ *}{1} \mod N \}$$

all satisfy $U \cap \operatorname{GL}_2^+(\mathbb{Q}) = \Gamma_1(N)$.

Theorem 2.3.2. Let $U \subset GL_2(\mathbb{A}_f)$ open-compact. Then

$$Y(U) := \mathrm{GL}_2^+(\mathbb{Q}) \backslash \mathrm{GL}_2(\mathbb{A}_f) \times \mathcal{H}/U$$

is a manifold with finitely many connected components, each non-canonically isomorphic to a quotient of \mathcal{H} . **More precisely:** Let g_1, \ldots, g_n be any set of elements of $\operatorname{GL}_2(\mathbb{A}_f)$ whose determinants are representatives of $\mathbb{A}_f^{\times}/\mathbb{Q}_{>0}^{\times} \det(U)$. Then $\Gamma_i := \operatorname{GL}_2^+(\mathbb{Q}) \cap g_i U g_i^{-1}$ is a subgroup of $\operatorname{SL}_2(\mathbb{Q})$ commensurable with $\operatorname{SL}_2(\mathbb{Z})$, and

$$\sqcup_{i=1}^{n} \Gamma_{i} \backslash \mathcal{H} \to Y(U)$$

 $\tau \text{ in ith component} \mapsto (g_{i}, \tau).$

Remark 2.3.3. We can also write

$$Y(U) = \operatorname{GL}_2(\mathbb{Q}) \setminus \operatorname{GL}_2(\mathbb{A}_f) \times (\mathbb{C} - \mathbb{R}) / U$$

The delicate step in the proof of the above theorem is to prove that the map

$$\sqcup_{i=1}^{n} \Gamma_i \backslash \mathcal{H} \to Y(U)$$

is surjective i.e. that

$$\operatorname{GL}_2(\mathbb{A}_f) = \cup_{i=1}^r \operatorname{GL}_2^+(\mathbb{Q})g_i U.$$

this comes from strong approximation for SL₂. In particular: if $det(U) = \hat{\mathbb{Z}}^{\times}$, then

$$Y(U) = \Gamma \setminus \mathcal{H}, \Gamma = U \cap \mathrm{GL}_2^+(\mathbb{Q})$$

but there are many U with the same Γ in general if $U = \{\binom{*}{1} \mod N\}, U = \{\binom{1}{*} \mod N\}$ then Y(U), Y(U') are both $\Gamma_1(N) \setminus \mathcal{H}$ but action of $\{\binom{x}{x} : x \in \hat{\mathbb{Z}}^{\times}\}$ is different.

3 Modular forms via adèles

3.1 Recap of modular forms

For $f: \mathcal{H} \to \mathbb{C}, g \in \mathrm{GL}_2^+(\mathbb{R}), k \in \mathbb{Z}, t \in \mathbb{R}$, define

$$(f|_{(k,t)}g) = \det(g)^t (c\tau + d)^{-k} f(\frac{a\tau + b}{c\tau + d}).$$

where $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Definition 3.1.1. For $\Gamma \subset \operatorname{GL}_2^+(\mathbb{Q})$ commensurable with $\operatorname{SL}_2(\mathbb{Z})$ (i.e. $\Gamma \cap \operatorname{SL}_2(\mathbb{Z})$ has finite index in Γ and $\operatorname{SL}_2(\mathbb{Z})$) a modular form of level Γ and weight (k, t) is a function $f : \mathcal{H} \to \mathbb{C}$ such that:

- f is holomorphic
- $F|_{k,t}\gamma = f$ for all $\gamma \in \Gamma$.
- $(f|_{k,t}\gamma)(\tau)$ bounded as $\operatorname{Im}\tau \to \infty$ for all $\Gamma \in \operatorname{GL}_2^+(\mathbb{Q})$.

If $(f|_{k,t}\gamma)(\tau) \to 0$ for all γ we say that f is a *cusp form*. Standard fact: $S_{k,t}(\Gamma), M_{k,t}(\Gamma)$ are finite dimensional and there is a natural inner product on $S_{k,t}(\Gamma)$.

3.2 Adèlic picture

Choose $(k, t) \in \mathbb{Z} \times \mathbb{R}$ as before.

Definition 3.2.1. An adèlic modular form of weight (k, t) is a function

$$F: \operatorname{GL}_2(\mathbb{A}_f) \times \mathcal{H} \to \mathbb{C}$$

such that

1. $F(g,\tau)$ is holomorphic in τ for all g.

- 2. $F(gu, \tau) = F(g, \tau)$ for all $g \in GL_2(\mathbb{A}_f), \tau \in \mathcal{H}, u \in U$ for some open-compact U (depending on F).
- 3. $F(\gamma g, -) = F(g, -)|_{k,t} \gamma^{-1}$ for all $\gamma \in \mathrm{GL}_2^+(\mathbb{Q})$.
- 4. For all $g \in \operatorname{GL}_2(\mathbb{A}_f)$, $F(g,\tau)$ bounded as $\operatorname{Im}(\tau) \to \infty$.

If $F(q,\tau) \to 0$ for all q say F is a cusp form.

This gives spaces $M_{k,t} \supset S_{k,t}$ which are $\operatorname{GL}_2(\mathbb{A}_f)$ -representations.

