Reps of GL_{2} lecture 5

1 Multiplicity one continued

1.1 Global Kirillov models

$S_{k, t}$ as before and let $F=\mathbb{Q}$.
Definition 1.1.1. For $f \in S_{k, t}$, let ϕ_{f} be the function on \mathbb{A}_{f}^{\times}defined by

$$
\phi_{f}(x)=\text { coefficient of } e^{2 \pi i \tau} \text { in Fourier expansion of } f\left(\left({ }^{x}{ }_{1}\right), \tau\right)
$$

where we note that the Fourier expansion can involve $e^{2 \pi a \tau}$ for $a \notin \mathbb{Z}$.
Proposition 1.1.2. 1. ϕ_{f} supported in $\mathbb{A}_{f}^{\times} \cap$ (compact set in $\left.\mathbb{A}_{f}\right)$.
2. For $n \in \mathbb{Q}_{>0}^{\times}$

$$
\begin{aligned}
\phi_{f}(n x) & =n^{-t} a_{n}\left(f\left(\left({ }^{x}{ }_{1}\right), \tau\right)\right) \\
& =n^{-t}\left(\text { coefficient of } e^{2 \pi i n \tau} \text { in } f\left(\left({ }^{x}{ }_{1}\right), \tau\right)\right)
\end{aligned}
$$

3. $\left.\phi_{\left(\begin{array}{c}a b\end{array}\right) f} \begin{array}{l}\text { b }\end{array}\right)=\theta(b x) \phi_{f}(a x)$ where $\theta: \mathbb{A}_{f} \rightarrow \mathbb{C}^{\times}$is the unique smooth character such that $\theta(x)=$ $e^{-2 \pi i x}, x \in \mathbb{Q}$ (note that $\left.\mathbb{A}_{f} / \hat{\mathbb{Z}}=\mathbb{Q} / \mathbb{Z}\right)$.
4. $f \mapsto \phi_{f}$ is injective.

Proof. 1. Very similar to local version
2. Look at how (${ }^{n}{ }_{1}$) acts.
3. Formal if $b x \in \mathbb{Q}$ and follows for all b via strong approximation (smooth characters are locally constant).
4. Clear from 2. that ϕ_{f} determines $f\left(\left(\begin{array}{ll}x & 1\end{array}\right), \tau\right)$ for all x, τ. But $\left(\begin{array}{ll}\mathbb{A}_{f}^{\times} & \\ & 1\end{array}\right)$ contains a set of representatives for $\mathrm{GL}_{2}^{+}(\mathbb{Q}) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{f}\right) / U$ for any open U.

Now let Π be an irreducible subrepresentation of $S_{k, t}$ (a cupsidal automorphic representation of $\left.\mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)\right)$ of weight k, t.

Proposition 1.1.3. 1. Have $\Pi=\bigotimes_{\ell}^{\prime} \Pi_{\ell}$, where Π_{ℓ} is infinite dimensional irreducible representation of $\mathrm{GL}_{2}\left(\mathbb{Q}_{\ell}\right)$.
2. Consider the space

$$
K(\Pi)=\left\{\phi_{f}: f \in \Pi\right\}
$$

then $K(\Pi) \cong \bigotimes_{\ell}^{\prime} K\left(\Pi_{\ell}, \theta_{\ell}\right)$ via the map sending $\phi_{\otimes x_{\ell}} \mapsto \bigotimes_{\ell} \phi_{x_{\ell}}$.

Corollary 1.1.4. Let Π_{1}, Π_{2} be two cuspidal automorphic representations of weight (k, t) such that

$$
\Pi_{1} \cong \Pi_{2}
$$

as $\mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)$-representations. Then $\Pi_{1}=\Pi_{2}$.
Proof. Uniqueness of Kirillov model means that if $\Pi_{1, \ell} \cong \Pi_{2, \ell}$ then $K\left(\Pi_{1, \ell}, \theta_{\ell}\right)$ and $K\left(\Pi_{2, \ell}, \theta_{\ell}\right)$ are the same function spaces on $\mathbb{Q}_{\ell}^{\times}$. If this holds for all ℓ then $K\left(\Pi_{1}\right)=K\left(\Pi_{2}\right)$. Since we can recover the function f from ϕ_{f} we get that $\Pi_{1}=\Pi_{2}$ as function spaces inside $S_{k, t}$.

Theorem 1.1.5. (Strong multiplicity one) Let Π_{1}, Π_{2} be cuspidal automorphic representations of same weight as before. Suppose $\Pi_{1, \ell} \cong \Pi_{2, \ell}$ for almost all ℓ. Then $\Pi_{1}=\Pi_{2}$.

