Reps of GLjy lecture 5

1 Multiplicity one continued

1.1 Global Kirillov models
Skt as before and let F' = Q.

Definition 1.1.1. For f € Sk, let ¢4 be the function on Ajf defined by
¢(w) = coefficient of €™ in Fourier expansion of f((*),7)

where we note that the Fourier expansion can involve ™7 for a ¢ Z.

Proposition 1.1.2. 1. ¢y supported in A? N (compact set in Ay ).

2. Forn € Q%,

by (nz) = n~a, (((* 1).7))
= n""(coefficient of *™" in f((*1),T))
3. ¢(a 11,>f(x) = 0(bx)¢s(ax) where 8 : Ay — C* is the unique smooth character such that 6(z) =
e~ € Q (note that Af/Z =Q/Z).

4. [+ ¢ is injective.
Proof. 1. Very similar to local version

2. Look at how (™ ;) acts.

3. Formal if bz € Q and follows for all b via strong approximation (smooth characters are locally constant).

4. Clear from 2. that ¢; determines f((* ), 7) for all z, 7. But (A? 1) contains a set of representatives

for GL3 (Q)\GL2(Af)/U for any open U.
O

Now let IT be an irreducible subrepresentation of Sy ; (a cupsidal automorphic representation of GLa(Af))
of weight k,t.

Proposition 1.1.3. 1. Have Il = ®; II,, where I1; is infinite dimensional irreducible representation of

GL2(Qp).

2. Consider the space
K(M) ={¢s: fell}

then K(I1) = @), K (I, ;) via the map sending dgz, — Q; Gu, -



Corollary 1.1.4. Let I14,II5 be two cuspidal automorphic representations of weight (k,t) such that
I1; 211,
as GLa(Ay)-representations. Then II; = II,.

Proof. Uniqueness of Kirillov model means that if IT; , = II5 ; then K (IIy ¢, 6;) and K (I3 ¢, 6;) are the same
function spaces on Q. If this holds for all ¢ then K (II;) = K(IIy). Since we can recover the function f
from ¢ we get that II; = Il as function spaces inside Sy, ;. O]

Theorem 1.1.5. (Strong multiplicity one) Let 111,11y be cuspidal automorphic representations of same
weight as before. Suppose I1; , = 1y ¢ for almost all £. Then II; = 1I,.

Proof. Choose a finite set of primes .S containing all £ such that II; ;, # II5 . For £ € S let ¢p1 = ]lsz €
K(IIy ¢, 0¢), which we can do since C°(Gy) C K(Il1 ¢,6;). For £ ¢ S choose any ¢, € K(II; o) = K(Il24)
with almost all equal to the spherical vector. Then ¢ = ®p¢p € K(II3) N K(Il3). Since II; and I are
irreducible and

Skt < (functions on A;)

this shows II; N1l # 0 = II; = Ils. O
Remark 1.1.6. e Ramakrishnan has shown that if IIy # IIo then {¢: II; , = II, ;} has density < 7/8.
e The analogue of multiplicity one for SLs is true but the naive analogue of strong multiplicity one is
false.
1.2 Concrete consequences of multiplicity one

Proposition 1.2.1.
Sk,t == @ H
I CAR

A
weight (k,t)

Proof. By twisting can assume ¢t = k/2. Then
Sk,+ unitarisable == direct sum of irreducibles
and by multiplicity one each summand appears only once. O
This also shows summands are orthogonal. For each I, let ¢(IT) = [, £¢(™). By Casselman’s theorem

0 if (1)t N

dimeITV* ) =
# of divisors of N/c(Il) otherwise.

In particular, for N = ¢(II), IY*(Y) is one-dimensional.
Proposition 1.2.2. This gives a bijection
(CARs of weight (k,t)) = (Normalised newforms in Sy ((T'1(N)) for some N)
I — modular form spanning IIV*Y) | N = c(1D).
Proof. Given a CARTI, let fi1 be any generator of ITV*(N). Then fi;(1, —) is a modular form of level N = ¢(IT)
and is an eigenvector for Ty, U, operators because these are double cosets (** ;) up to scaling. Without loss

of generality we can assume a1(fr1) = 1 and fi1 is new because II is orthogonal to all CARs of conductor
< ¢(I). O



Upshot: Si(T'1(N)) decomposes as

&b Sk(T1(N))[]

II CAR of conductor ¢(II) { N

with each summand spanned by f(d7) for d | N/c(II) and if fi, fo are two normlaised newforms such that
a¢(f1) # ae(f2) for infinitely many prime ¢. Note that if f, is the newvector of II = ®; IT;, then for all
21 (level of fr) we have I, = I(ay, B¢) with ay, B¢ unramified characters sending £ to roots of

X2 - Zf_(f/r; 0

where ¢ is the character of fig.

