Reps of GL_2 lecture 5

1 Multiplicity one continued

1.1 Global Kirillov models

 $S_{k,t}$ as before and let $F = \mathbb{Q}$.

Definition 1.1.1. For $f \in S_{k,t}$, let ϕ_f be the function on \mathbb{A}_f^{\times} defined by

 $\phi_f(x) = \text{coefficient of } e^{2\pi i \tau} \text{ in Fourier expansion of } f(\left(\begin{smallmatrix} x & \\ & 1 \end{smallmatrix}\right), \tau)$

where we note that the Fourier expansion can involve $e^{2\pi a\tau}$ for $a \notin \mathbb{Z}$.

Proposition 1.1.2. *1.* ϕ_f supported in $\mathbb{A}_f^{\times} \cap (compact \ set \ in \ \mathbb{A}_f)$.

2. For $n \in \mathbb{Q}_{>0}^{\times}$

$$\begin{split} \phi_f(nx) &= n^{-t} a_n \left(f(\left(\begin{smallmatrix} x \\ 1 \end{smallmatrix}\right), \tau) \right) \\ &= n^{-t} (\text{coefficient of } e^{2\pi i n \tau} \text{ in } f(\left(\begin{smallmatrix} x \\ 1 \end{smallmatrix}\right), \tau)) \end{split}$$

- 3. $\phi_{\begin{pmatrix} a & b \\ 1 \end{pmatrix} f}(x) = \theta(bx)\phi_f(ax)$ where $\theta : \mathbb{A}_f \to \mathbb{C}^{\times}$ is the unique smooth character such that $\theta(x) = e^{-2\pi i x}, x \in \mathbb{Q}$ (note that $\mathbb{A}_f/\hat{\mathbb{Z}} = \mathbb{Q}/\mathbb{Z}$).
- 4. $f \mapsto \phi_f$ is injective.

Proof. 1. Very similar to local version

- 2. Look at how $\binom{n}{1}$ acts.
- 3. Formal if $bx \in \mathbb{Q}$ and follows for all b via strong approximation (smooth characters are locally constant).
- 4. Clear from 2. that ϕ_f determines $f(\begin{pmatrix} x \\ 1 \end{pmatrix}, \tau)$ for all x, τ . But $\begin{pmatrix} \mathbb{A}_f^{\times} \\ & 1 \end{pmatrix}$ contains a set of representatives for $\operatorname{GL}_2^+(\mathbb{Q})\backslash\operatorname{GL}_2(\mathbb{A}_f)/U$ for any open U.

Now let Π be an irreducible subrepresentation of $S_{k,t}$ (a cupsidal automorphic representation of $\operatorname{GL}_2(\mathbb{A}_f)$) of weight k, t.

- **Proposition 1.1.3.** 1. Have $\Pi = \bigotimes_{\ell}^{\prime} \Pi_{\ell}$, where Π_{ℓ} is infinite dimensional irreducible representation of $\operatorname{GL}_2(\mathbb{Q}_{\ell})$.
 - 2. Consider the space

$$K(\Pi) = \{\phi_f : f \in \Pi\}$$

then $K(\Pi) \cong \bigotimes_{\ell}' K(\Pi_{\ell}, \theta_{\ell})$ via the map sending $\phi_{\otimes x_{\ell}} \mapsto \bigotimes_{\ell} \phi_{x_{\ell}}$.

Corollary 1.1.4. Let Π_1, Π_2 be two cuspidal automorphic representations of weight (k, t) such that

 $\Pi_1 \cong \Pi_2$

as $\operatorname{GL}_2(\mathbb{A}_f)$ -representations. Then $\Pi_1 = \Pi_2$.

Proof. Uniqueness of Kirillov model means that if $\Pi_{1,\ell} \cong \Pi_{2,\ell}$ then $K(\Pi_{1,\ell}, \theta_\ell)$ and $K(\Pi_{2,\ell}, \theta_\ell)$ are the same function spaces on $\mathbb{Q}_{\ell}^{\times}$. If this holds for all ℓ then $K(\Pi_1) = K(\Pi_2)$. Since we can recover the function f from ϕ_f we get that $\Pi_1 = \Pi_2$ as function spaces inside $S_{k,t}$.

Theorem 1.1.5. (Strong multiplicity one) Let Π_1, Π_2 be cuspidal automorphic representations of same weight as before. Suppose $\Pi_{1,\ell} \cong \Pi_{2,\ell}$ for almost all ℓ . Then $\Pi_1 = \Pi_2$.

