Reps of GLy lecture 3

1 Hecke algebras continued

As usual we let F' be a non-archimedean local field and G = GLo(F).
Recall that we defined the K-Hecke algebra H(G, K) for any open compact subgroup K C G. If V €
Smog; is irreducible, then VX is a simple H(G, K)-module or 0.

Theorem 1.0.1 (Bushnell and Henniart §4.3). This gives a bijection

{Irreducible V such that VX # 0}/ =— {Simple H(G, K)-modules}/ =

1.1 Spherical Hecke algebras

We take G = GLy(F), K = GL2(0O). By the Cartan decomposition the spherical Hecke algebra H(G, K) is
spanned by the elements

[K(7 o) K]

w

for a,b € Z, so to reduce notation we’ll write the above double coset as [( " _»)]- Let

S=("%),T=(71)
Theorem 1.1.1. We have the following ring isomorphism

H(G,K)=C[S, S, T).
In particular, the spherical Hecke algebra is commutative.
Proof. Let Ag = C[S,S™!] be the central subring of H(G, K). We set

A, = C-span of [(wa wb)] such that 0 <a—-b<n
= Ag-span of [(wa 1)] such that 0 < a <n

Lemma 1.1.2. For alln > 1, there is ¢ > 1 such that

T+[(=" )] =c[(="" )] mod A,

Proof. Any double coset in the support of 7% [(#" | )] has determinant @™+ up to units (c.f. the definition
of ¢;) and is in My,2(O) so it is either [(="™" )] or (= o) fora+b=mn+1a>0b>1 the former is
definitely in the support, so ¢ # 0 and the latter is in A,,_; for all a,b. O

We now claim that A,, is spanned as an Ap-module by (1,7,...,7™) and that these are Ap-linearly
independent. This is clear for n = 0,1 and follows for all n by induction using the above lemma. O



1.2 Unramified principal series

Let x, % be smooth unramfied characters of F'* (i.e. restricton to O* is trivial, ergo they are of the form
x(x) = o’ gp(a) = ) where a = x(w), f = P(w)).

Proposition 1.2.1. I(x,¥)¥X is one-dimensional and S acts as a8, T as ¢"/*(a+ B).

Proof. Since G = BK by the Iwasawa decomposition, I(—)® has dimension < 1 for any x,. However, we
can write down an element fpn € I(x, %) given by

Feon(Bk) = 5[/ *x(@)0(d)

for b= (“4), which is well defined since if b € K then a,d € O* so x(a),1(d) and |%|'/? are all trivial (here
we use that x, ¢ are unramified). This gives an isomorphism

I, )" = (xRy)PnE

The action of S is clear (since S is central). We then have

(T fa)) = [ T(0)a- fn) 1y
1

= N(K)/K(w )k fspn(9)

> fanlg)dg
g€k (¥ | )K/K

> Faon((F )+ fepn((P )

a€0/p
then fsph((w (11)) = qil/zafSph(l) and fSph<(1 w)) = ql/zﬂfsph(l)a S0 (T * fSph)(l) = (Q(qilmfsph(l)) +
q1/2ﬂ)fsph(]-) O

Equivalently, consider ‘Satake polynomial’

X2 ¢ '?TX + S € H(G, K)[X]

then a, 3 are the roots of the Satake polynomial acting on I(y,)%.

Corollary 1.2.2. Every irreducible representation V of G such that VE # 0 is one of the following:

e I(x,%) for some unramified x,v satisfying x/v # | - |*!

e One-dimensional representations x o det for x unramified.

Proof. These exhaust all possible simple H (G, K)-modules (since H(G, K) is commutative all simple modules
are one-dimensional). More explicitly, a simple H (G, K)-module is given by a homomorphism 6 : H(G, K) —
C. Under the isomorphism H (G, K) = C[S, S~!,T] this corresponds to choosing values v = 0(S),d = 6(T).
By considering the polynomial

X?—q ' P5X 4+

we see there exist complex numbers a, 3 such that v = a3, = ¢*/?(a + 8). When o/ # ¢! these
correspond to spherical principal series representations. Otherwise its not hard to see that these correspond
to representations of the second type. O



1.3 The Iwahori Hecke algebra

Let I ={(2%) € K : c € p}, the Twahori subgroup of G.

Proposition 1.3.1. 1. If V = I(x,%) for x,% unramified, x/v # | - |, then V! is two-dimensional.
2. U := [I(® 1)I] acts with eigenvalues {q*/?a, ¢*/?B}

Proof. Assume that o # 3. I has two orbits on P*(O) (lift the Bruhat decomposition for GLy(k)), represented
by 1 and w = (; ') we therefore have the following decomposition

vI— (X X ¢5—1/2)Bm ® (X X w5—1/2)Bmw1w*1

which is two-dimensional. We compute that if f € V7,

(=D f= Y f(T1)

a€O/p
=q-q¢ Paf(l)

so evaluation at 1 is a non-zero linear functional on V' factoring through projection to the U = ¢'/2a

eigenspace. By symmetry, ¢'/23 eigenspace is also non-zero. If a = 3, U acts with matrix ¢*/2(* 1) (in

particular, not semisimply). O

2 Local new vectors

2.1 Statement

Let V' be an irreducible representation of G. Assume V is not one-dimensional. Let K, = {g € K : g =
(*71) mod "} (some maniacs might refer to this as a mirahoric subgroup).

