Reps of GLy lecture 4
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Let V' be an irreducible representation of GLo(F') which is not one-dimensional. The quantity ¢ = ¢(V)
occurring in Casselman’s theorem is called the conductor of V. One can show that

) +e(¥) V=11
(V) = <dmax{1,2¢(y)} V=St®~y
>2 V' supercuspidal.

One can compute the isomorphism class of V' from the Hecke operators acting on V¢ c.f. Loefler-Weinstein
2012.

2 Adele groups

2.1 Adeles and Ideles of Q
Definition 2.1.1. Define

I
Ap= ] Q@ ={()e][Q: z€Z for almost all £}
L

£ prime
almost all = all but finitely many). We define A = X ut we won't use this much.
| 1 1l but finitel We define A=Ay xR b ’ hi h

Topology on Ay: open sets are products [[, Uy of open sets such that U, = Z, for almost all £. In
particular R
Z:={(x¢) : x¢ € Zg YL}

is open in Ay and profinite. Thus (Ay, +) is a locally profinite group.
Easy fact: Q is dense in Ay (by Chinese remainder theorem).

Definition 2.1.2. The finite idéles are define to be A}( with the topology given by the inclusion
A}( — Af X Af
z s (z,z7h)
(exercise: show this is really different from the subspace topology on Af). This makes A? a locally profinite
group.
Fact: Q is discrete in A (as Q% N 7% = 41 is finite).
Proposition 2.1.3. For any U C AJT open compact, the quotient A; JQZ,U is finite. If U = 7% it is trivial.

Proof. Suffices to prove the second statement. After some unravelling this amounts to the fact that for any
collection of integers n,, p prime, with n, = 0 for almost all p, there is € Q% such that v,(z) = n,, for all
p (let z =T]p"). O

Remark 2.1.4. For any number field F' (or even any global field) one can analogously define Ap = H; F,
where the restricted product is with respect to Op = @OF/I.



2.2 GL;y and SL,
Proposition 2.2.1. For all N > 1, the reduction map
SLs(Z) — SLo(Z/N)
18 surjective.
Proof. Everyone knows how to do this. O
Corollary 2.2.2 (Strong approximation). SL2(Q) is dense in SLa(Af).

Proof. Closure of SLy(Q) contains SL(Z) by proposition. But Cartan decomposition for SLy(Qn) implies
that
SLa(Af) = Um>1SLa(Z)(™ -1 )SLa(2)

so the closure of SLy(Q) is everything. O

Analogue for GL; fails.

2.3 Modular curves

Let H denote the complex upper half-plane equipped with its usual action of GLy(R)™ by Mobius trans-
formations. Let T' C SLy(Z) be a congruence subgroup ( <= closure U = T in SLy(Z) is open, and
I' =UNSLy(Q)).

Proposition 2.3.1. Let U be as above. The double coset space
SLa(Q)\SL2(Af) x H/U

where the action of SLy(Q) is given by the diagonal left action and the action of U is given by the right
action on SLa(Ay), is canonically isomorphic to T\H, via T — (1, 7).

Proof. Given any (g,7) € SLa(Af) x H, density of SL2(Q) tells us we have Ug~! N SLy(Q) # 0 and thus
there is v € SL2(Q) such that vg € U. Thus

(9,7) ~ (vg,77) ~ (L,77).
On the other hand, if (1,7) ~ (1,7"), then there exists v € SL2(Q), u € U such that
(1,7') = (yu,y7)
this implies that v € U N SLo(Q) =T O

We now consider GLs. Strong approximation fails in this case, so adelic objects give something new. Let
U C GL2(Af) open compact, I' = I N GL2(Q)" doesn’t uniquely determine U. for example, consider

all satisfy U N GLg (Q) = I'1(N).



Theorem 2.3.2. Let U C GLa(Ay) open-compact. Then
Y(U) == GL3 (Q)\GLa(Af) x H/U

is a manifold with finitely many connected components, each non-canonically isomorphic to a quotient of H.
More precisely: Let g1, ..., g, be any set of elements of GL2(Ay) whose determinants are representatives
of AT /QZ,det(U). ThenT; := GLF (Q)NgUg; " is a subgroup of SL2(Q) commensurable with SLy(Z), and

U TA\H — Y(U)

T in ith component — (g;, 7).
Remark 2.3.3. We can also write
Y (U) = GL2(Q)\GL2(Af) x (C—R)/U
The delicate step in the proof of the above theorem is to prove that the map
U Ti\H — Y (U)

is surjective i.e. that
GLa(Ay) = Ui GL3 (Q)g:U.

this comes from strong approximation for SLs. In particular: if det(U) = 7%, then
Y(U)=T\H,T =UnGL3(Q)

but there are many U with the same T' in general if U = {(*}) mod N},U = {(') mod N} then
Y (U),Y(U’) are both I'1 (N)\H but action of {(* ) : x € Z*} is different.