Proof. Choose a finite set of primes S containing all ℓ such that $\Pi_{1,\ell} \neq \Pi_{2,\ell}$. For $\ell \in S$ let $\phi_{\ell,1} = \mathbb{1}_{\mathbb{Z}_{\ell}^{\times}} \in K(\Pi_{1,\ell}, \theta_{\ell})$, which we can do since $C_c^{\infty}(G_{\ell}) \subset K(\Pi_{1,\ell}, \theta_{\ell})$. For $\ell \notin S$ choose any $\phi_{\ell} \in K(\Pi_{1,\ell}) = K(\Pi_{2,\ell})$ with almost all equal to the spherical vector. Then $\phi = \otimes_{\ell} \phi_{\ell} \in K(\Pi_1) \cap K(\Pi_2)$. Since Π_1 and Π_2 are irreducible and

$$S_{k,t} \hookrightarrow (\text{functions on } \mathbb{A}_f^{\times})$$

this shows $\Pi_1 \cap \Pi_2 \neq 0 \implies \Pi_1 = \Pi_2$.

Remark 1.1.6. • Ramakrishnan has shown that if $\Pi_1 \neq \Pi_2$ then $\{\ell : \Pi_{1,\ell} \cong \Pi_{2,\ell}\}$ has density $\leq 7/8$.

• The analogue of multiplicity one for SL₂ is true but the naïve analogue of strong multiplicity one is false.

1.2 Concrete consequences of multiplicity one

Proposition 1.2.1.

$$S_{k,t} = \bigoplus_{\substack{\Pi \ CAR \\ weight \ (k,t)}} \Pi$$

Proof. By twisting can assume t = k/2. Then

 $S_{k,t}$ unitarisable \implies direct sum of irreducibles

and by multiplicity one each summand appears only once.

This also shows summands are orthogonal. For each Π , let $c(\Pi) = \prod_{\ell} \ell^{c(\pi_{\ell})}$. By Casselman's theorem

$$\dim_{\mathbb{C}} \Pi^{U_1(N)} = \begin{cases} 0 & \text{if } c(\Pi) \nmid N \\ \# \text{ of divisors of } N/c(\Pi) & \text{otherwise.} \end{cases}$$

In particular, for $N = c(\Pi)$, $\Pi^{U_1(N)}$ is one-dimensional.

Proposition 1.2.2. This gives a bijection

$$(CARs \text{ of weight } (k,t)) \cong (Normalised newforms in S_{k,t}(\Gamma_1(N)) \text{ for some } N)$$

 $\Pi \mapsto modular \text{ form spanning } \Pi^{U_1(N)}, N = c(\Pi).$

Proof. Given a CAR II, let f_{Π} be any generator of $\Pi^{U_1(N)}$. Then $f_{\Pi}(1, -)$ is a modular form of level $N = c(\Pi)$ and is an eigenvector for T_{ℓ}, U_{ℓ} operators because these are double cosets $\begin{pmatrix} \varpi_{\ell} \\ 1 \end{pmatrix}$ up to scaling. Without loss of generality we can assume $a_1(f_{\Pi}) = 1$ and f_{Π} is new because Π is orthogonal to all CARs of conductor $< c(\Pi)$.

.

Upshot: $S_k(\Gamma_1(N))$ decomposes as

$$\bigoplus_{\Pi \text{ CAR of conductor } c(\Pi) \nmid N} S_k(\Gamma_1(N))[\Pi]$$

with each summand spanned by $f(d\tau)$ for $d \mid N/c(\Pi)$ and if f_1, f_2 are two normalised newforms such that $a_{\ell}(f_1) \neq a_{\ell}(f_2)$ for infinitely many prime ℓ . Note that if f_{π} is the newvector of $\Pi = \bigotimes_{\ell}' \Pi_{\ell}$, then for all $\ell \nmid$ (level of f_{Π}) we have $\Pi_{\ell} \cong I(\alpha_{\ell}, \beta_{\ell})$ with $\alpha_{\ell}, \beta_{\ell}$ unramified characters sending ℓ to roots of

$$X^2 - \frac{a_\ell (f_{\Pi})}{\ell^{t-1/2}} + \ell^{k-2t} \varepsilon(\ell)$$

where ε is the character of f_{Π} .

