Reps of GL_2 lecture 3

1 Hecke algebras continued

As usual we let F be a non-archimedean local field and $G = GL_2(F)$.

Recall that we defined the K-Hecke algebra $\mathcal{H}(G, K)$ for any open compact subgroup $K \subset G$. If $V \in \underline{Smo}_G$ is irreducible, then V^K is a simple $\mathcal{H}(G, K)$ -module or 0.

Theorem 1.0.1 (Bushnell and Henniart §4.3). This gives a bijection

{Irreducible V such that $V^K \neq 0$ } $\cong \{$ Simple $\mathcal{H}(G, K)$ -modules $\} \cong$

1.1 Spherical Hecke algebras

We take $G = GL_2(F)$, $K = GL_2(\mathcal{O})$. By the Cartan decomposition the spherical Hecke algebra $\mathcal{H}(G, K)$ is spanned by the elements

$$\left[K\left(\begin{smallmatrix}\varpi^a\\&\varpi^b\end{smallmatrix}\right)K\right]$$

for $a, b \in \mathbb{Z}$, so to reduce notation we'll write the above double coset as $\left[\begin{pmatrix} \varpi^a & \\ & \pi^b \end{pmatrix}\right]$. Let

$$S = (\begin{smallmatrix} \varpi & \\ \varpi & \end{smallmatrix}), T = (\begin{smallmatrix} \varpi & \\ 1 \end{smallmatrix})$$

Theorem 1.1.1. We have the following ring isomorphism

$$\mathcal{H}(G,K) \cong \mathbb{C}[S,S^{-1},T].$$

In particular, the spherical Hecke algebra is commutative.

Proof. Let $A_0 = \mathbb{C}[S, S^{-1}]$ be the central subring of $\mathcal{H}(G, K)$. We set

$$A_n = \mathbb{C}\text{-span of } \left[\left(\begin{smallmatrix} \varpi^a \\ \varpi^b \end{smallmatrix} \right) \right] \text{ such that } 0 \le a - b \le n$$
$$= A_0 \text{-span of } \left[\left(\begin{smallmatrix} \varpi^a \\ 1 \end{smallmatrix} \right) \right] \text{ such that } 0 \le a \le n$$

Lemma 1.1.2. For all $n \ge 1$, there is $c \ge 1$ such that

$$T * [\left(\begin{smallmatrix} \varpi^n \\ 1 \end{smallmatrix} \right)] = c[\left(\begin{smallmatrix} \varpi^{n+1} \\ 1 \end{smallmatrix} \right)] \mod A_{n-1}$$

Proof. Any double coset in the support of $T * [\begin{pmatrix} \varpi^n \\ 1 \end{pmatrix}]$ has determinant ϖ^{n+1} up to units (c.f. the definition of c_{γ}) and is in $M_{2\times 2}(\mathcal{O})$ so it is either $[\begin{pmatrix} \varpi^{n+1} \\ 1 \end{pmatrix}]$ or $[\begin{pmatrix} \varpi^a \\ \varpi^b \end{pmatrix}]$ for $a + b = n + 1, a \ge b \ge 1$ the former is definitely in the support, so $c \ne 0$ and the latter is in A_{n-1} for all a, b.

We now claim that A_n is spanned as an A_0 -module by $(1, T, \ldots, T^n)$ and that these are A_0 -linearly independent. This is clear for n = 0, 1 and follows for all n by induction using the above lemma.

1.2 Unramified principal series

Let χ, ψ be smooth unramfied characters of F^{\times} (i.e. restricton to \mathcal{O}^{\times} is trivial, ergo they are of the form $\chi(x) = \alpha^{v(x)}, \psi(x) = \beta^{v(x)}$ where $\alpha = \chi(\varpi), \beta = \psi(\varpi)$).

Proposition 1.2.1. $I(\chi, \psi)^K$ is one-dimensional and S acts as $\alpha\beta$, T as $q^{1/2}(\alpha + \beta)$.