Proof. Choose a finite set of primes S containing all ℓ such that $\Pi_{1, \ell} \neq \Pi_{2, \ell}$. For $\ell \in S$ let $\phi_{\ell, 1}=\mathbb{1}_{\mathbb{Z}_{\ell}} \in$ $K\left(\Pi_{1, \ell}, \theta_{\ell}\right)$, which we can do since $C_{c}^{\infty}\left(G_{\ell}\right) \subset K\left(\Pi_{1, \ell}, \theta_{\ell}\right)$. For $\ell \notin S$ choose any $\phi_{\ell} \in K\left(\Pi_{1, \ell}\right)=K\left(\Pi_{2, \ell}\right)$ with almost all equal to the spherical vector. Then $\phi=\otimes_{\ell} \phi_{\ell} \in K\left(\Pi_{1}\right) \cap K\left(\Pi_{2}\right)$. Since Π_{1} and Π_{2} are irreducible and

$$
S_{k, t} \hookrightarrow\left(\text { functions on } \mathbb{A}_{f}^{\times}\right)
$$

this shows $\Pi_{1} \cap \Pi_{2} \neq 0 \Longrightarrow \Pi_{1}=\Pi_{2}$.
Remark 1.1.6. - Ramakrishnan has shown that if $\Pi_{1} \neq \Pi_{2}$ then $\left\{\ell: \Pi_{1, \ell} \cong \Pi_{2, \ell}\right\}$ has density $\leq 7 / 8$.

- The analogue of multiplicity one for SL_{2} is true but the naïve analogue of strong multiplicity one is false.

1.2 Concrete consequences of multiplicity one

Proposition 1.2.1.

Proof. By twisting can assume $t=k / 2$. Then

$$
S_{k, t} \text { unitarisable } \Longrightarrow \text { direct sum of irreducibles }
$$

and by multiplicity one each summand appears only once.
This also shows summands are orthogonal. For each Π, let $c(\Pi)=\prod_{\ell} \ell^{c\left(\pi_{\ell}\right)}$. By Casselman's theorem

$$
\operatorname{dim}_{\mathbb{C}} \Pi^{U_{1}(N)}= \begin{cases}0 & \text { if } c(\Pi) \nmid N \\ \# \text { of divisors of } N / c(\Pi) & \text { otherwise }\end{cases}
$$

In particular, for $N=c(\Pi), \Pi^{U_{1}(N)}$ is one-dimensional.
Proposition 1.2.2. This gives a bijection

$$
\begin{aligned}
(\text { CARs of weight }(k, t)) & \cong\left(\text { Normalised newforms in } S_{k, t}\left(\Gamma_{1}(N)\right) \text { for some } N\right) \\
\Pi & \mapsto \text { modular form spanning } \Pi^{U_{1}(N)}, N=c(\Pi) .
\end{aligned}
$$

Proof. Given a CAR Π, let f_{Π} be any generator of $\Pi^{U_{1}(N)}$. Then $f_{\Pi}(1,-)$ is a modular form of level $N=c(\Pi)$ and is an eigenvector for T_{ℓ}, U_{ℓ} operators because these are double cosets (${ }^{\omega_{\ell}}{ }_{1}$) up to scaling. Without loss of generality we can assume $a_{1}\left(f_{\Pi}\right)=1$ and f_{Π} is new because Π is orthogonal to all CARs of conductor $<c(\Pi)$.

Upshot: $S_{k}\left(\Gamma_{1}(N)\right)$ decomposes as

$$
\bigoplus_{\Pi \text { CAR of conductor } c(\Pi) \nmid N} S_{k}\left(\Gamma_{1}(N)\right)[\Pi]
$$

with each summand spanned by $f(d \tau)$ for $d \mid N / c(\Pi)$ and if f_{1}, f_{2} are two normlaised newforms such that $a_{\ell}\left(f_{1}\right) \neq a_{\ell}\left(f_{2}\right)$ for infinitely many prime ℓ. Note that if f_{π} is the newvector of $\Pi=\bigotimes_{\ell}^{\prime} \Pi_{\ell}$, then for all $\ell \nmid$ (level of $\left.f_{\Pi}\right)$ we have $\Pi_{\ell} \cong I\left(\alpha_{\ell}, \beta_{\ell}\right)$ with $\alpha_{\ell}, \beta_{\ell}$ unramified characters sending ℓ to roots of

$$
X^{2}-\frac{a_{\ell}\left(f_{\Pi}\right.}{\ell^{t-1 / 2}}+\ell^{k-2 t} \varepsilon(\ell)
$$

where ε is the character of f_{Π}.