1.3 Twisting

Recall that a Dirichlet character is a homomorphism

$$\chi: \left(\mathbb{Z}/N\mathbb{Z}\right)^{\times} \to \mathbb{C}^{\times}.$$

We can inflate a Dirichlet character to a smooth character of $\mathbb{A}_f^{\times}/\mathbb{Q}^{\times}$ be pulling back along the natural quotient map $\hat{\mathbb{Z}}^{\times} \to (\mathbb{Z}/N\mathbb{Z})^{\times}$. If χ is such a character, Π an automorphic representation, then can form $\Pi \otimes (\chi \circ \det)$ which we usually just refer to as $\Pi \otimes \chi$

Proposition 1.3.1. $\Pi \otimes \chi$ is automorphic of same weight as Π .

Proof. Let $f \in \Pi$. Consider

$$(g, \tau) \mapsto \chi(\det(g))f(g, \tau).$$

This is clearly in $S_{k,t}$ and generates a representation isomorphic to $\Pi \otimes \chi$.

BUT! this function evaluated at $(1, \tau)$ is just f! So both give the same element of $S_k(\Gamma_1(N))$. What's going on here? $f \in S_k(\Gamma_1(N))$ extends uniquely to $f \in S_{k,t}^{U_1(N)}$ but there are lots of other subgroups of $\operatorname{GL}_2(\mathbb{A}_f)$ extending $\Gamma_1(N)$!

Proposition 1.3.2. If Π CAR then the space of functions on \mathcal{H} , $\{f(1,\tau) \mid f \in \Pi\}$ is spanned by all the $\operatorname{GL}_2^+(\mathbb{Q})$ translates of $f_{\Pi \otimes \chi}$ for χ a Dirichlet character.

Proof. Without loss of generality $f \in \Pi$ invariant under $M = \{\begin{pmatrix} 1 & * \\ 1 & \end{pmatrix} \mod N\}$ for some N. Decompose Π^M as a representation of $(\hat{\mathbb{Z}}_{1}^{\times})$ then χ -eigenspace gives functions whose restrictions are $\operatorname{GL}_{2}^{+}(\mathbb{Q})$ translates of $f_{\Pi\otimes\chi}$.

2 Eisenstein series

Let $\mathcal{E}_{k,t}$ be the orthogonal complement of $S_{k,t}$ in $M_{k,t}$.

2.1 Reminders

 $\Gamma \subset \mathrm{SL}_2(\mathbb{Q})$ commensurable with $\mathrm{SL}_2(\mathbb{Z})$.

Definition 2.1.1. The *cusps* of Γ are the finite set

$$C(\Gamma) = \Gamma$$
-orbits on $\mathbb{P}^1(\mathbb{Q})$.

We say a cusp $c \in C(\Gamma)$ is *irregular* if $\operatorname{Stab}_{\Gamma}(c)$ contains an element conjugate to $\begin{pmatrix} -1 & * \\ & -1 \end{pmatrix}$ for some *. Otherwise all elements of the stabiliser are conjugate to $\begin{pmatrix} 1 & * \\ & 1 \end{pmatrix}$ and the cusp is called *regular*. If $-1 \in \Gamma$ then all cusps are irregular!.

Let

$$\mathcal{E}_k(\Gamma) = \{ f \in M_k(\Gamma) \mid \langle f, g \rangle = 0 \text{ for all } g \in S_k(\Gamma) \}.$$

Any $f \in \mathcal{E}_k(\Gamma)$ has values $f(c) \in \mathbb{C}$ for $c \in C(\Gamma)$ which gives an injection

$$\mathcal{E}_k(\Gamma) \hookrightarrow \mathbb{C} \cdot C(\Gamma)$$

sending $f \mapsto (f(c))_{c \in C(\Gamma)}$.

Fact: If k is odd, f(c) = 0 for all irregular cusps, so

$$\mathcal{E}_k(\Gamma) \hookrightarrow \mathbb{C}_{\mathrm{reg}}(\Gamma)$$

Proposition 2.1.2. 1. If $k \ge 3$, then the map

$$\mathcal{E}_k(\Gamma) \to \begin{cases} \mathbb{C} \cdot C(\Gamma) & \text{if } k \text{ even} \\ \mathbb{C} \cdot C_{\mathrm{reg}}(\Gamma) & \text{if } k \text{ odd} \end{cases}$$

is a bijection.

2. If k = 2, cokernel is one-dimensional with unique relation being

$$\sum_{c} \text{width}(c) \cdot f(c) = 0$$

for all $f \in \mathcal{E}_2(\Gamma)$.