Proof. Since G = BK by the Iwasawa decomposition, $I(-)^K$ has dimension ≤ 1 for any χ, ψ . However, we can write down an element $f_{\rm sph} \in I(\chi, \psi)$ given by

$$f_{\rm sph}(bk) = |\frac{a}{d}|^{1/2} \chi(a) \psi(d)$$

for $b = \begin{pmatrix} a \\ d \end{pmatrix}$, which is well defined since if $b \in K$ then $a, d \in \mathcal{O}^{\times}$ so $\chi(a), \psi(d)$ and $|\frac{a}{d}|^{1/2}$ are all trivial (here we use that χ, ψ are unramified). This gives an isomorphism

$$I(\chi,\psi)^K = (\chi \boxtimes \psi)^{B \cap K}$$

The action of S is clear (since S is central). We then have

$$(T * f_{\rm sph})(1) = \int_{G} T(g)(g \cdot f_{\rm sph})(1)dg$$

$$= \frac{1}{\mu(K)} \int_{K(\varpi_{-1})K} f_{\rm sph}(g)$$

$$= \sum_{g \in K(\varpi_{-1})K/K} f_{\rm sph}(g)dg$$

$$= \sum_{a \in \mathcal{O}/\wp} f_{\rm sph}((\varpi_{-1})) + f_{\rm sph}((^{-1}\varpi))$$

then $f_{\rm sph}((\[mu]{\[mu}{\[mu}{\[mu]{\[mu}{\[mu]{\[mu}{$

Equivalently, consider 'Satake polynomial'

$$X^2 - q^{-1/2}TX + S \in \mathcal{H}(G, K)[X]$$

then α, β are the roots of the Satake polynomial acting on $I(\chi, \psi)^K$.

Corollary 1.2.2. Every irreducible representation V of G such that $V^K \neq 0$ is one of the following:

- $I(\chi, \psi)$ for some unramified χ, ψ satisfying $\chi/\psi \neq |\cdot|^{\pm 1}$
- One-dimensional representations $\chi \circ \det$ for χ unramified.

Proof. These exhaust all possible simple $\mathcal{H}(G, K)$ -modules (since $\mathcal{H}(G, K)$ is commutative all simple modules are one-dimensional). More explicitly, a simple $\mathcal{H}(G, K)$ -module is given by a homomorphism $\theta : \mathcal{H}(G, K) \to \mathbb{C}$. Under the isomorphism $\mathcal{H}(G, K) \cong \mathbb{C}[S, S^{-1}, T]$ this corresponds to choosing values $\gamma = \theta(S), \delta = \theta(T)$. By considering the polynomial

$$X^2 - q^{-1/2}\delta X + \gamma$$

we see there exist complex numbers α, β such that $\gamma = \alpha\beta, \delta = q^{1/2}(\alpha + \beta)$. When $\alpha/\beta \neq q^{\pm 1}$ these correspond to spherical principal series representations. Otherwise its not hard to see that these correspond to representations of the second type.

1.3 The Iwahori Hecke algebra

Let $I = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K : c \in \wp \}$, the Iwahori subgroup of G.

Proposition 1.3.1. 1. If $V = I(\chi, \psi)$ for χ, ψ unramified, $\chi/\psi \neq |\cdot|^{\pm}$, then V^I is two-dimensional.

2. $U := [I(\varpi_1)I]$ acts with eigenvalues $\{q^{1/2}\alpha, q^{1/2}\beta\}$

Proof. Assume that $\alpha \neq \beta$. I has two orbits on $\mathbb{P}^1(\mathcal{O})$ (lift the Bruhat decomposition for $\operatorname{GL}_2(k)$), represented by 1 and $w = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ we therefore have the following decomposition

$$V^{I} = (\chi \boxtimes \psi \delta^{-1/2})^{B \cap I} \oplus (\chi \boxtimes \psi \delta^{-1/2})^{B \cap w I w^{-1}}$$

which is two-dimensional. We compute that if $f \in V^{I}$,

$$\begin{split} [I(\ ^{\varpi} \ _1)I] * f &= \sum_{a \in \mathcal{O}/\wp} f((\ ^{\varpi} \ _1^a)) \\ &= q \cdot q^{-1/2} \alpha f(1) \end{split}$$

so evaluation at 1 is a non-zero linear functional on V^I factoring through projection to the $U = q^{1/2} \alpha$ eigenspace. By symmetry, $q^{1/2}\beta$ eigenspace is also non-zero. If $\alpha = \beta$, U acts with matrix $q^{1/2} \begin{pmatrix} \alpha & 1 \\ \alpha \end{pmatrix}$ (in particular, not semisimply).

