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Let V be an irreducible representation of GL2(F ) which is not one-dimensional. The quantity c = c(V )
occurring in Casselman’s theorem is called the conductor of V . One can show that

c(V ) =


c(χ) + c(ψ) V = I(χ, ψ)

max{1, 2c(γ)} V = St⊗ γ
≥ 2 V supercuspidal.

One can compute the isomorphism class of V from the Hecke operators acting on V Kc c.f. Loeffler–Weinstein
2012.

2 Adèle groups

2.1 Adèles and Idèles of Q
Definition 2.1.1. Define

Af =

′∏
ℓ prime

Qℓ = {(xℓ) ∈
∏
ℓ

Qℓ : xℓ ∈ Zℓ for almost all ℓ}

(almost all = all but finitely many). We define A = Af × R but we won’t use this much.

Topology on Af : open sets are products
∏

ℓ Uℓ of open sets such that Uℓ = Zℓ for almost all ℓ. In
particular

Ẑ := {(xℓ) : xℓ ∈ Zℓ ∀ℓ}
is open in Af and profinite. Thus (Af ,+) is a locally profinite group.

Easy fact: Q is dense in Af (by Chinese remainder theorem).

Definition 2.1.2. The finite idèles are define to be A×
f with the topology given by the inclusion

A×
f ↪→ Af × Af

x 7→ (x, x−1)

(exercise: show this is really different from the subspace topology on Af ). This makes A×
f a locally profinite

group.

Fact: Q× is discrete in A×
f (as Q× ∩ Ẑ× = ±1 is finite).

Proposition 2.1.3. For any U ⊂ A×
f open compact, the quotient A×

f /Q
×
>0U is finite. If U = Ẑ× it is trivial.

Proof. Suffices to prove the second statement. After some unravelling this amounts to the fact that for any
collection of integers np, p prime, with np = 0 for almost all p, there is x ∈ Q×

>0 such that vp(x) = np for all
p (let x =

∏
pnp).

Remark 2.1.4. For any number field F (or even any global field) one can analogously define AF =
∏′

v Fv

where the restricted product is with respect to ÔF = lim←−OF /I.
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2.2 GL2 and SL2

Proposition 2.2.1. For all N ≥ 1, the reduction map

SL2(Z)→ SL2(Z/N)

is surjective.

Proof. Everyone knows how to do this.

Corollary 2.2.2 (Strong approximation). SL2(Q) is dense in SL2(Af ).

Proof. Closure of SL2(Q) contains SL2(Ẑ) by proposition. But Cartan decomposition for SL2(QN ) implies
that

SL2(Af ) = ⊔m≥1SL2(Ẑ)(m m−1 )SL2(Ẑ)

so the closure of SL2(Q) is everything.

Analogue for GL2 fails.

2.3 Modular curves

Let H denote the complex upper half-plane equipped with its usual action of GL2(R)+ by Möbius trans-

formations. Let Γ ⊂ SL2(Z) be a congruence subgroup ( ⇐⇒ closure U = Γ̄ in SL2(Ẑ) is open, and
Γ = U ∩ SL2(Q)).

Proposition 2.3.1. Let U be as above. The double coset space

SL2(Q)\SL2(Af )×H/U

where the action of SL2(Q) is given by the diagonal left action and the action of U is given by the right
action on SL2(Af ), is canonically isomorphic to Γ\H, via τ 7→ (1, τ).

Proof. Given any (g, τ) ∈ SL2(Af ) × H, density of SL2(Q) tells us we have Ug−1 ∩ SL2(Q) ̸= ∅ and thus
there is γ ∈ SL2(Q) such that γg ∈ U . Thus

(g, τ) ∼ (γg, γτ) ∼ (1, γτ).

On the other hand, if (1, τ) ∼ (1, τ ′), then there exists γ ∈ SL2(Q), u ∈ U such that

(1, τ ′) = (γu, γτ)

this implies that γ ∈ U ∩ SL2(Q) = Γ.

We now consider GL2. Strong approximation fails in this case, so adèlic objects give something new. Let
U ⊂ GL2(Af ) open compact, Γ = I ∩GL2(Q)+ doesn’t uniquely determine U . for example, consider

U ={( ∗ ∗
1 ) mod N}

{( 1 ∗
∗ ) mod N}

{( 1 ∗
1 ) mod N}

all satisfy U ∩GL+
2 (Q) = Γ1(N).
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Theorem 2.3.2. Let U ⊂ GL2(Af ) open-compact. Then

Y (U) := GL+
2 (Q)\GL2(Af )×H/U

is a manifold with finitely many connected components, each non-canonically isomorphic to a quotient of H.
More precisely: Let g1, . . . , gn be any set of elements of GL2(Af ) whose determinants are representatives

of A×
f /Q

×
>0 det(U). Then Γi := GL+

2 (Q)∩ giUg−1
i is a subgroup of SL2(Q) commensurable with SL2(Z), and

⊔ni=1Γi\H → Y (U)

τ in ith component 7→ (gi, τ).

Remark 2.3.3. We can also write

Y (U) = GL2(Q)\GL2(Af )× (C− R)/U

The delicate step in the proof of the above theorem is to prove that the map

⊔ni=1Γi\H → Y (U)

is surjective i.e. that
GL2(Af ) = ∪ri=1GL+

2 (Q)giU.

this comes from strong approximation for SL2. In particular: if det(U) = Ẑ×, then

Y (U) = Γ\H,Γ = U ∩GL+
2 (Q)

but there are many U with the same Γ in general if U = {( ∗ ∗
1 ) mod N}, U = {( 1 ∗

∗ ) mod N} then

Y (U), Y (U ′) are both Γ1(N)\H but action of {( x x ) : x ∈ Ẑ×} is different.

