
Reps of GL2 lecture 5

1 Multiplicity one continued

1.1 Global Kirillov models
Sk,t as before and let F = Q.

Definition 1.1.1. For f ∈ Sk,t, let ϕf be the function on A×
f defined by

ϕf (x) = coefficient of e2πiτ in Fourier expansion of f(( x 1 ), τ)

where we note that the Fourier expansion can involve e2πaτ for a /∈ Z.

Proposition 1.1.2. 1. ϕf supported in A×
f ∩ (compact set in Af ).

2. For n ∈ Q×
>0

ϕf (nx) = n−tan (f((
x

1 ), τ))

= n−t(coefficient of e2πinτ in f(( x 1 ), τ))

3. ϕ( a b
1 )f

(x) = θ(bx)ϕf (ax) where θ : Af → C× is the unique smooth character such that θ(x) =

e−2πix, x ∈ Q (note that Af/Ẑ = Q/Z).

4. f 7→ ϕf is injective.

Proof. 1. Very similar to local version

2. Look at how ( n 1 ) acts.

3. Formal if bx ∈ Q and follows for all b via strong approximation (smooth characters are locally constant).

4. Clear from 2. that ϕf determines f(( x 1 ), τ) for all x, τ . But
(

A×
f

1

)
contains a set of representatives

for GL+
2 (Q)\GL2(Af )/U for any open U .

Now let Π be an irreducible subrepresentation of Sk,t (a cupsidal automorphic representation of GL2(Af ))
of weight k, t.

Proposition 1.1.3. 1. Have Π =
⊗′

ℓ Πℓ, where Πℓ is infinite dimensional irreducible representation of
GL2(Qℓ).

2. Consider the space
K(Π) = {ϕf : f ∈ Π}

then K(Π) ∼=
⊗′

ℓ K(Πℓ, θℓ) via the map sending ϕ⊗xℓ
7→

⊗
ℓ ϕxℓ

.
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Corollary 1.1.4. Let Π1,Π2 be two cuspidal automorphic representations of weight (k, t) such that

Π1
∼= Π2

as GL2(Af )-representations. Then Π1 = Π2.

Proof. Uniqueness of Kirillov model means that if Π1,ℓ
∼= Π2,ℓ then K(Π1,ℓ, θℓ) and K(Π2,ℓ, θℓ) are the same

function spaces on Q×
ℓ . If this holds for all ℓ then K(Π1) = K(Π2). Since we can recover the function f

from ϕf we get that Π1 = Π2 as function spaces inside Sk,t.

Theorem 1.1.5. (Strong multiplicity one) Let Π1,Π2 be cuspidal automorphic representations of same
weight as before. Suppose Π1,ℓ

∼= Π2,ℓ for almost all ℓ. Then Π1 = Π2.

Proof. Choose a finite set of primes S containing all ℓ such that Π1,ℓ ̸= Π2,ℓ. For ℓ ∈ S let ϕℓ,1 = 1Z×
ℓ

∈
K(Π1,ℓ, θℓ), which we can do since C∞

c (Gℓ) ⊂ K(Π1,ℓ, θℓ). For ℓ /∈ S choose any ϕℓ ∈ K(Π1,ℓ) = K(Π2,ℓ)
with almost all equal to the spherical vector. Then ϕ = ⊗ℓϕℓ ∈ K(Π1) ∩ K(Π2). Since Π1 and Π2 are
irreducible and

Sk,t ↪→ (functions on A×
f )

this shows Π1 ∩Π2 ̸= 0 =⇒ Π1 = Π2.

Remark 1.1.6. • Ramakrishnan has shown that if Π1 ̸= Π2 then {ℓ : Π1,ℓ
∼= Π2,ℓ} has density ≤ 7/8.

• The analogue of multiplicity one for SL2 is true but the naïve analogue of strong multiplicity one is
false.