2 Local new vectors

2.1 Statement

Let V be an irreducible representation of G. Assume V is not one-dimensional. Let $K_n = \{g \in K : g \equiv \binom{*}{1} \mod \wp^n\}$ (some maniacs might refer to this as a mirahoric subgroup).

Theorem 2.1.1 (Casselman). 1. There is n such that $V^{K_n} \neq 0$

- 2. If c is the smallest such n such that $V^{K_n} \neq 0$ then V^{K_n} is one-dimensional. Let v be any basis vector for this space (new vector).
- 3. For all $n \ge c$, V^{K_n} has dimension n c + 1 and $\{ \begin{pmatrix} 1 \\ \varpi^n \end{pmatrix} v : 0 \le a \le n c \}$ is a basis of V^{K_n} .

2.2 The Kirillov model

As usual, let $N = \{ \begin{pmatrix} 1 & * \\ 1 & 1 \end{pmatrix} \} \cong (F, +).$

- **Lemma 2.2.1.** 1. Let $0 \neq W \in \underline{Smo}_N$. Then there exists a character $\theta : N \to \mathbb{C}^{\times}$, and $\psi \in \operatorname{Hom}_N(W, \theta)$ such that $\psi \neq 0$. Moreover, for any non-zero $w \in W$ there is ψ and θ , as above such that $\psi(w) \neq 0$
 - 2. For V as in the previous theorem, $V^N = 0$.

Proof. 1. this reduces to showing that for all N_0 open-compact there is θ such that

$$p_{\theta}(w) := \int_{N_0} \theta(n)^{-1} n w dn \neq 0.$$

Let $N_1 \subset N_0$ be an open-compact subgroup fixing w. Then w generates a non-trivial finite dimensional complex representation of the finite abelian group N_0/N_1 and we observe that the map p_{θ} is the projection to the θ -isotypic component in this representation. As N_0/N_1 is abelian there must be a character occurring as an irreducible component in this representation.

2. See Bump Proposition 4.4.6

The following is often called the 'local multiplicity one' theorem.

Theorem 2.2.2 (Kirillov). For any non-trivial character θ of N

$$\dim \operatorname{Hom}_N(V, \theta) = 1$$

Proofs are in Bump or Jacquet–Langlands.

Fix any non-trivial character θ , then every other character of N is of the form $x \mapsto \theta(ax)$ for some $a \in F$.

Definition 2.2.3. Fix a basis λ of $\operatorname{Hom}_N(V, \theta)$. For $v \in V$, let ϕ_v be the function on F^{\times} defined by

 $\phi_v(a) = \lambda(\left(\begin{smallmatrix} a \\ & 1 \end{smallmatrix}\right)v)$

the Kirillov function of v. We write

 $K(V,\theta) = \{\phi_v : v \in V\}.$

One should think of this as a 'Fourier coefficient' of V.

Proposition 2.2.4. 1. If $v \in V$, $\begin{pmatrix} a & b \\ d \end{pmatrix} \in B$, then

$$\phi_{\left(\begin{array}{c}a&b\\d\end{array}\right)v}(x) = \omega_V(d)\theta(\frac{bx}{d})\phi_v(\frac{ax}{d})$$

where ω_V is the central character of V.

- 2. $v \mapsto \phi_v$ is an injection.
- 3. Any $\phi \in K(V)$ is supported on $F^{\times} \cap (compact \ set \ in \ F)$

4.
$$K(V) \supset C_c^{\infty}(F^{\times})$$

5. $K(V)/C_c^{\infty}(F^{\times})$ is finite-dimensional and is 0 if and only if V is supercuspidal.

Remark 2.2.5. 1. and 4. imply that all supercuspidal representations are isomorphic as reps of $\binom{*}{1}$ (mirabolic subgroup).