1.3 Twisting

Recall that a Dirichlet character is a homomorphism

$$
\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}
$$

We can inflate a Dirichlet character to a smooth character of $\mathbb{A}_{f}^{\times} / \mathbb{Q}^{\times}$be pulling back along the natural quotient map $\hat{\mathbb{Z}}^{\times} \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$. If χ is such a character, Π an automorphic representation, then can form $\Pi \otimes(\chi \circ$ det $)$ which we usually just refer to as $\Pi \otimes \chi$
Proposition 1.3.1. $\Pi \otimes \chi$ is automorphic of same weight as Π.
Proof. Let $f \in \Pi$. Consider

$$
(g, \tau) \mapsto \chi(\operatorname{det}(g)) f(g, \tau)
$$

This is clearly in $S_{k, t}$ and generates a representation isomorphic to $\Pi \otimes \chi$.
¡BUT! this function evaluated at $(1, \tau)$ is just f ! So both give the same element of $S_{k}\left(\Gamma_{1}(N)\right)$. What's going on here? $f \in S_{k}\left(\Gamma_{1}(N)\right)$ extends uniquely to $f \in S_{k, t}^{U_{1}(N)}$ but there are lots of other subgroups of $\mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)$ extending $\Gamma_{1}(N)$!

Proposition 1.3.2. If $\Pi C A R$ then the space of functions on $\mathcal{H},\{f(1, \tau) \mid f \in \Pi\}$ is spanned by all the $\mathrm{GL}_{2}^{+}(\mathbb{Q})$ translates of $f_{\Pi \otimes \chi}$ for χ a Dirichlet character.

Proof. Without loss of generality $f \in \Pi$ invariant under $M=\left\{\left(\begin{array}{cc}1 & * \\ 1\end{array}\right) \bmod N\right\}$ for some N. Decompose Π^{M} as a representation of $\left(\hat{\mathbb{Z}}^{\times}{ }_{1}\right)$ then χ-eigenspace gives functions whose restrictions are $\mathrm{GL}_{2}^{+}(\mathbb{Q})$ translates of $f_{\Pi \otimes \chi}$.

2 Eisenstein series

Let $\mathcal{E}_{k, t}$ be the orthogonal complement of $S_{k, t}$ in $M_{k, t}$.

2.1 Reminders

$\Gamma \subset \mathrm{SL}_{2}(\mathbb{Q})$ commensurable with $\mathrm{SL}_{2}(\mathbb{Z})$.
Definition 2.1.1. The cusps of Γ are the finite set

$$
C(\Gamma)=\Gamma \text {-orbits on } \mathbb{P}^{1}(\mathbb{Q}) .
$$

We say a cusp $c \in C(\Gamma)$ is irregular if $\operatorname{Stab}_{\Gamma}(c)$ contains an element conjugate to $\left(\begin{array}{cc}-1 & * \\ -1\end{array}\right)$ for some *. Otherwise all elements of the stabiliser are conjugate to $\binom{1}{$\hline} and the cusp is called regular. If $-1 \in \Gamma$ then all cusps are irregular!.

Let

$$
\mathcal{E}_{k}(\Gamma)=\left\{f \in M_{k}(\Gamma) \mid\langle f, g\rangle=0 \text { for all } g \in S_{k}(\Gamma)\right\}
$$

Any $f \in \mathcal{E}_{k}(\Gamma)$ has values $f(c) \in \mathbb{C}$ for $c \in C(\Gamma)$ which gives an injection

$$
\mathcal{E}_{k}(\Gamma) \hookrightarrow \mathbb{C} \cdot C(\Gamma)
$$

sending $f \mapsto(f(c))_{c \in C(\Gamma)}$.
Fact: If k is odd, $f(c)=0$ for all irregular cusps, so

$$
\mathcal{E}_{k}(\Gamma) \hookrightarrow \mathbb{C}_{\mathrm{reg}}(\Gamma)
$$

Proposition 2.1.2. 1. If $k \geq 3$, then the map

$$
\mathcal{E}_{k}(\Gamma) \rightarrow \begin{cases}\mathbb{C} \cdot C(\Gamma) & \text { if } k \text { even } \\ \mathbb{C} \cdot C_{\mathrm{reg}}(\Gamma) & \text { if } k \text { odd }\end{cases}
$$

is a bijection.
2. If $k=2$, cokernel is one-dimenisonal with unique relation being

$$
\sum_{c} \operatorname{width}(\mathrm{c}) \cdot f(c)=0
$$

for all $f \in \mathcal{E}_{2}(\Gamma)$.
Proof. Explicit series computations.