Fact: These are admissible smooth and if t = k/2, $S_{k,t}$ is *unitarisable* i.e. there exists a *G*-invariant, conjugate symmetric, positive definite pairing on $S_{k,k/2}$.

Proposition 3.2.2. If $U \subset GL_2(\mathbb{A}_f)$ open compact, g_1, \ldots, g_n as before, then

$$(S_{k,t})^U = \bigoplus_{i=1}^n S_{k,t}(\Gamma_i)$$

via evaluation at g_1, \ldots, g_r (in particular, it's finite dimensional which implies admissibility). Similarly for $M_{k,t}$.

In particular, if $U = \{ \begin{pmatrix} * & * \\ & 1 \end{pmatrix} \mod N \}$ we recover $S_{k,t}(\Gamma_1(N))$ as invariants in an admissible smooth representation of $\operatorname{GL}_2(\mathbb{A}_f)$.

Proposition 3.2.3. If $U_1(N)$ is above subgroup and $\varpi = id\dot{e}le$ which is 1 at all places except p and a uniformiser at p, then $[U_1(N)(\varpi_1)U_1(N)]$ acts on $(M_{k,t})^{U_1(N)}$ as the classical Hecke operator $p^{1-t}U_p$ resp $p^{1-t}T_p$:

$$[U(\stackrel{\varpi}{_{1}})U] = p^{1-t} \begin{cases} U_p & p \mid N \\ T_p & p \nmid N \end{cases}$$

Proof. Assume $p \mid N$ first. Then

$$[U(\begin{smallmatrix}\varpi&\\1\end{smallmatrix})U]f = \sum_{a\in\mathbb{Z}/p}(\begin{smallmatrix}\varpi&a\\1\end{smallmatrix})f$$

Evaluate at $(1, \tau)$:

$$\sum_{a} f((\overset{\varpi}{}_{1}^{a}), \tau) = \sum_{a} f((\overset{p}{}_{1}^{a}), \tau)$$
$$= \sum_{a} \left(f(1, -)|_{k, t} (\overset{p}{}_{1}^{a})^{-1} \right) (\tau)$$
$$= \sum_{a} p^{-t} f(1, \frac{\tau - a}{p})$$
$$= p^{1-t} U_{p}(f(1, -))(\tau).$$

Similar when $p \nmid N$ with one extra coset $\begin{pmatrix} 1 \\ \varpi_p \end{pmatrix}$; massage by multiplying on the right by U to get something in $\operatorname{GL}_2^+(\mathbb{Q})$.

Similary $[U_1(N)(\[mathbb{\pi}]_{\varpi})U_1(N)], p \nmid N$ is $p^{k-2t} \langle p \rangle$ (Exercise: what if $p \mid N$??), so nebentype character of a classical modular form encodes the action of the centre.

4 Multiplicty one

4.1 Restricted tensor products

Recall 'almost all' = 'all but finitely many'. Let F be a number field.

Definition 4.1.1. Suppose we have a collection of vector spaces X_v for v a prime of F and vectors $x_v^{\circ} \in X_v$ (non-trivial for most v). Define $\bigotimes_v' (X_v, x_v^{\circ})$ as a subspace of $\bigotimes_v X_v$ spanned by tensors $\bigotimes_v x_v$ such that $x_v = x_v^{\circ}$ for almost all v. We will often drop x_v° from the notation and write

$$\bigotimes_{v}^{\prime} X_{v}$$

There are two key examples of this contruction:

• Hecke algebras: $X_v = \mathcal{H}(\mathrm{GL}_2(F_v)), x_v^\circ = e_{K_v}, K_v = \mathrm{GL}_2(\mathcal{O}_v).$ Then

$$\bigotimes_{v}^{\prime} \left(X_{v}, x_{v}^{\circ} \right) = \mathcal{H}(\mathrm{GL}_{2}(\mathbb{A}_{F,f}))$$

• Irreducible representations: Let Π be an irreducible smooth $\operatorname{GL}_2(\mathbb{A}_{F,f})$ -representation.

Theorem 4.1.2 (Flath's tensor product theorem). There exist uniquely determined irreducible representations $\Pi_v \circlearrowright \operatorname{GL}_2(F_v)$ and $\phi_v^{\circ} \in (\pi_v)^{K_v}$ (almost all non-zero) such that

$$\Pi \cong \bigotimes_{v}^{\prime} (\Pi_{v}, \phi_{v}^{\circ})$$

In particular, if $\Pi \subset S_{k,t}$ is an irreducible subrepresentation, get smooth irreducible representations Π_v for every prime v and almost all Π_v are spherical. If U is a subgroup of the form $U_v \times U^v$ with $U_v \subset \operatorname{GL}_2(F_v)$ and $U^v \subset \prod'_{w \neq v} \operatorname{GL}_2(F_w)$ then

 $\Pi^U \cong$ Sum of finitely many copies of $\Pi^{U_v}_v$ as $\mathcal{H}(\mathrm{GL}_2(F_v), U_v)$ representation

Note that $\mathcal{H}(\mathrm{GL}_2(F_v), U_v) \subset \mathcal{H}(\mathrm{GL}_2(\mathbb{A}_{F,f}), U)$