1.3 Twisting
Recall that a Dirichlet character is a homomorphism
x:(Z/NZ)* — C*.

We can inflate a Dirichlet character to a smooth character of A; /Q* be pulling back along the natural

quotient map Z* — (Z/NZ)*. If x is such a character, IT an automorphic representation, then can form
IT ® (x o det) which we usually just refer to as II ® x

Proposition 1.3.1. II ® x is automorphic of same weight as II.

Proof. Let f € II. Consider
(9,7) = x(det(9))f (g, 7).

This is clearly in Si ; and generates a representation isomorphic to IT ® . O

iBUT! this function evaluated at (1,7) is just f! So both give the same element of Si(I'1(V)). What’s
going on here? f € Si(I'1(NN)) extends uniquely to f € S,th(N) but there are lots of other subgroups of
GL2(Af) extending I'1 (N)!

Proposition 1.3.2. IfII CAR then the space of functions on H, {f(1,7) | f € I} is spanned by all the
GL3 (Q) translates of frigy for x a Dirichlet character.

Proof. Without loss of generality f € II invariant under M = {(! %) mod N} for some N. Decompose [T
as a representation of (ZX 1) then y-eigenspace gives functions whose restrictions are GLJ (Q) translates of

fH®x- O

2 Eisenstein series

Let &+ be the orthogonal complement of S, ; in My, ;.

2.1 Reminders
I’ C SL3(Q) commensurable with SLa(Z).
Definition 2.1.1. The cusps of T" are the finite set
C(T') = I'-orbits on P}(Q).
We say a cusp ¢ € C(T') is irregular if Stabp(c) contains an element conjugate to (~' * ) for some .

Otherwise all elements of the stabiliser are conjugate to (! 1) and the cusp is called regular. If —1 € T' then
all cusps are irregular!.



Let
E(T) ={f € My(T') | (f,9) = 0 for all g € Si(I")}.

Any f € &(T) has values f(c) € C for ¢ € C(T") which gives an injection
&) —=C-CT)

sending f — (f(c))cec(r)-
Fact: If k is odd, f(¢) =0 for all irregular cusps, so

Ep(T) = Creg(T)

Proposition 2.1.2. 1. If k > 3, then the map

.CO(T ;
£4(T) — Cc-c(m) ka even
C-Creg(T) if k odd
is a bijection.

2. If k =2, cokernel is one-dimenisonal with unique relation being
> width(c) - f(c) =0
C

for all f € &(T).

Proof. Explicit series computations. [

2.2 &, as a representation of GL,

Definition 2.2.1. For f € &4 let
a(f) = f(1,00)

where we are using that f is a modular form and therefore has a well-defined value at the cusp at infinity.

Proposition 2.2.2. 1. If a,d € Q*,ad > 0, then

2. If v € Ay, a((19)f) = a(f)

Proof. First is easy check, second is clear if x € Q and rest follows from strong approximation. O

Notation: For z € Ay let ||z|| = ], |z¢|¢. Easy check, if € Q* then ||z|| = |2].
For x1, X2 finite order characters of A? /QZ,, define

« = (@) Ty all*/? a(( @ a
xixa (f) /(A,?/Qio)QX (a)” xa(d) [[d/a]™" a((“ 4) f)d(a)d(d)

here we take ¢t = k£/2). Then o is identically zero unless
X1,X2 y

xi(=1) = Xz(—l)(—l)k~

Qy, y» 18 @ homomorphism of B(A)-representations

Ek ke — (Xv ||'Hk/2> IX (XQ’ H'“_km)



or equivalently a homomorphism of GLa(A f)-representations

Epij2 — Indgxi‘?f)(above character)

!/
=R (\ D2y |<1fk>/2xg7e)
4

where the tensorands are irreducible for all ¢ if k £ 2.

Proposition 2.2.3. 1. If k > 3, then the map

Sk’k/g — @ ®I()

(x1:x2)xa(=Dx2(-1)=(-1* ¢
is an isomorphism.

2. If k =2, the map is injective and its image is the kernel of the maps
1/2 —-1/2
IOCII2 X IHI72) = (o det)

for pairs of the form x, x

Proof. Injectivity: f € & 1/2 maps to 0 if and only if a(gf) = 0. But this says f(g,00) = 0 for all g. Replace

g with vg, v € GL (Q) which implies f(g,7 'c0) = 0 for all g,~, which implies f € Sy ;N & = 0.
Surjectivity unravels to statement in classical theory about existence of Eisenstein series with specified

values at the cusps. O

Upshot: If k > 3 & is a summand of distrinct, irredcible, generic (no one-dimensional local factors)
representations of GLa(Ay) = oldform/newform theory works as it should. If £ = 2 weird stuff happens:
old and new subspaces not disjoint etc.

Remark 2.2.4. e Weight 1 works but need to use unordered pairs of characters.

e Can ‘put back’ missing factors by using nearly holomorphic modular forms.
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