Theorem 2.1.1 (Casselman). 1. There is n such that VE» #£0

2. If ¢ is the smallest such n such that VE» #£ 0 then VE» is one-dimensional. Let v be any basis vector
for this space (new vector).

3. For alln > ¢, VE» has dimension n — c+ 1 and {(1 on )v :0<a<n-—c} is a basis of VEn.

2.2 The Kirillov model
As usual, let N = {(11)} = (F,+).

Lemma 2.2.1. 1. Let 0 # W € Smoy. Then there exists a character  : N — C*, and ¢ € Hompy (W, 6)
such that ¢ # 0. Moreover, for any non-zero w € W there is i and 0, as above such that ¥ (w) # 0

2. For'V as in the previous theorem, VN = 0.
Proof. 1. this reduces to showing that for all Ny open-compact there is 6 such that
po(w) := 0(n)~*nwdn # 0.
No

Let N1 C Ny be an open-compact subgroup fixing w. Then w generates a non-trivial finite dimensional
complex representation of the finite abelian group Ny/N; and we observe that the map pg is the
projection to the #-isotypic component in this representation. As Ny/N; is abelian there must be a
character occurring as an irreducible component in this representation.



2. See Bump Proposition 4.4.6

The following is often called the ‘local multiplicity one’ theorem.

Theorem 2.2.2 (Kirillov). For any non-trivial character 6 of N
dimHomy (V,0) =1

Proofs are in Bump or Jacquet—Langlands.
Fix any non-trivial character 6, then every other character of N is of the form x +— 6(ax) for some a € F.

Definition 2.2.3. Fix a basis A of Homy (V,8). For v € V, let ¢, be the function on F* defined by

the Kirillov function of v. We write
K(V,0)={¢, :veV}.

One should think of this as a ‘Fourier coefficient’ of V.

Proposition 2.2.4. 1. Ifv eV, (a Z) € B, then

bx ar

¢(a Z)U(CU) = Wv(d)e(g)fﬁv(g)
where wy s the central character of V.
vV > ¢y 1S an injection.
Any ¢ € K(V) is supported on F* N (compact set in F)
K(V) > C=(F™)

v o e

K(V)/C(F*) is finite-dimensional and is 0 if and only if V' is supercuspidal.

Remark 2.2.5. 1. and 4. imply that all supercuspidal representations are isomorphic as reps of (*7)
(mirabolic subgroup).

Proof. 1. Immediate from definitions

2. If ¢, = 0, then ¢ (v) = 0 for all homomorphisms v to non-trivial characters of N. Let w = nv—v,n € N.

This now dies in every N character quotient which implies w = 0 by the lemma, which implies that
ve VN =o.

3. Since V is smooth, v = (1 ¥)v for some b # 0, s0 ¢, (z) = 0(bx)p,(x) for all x. For v(x) < 0,6(bx) # 1,
S0 ¢, (x) must be zero.

4. We first show that K(N)/K(N) N C is finite-dimensional: consider V(N) = (n-v—v:v € V,n €
N) C V so that Vy = V/V(N) is finite dimensional (and trivial for V supercuspidal). Hence V(N) # 0.
We compute that QS( 1 b)va(x) = (0(bzx) — 1)¢,(x) and since for v(z) > 0 we have 0(bx) — 1 =0 we

1

conclude that ¢, € C° for v € V().

5. Since V(N) # 0, K(V)NCX(F*) # 0 but C°(F*) is irreducible as a B-representation.



2.3 Proof of Casselman’s theorem

Proposition 2.3.1. Forn € Z let N,, = {(L ) : z € p"}. then N,, and Ko, := (OX (;OX ) generate K,, for
n >0 and if n < —1 they generate a group containing SLa(F)

Proof. Exercise. O

Now let V' be as in the theorem, v — ¢, a Kirillov model and we take the character 6 to be trivial on O
but not on w1 because we can. It’s then an easy exercise to show that:
ve VEx «— ¢, supported on O and constant on cosets of O*

veVEr «— peVE>andve V™ forn>0

and if v € VE= N V-1 then v = 0.
Lemma 2.3.2 (Key Lemma). (' _) maps VE» to a subspace of VEn+1 of codimension < 1.

Proof. 1f VEn+1 and ¢, (1) = 0 then ¢, is identically zero on O*. Hence (' _ )_lv corresponds to a function
on F* supported on O and stable under scaling by O and thus preserved by Ko, and also stable under
N,, therefore (1 _) 'v € VEn. So the subspace of VE=+1 such that ¢,(1) = 0 is in the image of (1 _) on
VEn, O

Proof of Casselman’s theorem. Let ¢ = min{n : VE» £ 0}. The Key Lemma implies that V= is one
dimensional and if v is a basis then ¢,(1) # 0 (exercise!) which implies that the codimension in the Key
Lemma is 1 for all n > ¢ and v is a basis of VEn+1 /{image of V&= by (1 _)}. O
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