3 Modular forms via adéles

3.1 Recap of modular forms
For f:H — C,g € GL$ (R),k € Z,t € R, define

ar +b
ct+d

(fltk.pyg) = det(g)* (e +d) ™" f( )-

where g = (‘éd).

Definition 3.1.1. For I' € GL3 (Q) commensurable with SLy(Z) (i.e. T' N SLy(Z) has finite index in I and
SL2(Z)) a modular form of level I' and weight (k,t) is a function f : H — C such that:

e f is holomorphic
o Flpyy=fforalyel.
e (flk.ty) (1) bounded as Im7 — oo for all ' € GL3 (Q).

If (f|r7y) (1) — O for all v we say that f is a cusp form. Standard fact: Sk ¢(I"), My (T') are finite dimensional
and there is a natural inner product on S (T').



3.2 Adelic picture
Choose (k,t) € Z x R as before.
Definition 3.2.1. An adelic modular form of weight (k,t) is a function
F:GLy(Ap) xH—C
such that
1. F(g,7) is holomorphic in 7 for all g.
2. F(gu,7) = F(g,7) for all g € GLa(Af), 7 € H,u € U for some open-compact U (depending on F).

3. F(yvg,—) = F(g,—)|x.cy~* for all vy € GL3 (Q).
4. For all g € GLy(Ay), F(g,7) bounded as Im(7) — oo.
If F(g,7) — 0 for all g say F' is a cusp form.

This gives spaces My ; O Sk which are GLy(A f)-representations.
Fact: These are admissible smooth and if ¢t = k/2, Sy is unitarisable i.e. there exists a G-invariant,
conjugate symmetric, positive definite pairing on Sy, 1 /2.

Proposition 3.2.2. If U C GLa(Ay) open compact, g1,...,gn as before, then

(Ska)” = P Ska(T)
=1

via evaluation at g1,...,g, (in particular, it’s finite dimensional which implies admissibility). Similary for
My +.
In particular, if U = {(*}) mod N} we recover Si+(I'1(N)) as invariants in an admissible smooth

representation of GLa(Ay).

Proposition 3.2.3. If Ui(N) is above subgroup and w = idéle which is 1 at all places except p and a
uniformiser at p, then [U;(N)(® 1)U1(N)] acts on (My, ;)"*(N) as the classical Hecke operator p*~tU, resp
P T,

Up pIN

[U(wnm:plt{T N

Proof. Assume p | N first. Then

Evaluate at (1, 7):

P
=p' " Up(f(1,-)(7).

Similar when p t N with one extra coset ( ! @p ); massage by multiplying on the right by U to get something
in GLJ (Q). O

Similary [Uy(N)(“ 5 )Ui(N)],pt N is p"~2!(p) (Exercise: what if p | N??), so nebentype character of a
classical modular form encodes the action of the centre.



4 Multiplicty one

4.1 Restricted tensor products
Recall ’almost all” = ’all but finitely many’. Let F' be a number field.

Definition 4.1.1. Suppose we have a collection of vector spaces X, for v a prime of F' and vectors =5 € X,
(non-trivial for most v). Define & (X,, %) as a subspace of &, X, spanned by tensors ®,z,, such that
x, = Ty, for almost all v. We will often drop x5 from the notation and write

!
®.
v
There are two key examples of this contruction:

e Hecke algebras: X, = H(GL2(F,)), =) = ek, , K, = GL2(O,). Then

/

&) (Xo,23) = H(GLz(Ary))

v

o Irreducible representations: Let II be an irreducible smooth GLa (A f)-representation.

Theorem 4.1.2 (Flath’s tensor product theorem). There exist uniquely determined irreducible repre-
sentations 11, O GLy(F,) and ¢° € (m,)™" (almost all non-zero) such that

/

= @) (I, 6).

v

In particular, if II C Si; is an irreducible subrepresentation, get smooth irreducible representations
IT, for every prime v and almost all II, are spherical. If U is a subgroup of the form U, x U" with
U, C GLy(F,) and U" C [T, 4, GLa(F,,) then

MY = Sum of finitely many copies of TIY* as H(GLy(F,),U,) representation

Note that H(GLQ(FU), UU) C /H(GLg(AF,f), U)
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