1.2 Concrete consequences of multiplicity one
Proposition 1.2.1.

Sk,t =
⊕

Π CAR
weight (k, t)

Π

Proof. By twisting can assume t = k/2. Then

Sk,t unitarisable =⇒ direct sum of irreducibles

and by multiplicity one each summand appears only once.

This also shows summands are orthogonal. For each Π, let c(Π) =
∏

ℓ ℓ
c(πℓ). By Casselman’s theorem

dimCΠ
U1(N) =

{
0 if c(Π) ∤ N
# of divisors of N/c(Π) otherwise.

In particular, for N = c(Π), ΠU1(N) is one-dimensional.

Proposition 1.2.2. This gives a bijection

(CARs of weight (k, t)) ∼= (Normalised newforms in Sk,t(Γ1(N)) for some N)

Π 7→ modular form spanning ΠU1(N), N = c(Π).

Proof. Given a CAR Π, let fΠ be any generator of ΠU1(N). Then fΠ(1,−) is a modular form of level N = c(Π)
and is an eigenvector for Tℓ, Uℓ operators because these are double cosets (ϖℓ

1 ) up to scaling. Without loss
of generality we can assume a1(fΠ) = 1 and fΠ is new because Π is orthogonal to all CARs of conductor
< c(Π).
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Upshot: Sk(Γ1(N)) decomposes as ⊕
Π CAR of conductor c(Π) ∤ N

Sk(Γ1(N))[Π]

with each summand spanned by f(dτ) for d | N/c(Π) and if f1, f2 are two normlaised newforms such that
aℓ(f1) ̸= aℓ(f2) for infinitely many prime ℓ. Note that if fπ is the newvector of Π =

⊗′
ℓ Πℓ, then for all

ℓ ∤ (level of fΠ) we have Πℓ
∼= I(αℓ, βℓ) with αℓ, βℓ unramified characters sending ℓ to roots of

X2 − aℓ(fΠ
ℓt−1/2

+ ℓk−2tε(ℓ)

where ε is the character of fΠ.

1.3 Twisting
Recall that a Dirichlet character is a homomorphism

χ : (Z/NZ)× → C×.

We can inflate a Dirichlet character to a smooth character of A×
f /Q× be pulling back along the natural

quotient map Ẑ× → (Z/NZ)×. If χ is such a character, Π an automorphic representation, then can form
Π⊗ (χ ◦ det) which we usually just refer to as Π⊗ χ

Proposition 1.3.1. Π⊗ χ is automorphic of same weight as Π.

Proof. Let f ∈ Π. Consider
(g, τ) 7→ χ(det(g))f(g, τ).

This is clearly in Sk,t and generates a representation isomorphic to Π⊗ χ.

¡BUT! this function evaluated at (1, τ) is just f ! So both give the same element of Sk(Γ1(N)). What’s
going on here? f ∈ Sk(Γ1(N)) extends uniquely to f ∈ S

U1(N)
k,t but there are lots of other subgroups of

GL2(Af ) extending Γ1(N)!

Proposition 1.3.2. If Π CAR then the space of functions on H, {f(1, τ) | f ∈ Π} is spanned by all the
GL+

2 (Q) translates of fΠ⊗χ for χ a Dirichlet character.

Proof. Without loss of generality f ∈ Π invariant under M = {( 1 ∗
1 ) mod N} for some N . Decompose ΠM

as a representation of
(
Ẑ×

1

)
then χ-eigenspace gives functions whose restrictions are GL+

2 (Q) translates of
fΠ⊗χ.

2 Eisenstein series
Let Ek,t be the orthogonal complement of Sk,t in Mk,t.

2.1 Reminders
Γ ⊂ SL2(Q) commensurable with SL2(Z).

Definition 2.1.1. The cusps of Γ are the finite set

C(Γ) = Γ-orbits on P1(Q).

We say a cusp c ∈ C(Γ) is irregular if StabΓ(c) contains an element conjugate to
(−1 ∗

−1

)
for some ∗.