Proof. 1. Immediate from definitions

- 2. If $\phi_v = 0$, then $\psi(v) = 0$ for all homomorphisms ψ to non-trivial characters of N. Let $w = nv v, n \in N$. This now dies in *every* N character quotient which implies w = 0 by the lemma, which implies that $v \in V^N = 0$.
- 3. Since V is smooth, $v = \begin{pmatrix} 1 & b \\ 1 \end{pmatrix} v$ for some $b \neq 0$, so $\phi_v(x) = \theta(bx)\phi_v(x)$ for all x. For $v(x) \ll 0, \theta(bx) \neq 1$, so $\phi_v(x)$ must be zero.
- 4. We first show that $K(N)/K(N) \cap C_c^{\infty}$ is finite-dimensional: consider $V(N) = \langle n \cdot v v : v \in V, n \in N \rangle \subset V$ so that $V_N = V/V(N)$ is finite dimensional (and trivial for V supercuspidal). Hence $V(N) \neq 0$. We compute that $\phi_{\begin{pmatrix} 1 & b \\ 1 \end{pmatrix} v - v}(x) = (\theta(bx) - 1)\phi_v(x)$ and since for $v(x) \gg 0$ we have $\theta(bx) - 1 = 0$ we conclude that $\phi_v \in C_c^{\infty}$ for $v \in V(N)$.
- 5. Since $V(N) \neq 0, K(V) \cap C_c^{\infty}(F^{\times}) \neq 0$ but $C_c^{\infty}(F^{\times})$ is irreducible as a *B*-representation.

2.3 **Proof of Casselman's theorem**

Proposition 2.3.1. For $n \in \mathbb{Z}$ let $\bar{N}_n = \{ \begin{pmatrix} 1 \\ x \ 1 \end{pmatrix} : x \in \wp^n \}$. then \bar{N}_n and $K_\infty := \begin{pmatrix} \mathcal{O}^{\times} & \mathcal{O} \\ \mathcal{O}^{\times} \end{pmatrix}$ generate K_n for $n \ge 0$ and if $n \le -1$ they generate a group containing $\mathrm{SL}_2(F)$

Proof. Exercise.

Now let V be as in the theorem, $v \mapsto \phi_v$ a Kirillov model and we take the character θ to be trivial on \mathcal{O} but not on $\varpi^{-1}\mathcal{O}$ because we can. It's then an easy exercise to show that:

 $v \in V^{K_{\infty}} \iff \phi_v$ supported on \mathcal{O} and constant on cosets of \mathcal{O}^{\times} $v \in V^{K_n} \iff v \in V^{K_{\infty}}$ and $v \in V^{\bar{N}_n}$ for $n \ge 0$

and if $v \in V^{K_{\infty}} \cap V^{\overline{N}_{-1}}$, then v = 0.

Lemma 2.3.2 (Key Lemma). $\begin{pmatrix} 1 \\ \varpi \end{pmatrix}$ maps V^{K_n} to a subspace of $V^{K_{n+1}}$ of codimension ≤ 1 .

Proof. If $V^{K_{n+1}}$ and $\phi_v(1) = 0$ then ϕ_v is identically zero on \mathcal{O}^{\times} . Hence $\begin{pmatrix} 1 \\ \varpi \end{pmatrix}^{-1} v$ corresponds to a function on F^{\times} supported on \mathcal{O} and stable under scaling by \mathcal{O}^{\times} and thus preserved by K_{∞} and also stable under \bar{N}_n therefore $\begin{pmatrix} 1 \\ \varpi \end{pmatrix}^{-1} v \in V^{K_n}$. So the subspace of $V^{K_{n+1}}$ such that $\phi_v(1) = 0$ is in the image of $\begin{pmatrix} 1 \\ \varpi \end{pmatrix}$ on V^{K_n} .

Proof of Casselman's theorem. Let $c = \min\{n : V^{K_n} \neq 0\}$. The Key Lemma implies that V^{K_n} is one dimensional and if v is a basis then $\phi_v(1) \neq 0$ (exercise!) which implies that the codimension in the Key Lemma is 1 for all $n \geq c$ and v is a basis of $V^{K_{n+1}}/\{\text{image of } V^{K_n} \text{ by } \binom{1}{\pi}\}$.