$2.2 \mathcal{E}_{k, t}$ as a representation of GL_{2}

Definition 2.2.1. For $f \in \mathcal{E}_{k, t}$ let

$$
\alpha(f)=f(1, \infty)
$$

where we are using that f is a modular form and therefore has a well-defined value at the cusp at infinity.
Proposition 2.2.2. 1. If $a, d \in \mathbb{Q}^{\times}, a d>0$, then

$$
\alpha\left(\binom{a}{d} f\right)=d^{k}(a d)^{-t} \alpha(f)
$$

2. If $x \in \mathbb{A}_{f}, \alpha\left(\left(\begin{array}{cc}1 & x \\ 1\end{array}\right) f\right)=\alpha(f)$

Proof. First is easy check, second is clear if $x \in \mathbb{Q}$ and rest follows from strong approximation.
Notation: For $x \in \mathbb{A}_{f}$ let $\|x\|=\prod_{\ell}\left|x_{\ell}\right|_{\ell}$. Easy check, if $x \in \mathbb{Q}^{\times}$then $\|x\|=\left|\frac{1}{x}\right|$.
For χ_{1}, χ_{2} finite order characters of $\mathbb{A}_{f}^{\times} / \mathbb{Q}_{>0}^{\times}$, define

$$
\alpha_{\chi_{1}, \chi_{2}}(f)=\int_{\left(\mathbb{A}_{f}^{\times} / \mathbb{Q}_{>0}^{\times}\right)^{2}} \chi_{1}(a)^{-1} \chi_{2}(d)\|d / a\|^{k / 2} \alpha\left(\binom{a}{d} f\right) d(a) d(d)
$$

(here we take $t=k / 2$). Then $\alpha_{\chi_{1}, \chi_{2}}$ is identically zero unless

$$
\chi_{1}(-1)=\chi_{2}(-1)(-1)^{k} .
$$

$\alpha_{\chi_{1}, \chi_{2}}$ is a homomorphism of $B\left(\mathbb{A}_{f}\right)$-representations

$$
\mathcal{E}_{k, k / 2} \rightarrow\left(\chi,\|\cdot\|^{k / 2}\right) \boxtimes\left(\chi_{2},\|\cdot\|^{-k / 2}\right)
$$

or equivalently a homomorphism of $\mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)$-representations

$$
\begin{aligned}
\mathcal{E}_{k, k / 2} & \rightarrow \operatorname{Ind}_{B\left(\mathbb{A}_{f}\right)}^{\mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)}(\text { above character }) \\
& =\bigotimes_{\ell}^{\prime} I\left(|\cdot|^{(k-1) / 2} \chi_{1, \ell},|\cdot|^{(1-k) / 2} \chi_{2, \ell}\right)
\end{aligned}
$$

where the tensorands are irreducible for all ℓ if $k \neq 2$.
Proposition 2.2.3. 1. If $k \geq 3$, then the map

$$
\mathcal{E}_{k, k / 2} \rightarrow \bigoplus_{\left(\chi_{1}, \chi_{2}\right): \chi_{1}(-1) \chi_{2}(-1)=(-1)^{k}} \bigotimes_{\ell}^{\prime} I(\ldots)
$$

is an isomorphism.
2. If $k=2$, the map is injective and its image is the kernel of the maps

$$
I\left(\chi\|\cdot\|^{1 / 2}, \chi\|\cdot\|^{-1 / 2}\right) \rightarrow(\chi \circ \operatorname{det})
$$

for pairs of the form χ, χ
Proof. Injectivity: $f \in \mathcal{E}_{k, k / 2}$ maps to 0 if and only if $\alpha(g f)=0$. But this says $f(g, \infty)=0$ for all g. Replace g with $\gamma g, \gamma \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ which implies $f\left(g, \gamma^{-1} \infty\right)=0$ for all g, γ, which implies $f \in S_{k, t} \cap \mathcal{E}_{k, t}=0$.

Surjectivity unravels to statement in classical theory about existence of Eisenstein series with specified values at the cusps.

Upshot: If $k \geq 3 \mathcal{E}_{k, t}$ is a summand of distrinct, irredcible, generic (no one-dimensional local factors) representations of $\mathrm{GL}_{2}\left(\mathbb{A}_{f}\right) \Longrightarrow$ oldform/newform theory works as it should. If $k=2$ weird stuff happens: old and new subspaces not disjoint etc.

Remark 2.2.4. - Weight 1 works but need to use unordered pairs of characters.

- Can 'put back' missing factors by using nearly holomorphic modular forms.