3 Modular forms via adèles

3.1 Recap of modular forms

For f : H → C, g ∈ GL+
2 (R), k ∈ Z, t ∈ R, define

(
f |(k,t)g

)
= det(g)t(cτ + d)−kf(

aτ + b

cτ + d
).

where g =
(
a b
c d

)
.

Definition 3.1.1. For Γ ⊂ GL+
2 (Q) commensurable with SL2(Z) (i.e. Γ ∩ SL2(Z) has finite index in Γ and

SL2(Z)) a modular form of level Γ and weight (k, t) is a function f : H → C such that:

• f is holomorphic

• F |k,tγ = f for all γ ∈ Γ.

• (f |k,tγ) (τ) bounded as Imτ →∞ for all Γ ∈ GL+
2 (Q).

If (f |k,tγ) (τ)→ 0 for all γ we say that f is a cusp form. Standard fact: Sk,t(Γ),Mk,t(Γ) are finite dimensional
and there is a natural inner product on Sk,t(Γ).
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3.2 Adèlic picture

Choose (k, t) ∈ Z× R as before.

Definition 3.2.1. An adèlic modular form of weight (k, t) is a function

F : GL2(Af )×H → C

such that

1. F (g, τ) is holomorphic in τ for all g.

2. F (gu, τ) = F (g, τ) for all g ∈ GL2(Af ), τ ∈ H, u ∈ U for some open-compact U (depending on F ).

3. F (γg,−) = F (g,−)|k,tγ−1 for all γ ∈ GL+
2 (Q).

4. For all g ∈ GL2(Af ), F (g, τ) bounded as Im(τ)→∞.

If F (g, τ)→ 0 for all g say F is a cusp form.

This gives spaces Mk,t ⊃ Sk,t which are GL2(Af )-representations.
Fact: These are admissible smooth and if t = k/2, Sk,t is unitarisable i.e. there exists a G-invariant,

conjugate symmetric, positive definite pairing on Sk,k/2.

Proposition 3.2.2. If U ⊂ GL2(Af ) open compact, g1, . . . , gn as before, then

(Sk,t)
U
=

n⊕
i=1

Sk,t(Γi)

via evaluation at g1, . . . , gr (in particular, it’s finite dimensional which implies admissibility). Similary for
Mk,t.

In particular, if U = {( ∗ ∗
1 ) mod N} we recover Sk,t(Γ1(N)) as invariants in an admissible smooth

representation of GL2(Af ).

Proposition 3.2.3. If U1(N) is above subgroup and ϖ = idèle which is 1 at all places except p and a
uniformiser at p, then [U1(N)(ϖ 1 )U1(N)] acts on (Mk,t)

U1(N) as the classical Hecke operator p1−tUp resp
p1−tTp:

[U(ϖ 1 )U ] = p1−t

{
Up p | N
Tp p ∤ N

Proof. Assume p | N first. Then

[U(ϖ 1 )U ]f =
∑

a∈Z/p

(ϖ a
1 )f.

Evaluate at (1, τ): ∑
a

f((ϖ a
1 ), τ) =

∑
a

f(( p a
1 ), τ)

=
∑
a

(
f(1,−)|k,t( p a

1 )
−1

)
(τ)

=
∑
a

p−tf(1,
τ − a
p

)

= p1−tUp(f(1,−))(τ).

Similar when p ∤ N with one extra coset
(
1
ϖp

)
; massage by multiplying on the right by U to get something

in GL+
2 (Q).

Similary [U1(N)(ϖ ϖ )U1(N)], p ∤ N is pk−2t⟨p⟩ (Exercise: what if p | N??), so nebentype character of a
classical modular form encodes the action of the centre.
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4 Multiplicty one

4.1 Restricted tensor products

Recall ’almost all’ = ’all but finitely many’. Let F be a number field.

Definition 4.1.1. Suppose we have a collection of vector spaces Xv for v a prime of F and vectors x◦v ∈ Xv

(non-trivial for most v). Define
⊗′

v (Xv, x
◦
v) as a subspace of

⊗
vXv spanned by tensors ⊗vxv such that

xv = x◦v for almost all v. We will often drop x◦v from the notation and write

′⊗
v

Xv

There are two key examples of this contruction:

• Hecke algebras: Xv = H(GL2(Fv)), x
◦
v = eKv

,Kv = GL2(Ov). Then

′⊗
v

(Xv, x
◦
v) = H(GL2(AF,f ))

• Irreducible representations: Let Π be an irreducible smooth GL2(AF,f )-representation.

Theorem 4.1.2 (Flath’s tensor product theorem). There exist uniquely determined irreducible repre-

sentations Πv ⟳ GL2(Fv) and ϕ
◦
v ∈ (πv)

Kv (almost all non-zero) such that

Π ∼=
′⊗
v

(Πv, ϕ
◦
v) .

In particular, if Π ⊂ Sk,t is an irreducible subrepresentation, get smooth irreducible representations
Πv for every prime v and almost all Πv are spherical. If U is a subgroup of the form Uv × Uv with
Uv ⊂ GL2(Fv) and U

v ⊂
∏′

w ̸=v GL2(Fw) then

ΠU ∼= Sum of finitely many copies of ΠUv
v as H(GL2(Fv), Uv) representation

Note that H(GL2(Fv), Uv) ⊂ H(GL2(AF,f ), U)
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