Proof. Explicit series computations.

2.2 $\mathcal{E}_{k,t}$ as a representation of GL_2

Definition 2.2.1. For $f \in \mathcal{E}_{k,t}$ let

$$\alpha(f) = f(1,\infty)$$

where we are using that f is a modular form and therefore has a well-defined value at the cusp at infinity.

Proposition 2.2.2. 1. If $a, d \in \mathbb{Q}^{\times}$, ad > 0, then

$$\alpha((\begin{smallmatrix} a \\ d \end{smallmatrix})f) = d^k(ad)^{-t}\alpha(f)$$

2. If $x \in \mathbb{A}_f$, $\alpha((\begin{smallmatrix} 1 & x \\ 1 & 1 \end{smallmatrix})f) = \alpha(f)$

Proof. First is easy check, second is clear if $x \in \mathbb{Q}$ and rest follows from strong approximation.

Notation: For $x \in \mathbb{A}_f$ let $||x|| = \prod_{\ell} |x_{\ell}|_{\ell}$. Easy check, if $x \in \mathbb{Q}^{\times}$ then $||x|| = |\frac{1}{x}|$. For χ_1, χ_2 finite order characters of $\mathbb{A}_f^{\times}/\mathbb{Q}_{>0}^{\times}$, define

$$\alpha_{\chi_1,\chi_2}(f) = \int_{\left(\mathbb{A}_f^{\times}/\mathbb{Q}_{>0}^{\times}\right)^2} \chi_1(a)^{-1}\chi_2(d) \left\|d/a\right\|^{k/2} \alpha(\binom{a}{d})f) d(a) d(d)$$

(here we take t = k/2). Then α_{χ_1,χ_2} is identically zero unless

$$\chi_1(-1) = \chi_2(-1)(-1)^k$$

 α_{χ_1,χ_2} is a homomorphism of $B(\mathbb{A}_f)$ -representations

$$\mathcal{E}_{k,k/2} \to \left(\chi, \left\|\cdot\right\|^{k/2}\right) \boxtimes \left(\chi_2, \left\|\cdot\right\|^{-k/2}\right)$$

or equivalently a homomorphism of $GL_2(\mathbb{A}_f)$ -representations

$$\mathcal{E}_{k,k/2} \to \operatorname{Ind}_{B(\mathbb{A}_f)}^{\operatorname{GL}_2(\mathbb{A}_f)} (\text{above character}) \\ = \bigotimes_{\ell}' I\left(|\cdot|^{(k-1)/2} \chi_{1,\ell}, |\cdot|^{(1-k)/2} \chi_{2,\ell}\right)$$

where the tensorands are irreducible for all ℓ if $k \neq 2$.

Proposition 2.2.3. 1. If $k \ge 3$, then the map

$$\mathcal{E}_{k,k/2} \to \bigoplus_{(\chi_1,\chi_2):\chi_1(-1)\chi_2(-1)=(-1)^k} \bigotimes_{\ell}' I(\ldots)$$

is an isomorphism.

2. If k = 2, the map is injective and its image is the kernel of the maps

$$I(\chi \|\cdot\|^{1/2}, \chi \|\cdot\|^{-1/2}) \to (\chi \circ \det)$$

for pairs of the form χ, χ

Proof. Injectivity: $f \in \mathcal{E}_{k,k/2}$ maps to 0 if and only if $\alpha(gf) = 0$. But this says $f(g, \infty) = 0$ for all g. Replace g with $\gamma g, \gamma \in \mathrm{GL}_2^+(\mathbb{Q})$ which implies $f(g, \gamma^{-1}\infty) = 0$ for all g, γ , which implies $f \in S_{k,t} \cap \mathcal{E}_{k,t} = 0$.

Surjectivity unravels to statement in classical theory about existence of Eisenstein series with specified values at the cusps. $\hfill \square$

Upshot: If $k \ge 3$ $\mathcal{E}_{k,t}$ is a summand of distrinct, irredcible, generic (no one-dimensional local factors) representations of $\operatorname{GL}_2(\mathbb{A}_f) \implies \operatorname{oldform/newform}$ theory works as it should. If k = 2 weird stuff happens: old and new subspaces not disjoint etc.

• Weight 1 works but need to use unordered pairs of characters.

• Can 'put back' missing factors by using *nearly holomorphic* modular forms.