Otherwise all elements of the stabiliser are conjugate to ( 1 ∗
1 ) and the cusp is called regular. If −1 ∈ Γ then

all cusps are irregular!.
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Let
Ek(Γ) = {f ∈ Mk(Γ) | ⟨f, g⟩ = 0 for all g ∈ Sk(Γ)}.

Any f ∈ Ek(Γ) has values f(c) ∈ C for c ∈ C(Γ) which gives an injection

Ek(Γ) ↪→ C · C(Γ)

sending f 7→ (f(c))c∈C(Γ).
Fact: If k is odd, f(c) = 0 for all irregular cusps, so

Ek(Γ) ↪→ Creg(Γ)

Proposition 2.1.2. 1. If k ≥ 3, then the map

Ek(Γ) →

{
C · C(Γ) if k even
C · Creg(Γ) if k odd

is a bijection.

2. If k = 2, cokernel is one-dimenisonal with unique relation being∑
c

width(c) · f(c) = 0

for all f ∈ E2(Γ).

Proof. Explicit series computations.

2.2 Ek,t as a representation of GL2

Definition 2.2.1. For f ∈ Ek,t let
α(f) = f(1,∞)

where we are using that f is a modular form and therefore has a well-defined value at the cusp at infinity.

Proposition 2.2.2. 1. If a, d ∈ Q×, ad > 0, then

α(( a d )f) = dk(ad)−tα(f)

2. If x ∈ Af , α(( 1 x
1 )f) = α(f)

Proof. First is easy check, second is clear if x ∈ Q and rest follows from strong approximation.

Notation: For x ∈ Af let ∥x∥ =
∏

ℓ |xℓ|ℓ. Easy check, if x ∈ Q× then ∥x∥ = | 1x |.
For χ1, χ2 finite order characters of A×

f /Q
×
>0, define

αχ1,χ2(f) =

∫
(A×

f /Q×
>0)

2
χ1(a)

−1χ2(d) ∥d/a∥k/2 α(( a d )f)d(a)d(d)

(here we take t = k/2). Then αχ1,χ2
is identically zero unless

χ1(−1) = χ2(−1)(−1)k.

αχ1,χ2
is a homomorphism of B(Af )-representations

Ek,k/2 →
(
χ, ∥·∥k/2

)
⊠
(
χ2, ∥·∥−k/2

)
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or equivalently a homomorphism of GL2(Af )-representations

Ek,k/2 → Ind
GL2(Af )

B(Af )
(above character)

=

′⊗
ℓ

I
(
| · |(k−1)/2χ1,ℓ, | · |(1−k)/2χ2,ℓ

)
where the tensorands are irreducible for all ℓ if k ̸= 2.

Proposition 2.2.3. 1. If k ≥ 3, then the map

Ek,k/2 →
⊕

(χ1,χ2):χ1(−1)χ2(−1)=(−1)k

′⊗
ℓ

I(...)

is an isomorphism.

2. If k = 2, the map is injective and its image is the kernel of the maps

I(χ ∥·∥1/2 , χ ∥·∥−1/2
) → (χ ◦ det)

for pairs of the form χ, χ

Proof. Injectivity: f ∈ Ek,k/2 maps to 0 if and only if α(gf) = 0. But this says f(g,∞) = 0 for all g. Replace
g with γg, γ ∈ GL+

2 (Q) which implies f(g, γ−1∞) = 0 for all g, γ, which implies f ∈ Sk,t ∩ Ek,t = 0.
Surjectivity unravels to statement in classical theory about existence of Eisenstein series with specified

values at the cusps.

Upshot: If k ≥ 3 Ek,t is a summand of distrinct, irredcible, generic (no one-dimensional local factors)
representations of GL2(Af ) =⇒ oldform/newform theory works as it should. If k = 2 weird stuff happens:
old and new subspaces not disjoint etc.

Remark 2.2.4. • Weight 1 works but need to use unordered pairs of characters.

• Can ‘put back’ missing factors by using nearly holomorphic modular forms.
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