
Reps of GL2 lecture 3

1 Hecke algebras continued

As usual we let F be a non-archimedean local field and G = GL2(F ).
Recall that we defined the K-Hecke algebra H(G,K) for any open compact subgroup K ⊂ G. If V ∈

SmoG is irreducible, then V K is a simple H(G,K)-module or 0.

Theorem 1.0.1 (Bushnell and Henniart §4.3). This gives a bijection

{Irreducible V such that V K ̸= 0}/ ∼=→ {Simple H(G,K)-modules}/ ∼=

1.1 Spherical Hecke algebras

We take G = GL2(F ),K = GL2(O). By the Cartan decomposition the spherical Hecke algebra H(G,K) is
spanned by the elements

[K
(
ϖa

ϖb

)
K]

for a, b ∈ Z, so to reduce notation we’ll write the above double coset as [
(
ϖa

ϖb

)
]. Let

S = (ϖ ϖ ), T = (ϖ 1 ).

Theorem 1.1.1. We have the following ring isomorphism

H(G,K) ∼= C[S, S−1, T ].

In particular, the spherical Hecke algebra is commutative.

Proof. Let A0 = C[S, S−1] be the central subring of H(G,K). We set

An = C-span of [
(
ϖa

ϖb

)
] such that 0 ≤ a− b ≤ n

= A0-span of [
(
ϖa

1

)
] such that 0 ≤ a ≤ n

Lemma 1.1.2. For all n ≥ 1, there is c ≥ 1 such that

T ∗ [
(
ϖn

1

)
] = c[

(
ϖn+1

1

)
] mod An−1

Proof. Any double coset in the support of T ∗ [
(
ϖn

1

)
] has determinant ϖn+1 up to units (c.f. the definition

of cγ) and is in M2×2(O) so it is either [
(
ϖn+1

1

)
] or [

(
ϖa

ϖb

)
] for a + b = n + 1, a ≥ b ≥ 1 the former is

definitely in the support, so c ̸= 0 and the latter is in An−1 for all a, b.

We now claim that An is spanned as an A0-module by (1, T, . . . , Tn) and that these are A0-linearly
independent. This is clear for n = 0, 1 and follows for all n by induction using the above lemma.
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1.2 Unramified principal series

Let χ, ψ be smooth unramfied characters of F× (i.e. restricton to O× is trivial, ergo they are of the form
χ(x) = αv(x), ψ(x) = βv(x) where α = χ(ϖ), β = ψ(ϖ)).

Proposition 1.2.1. I(χ, ψ)K is one-dimensional and S acts as αβ, T as q1/2(α+ β).

Proof. Since G = BK by the Iwasawa decomposition, I(−)K has dimension ≤ 1 for any χ, ψ. However, we
can write down an element fsph ∈ I(χ, ψ) given by

fsph(bk) = |a
d
|1/2χ(a)ψ(d)

for b = ( a d ), which is well defined since if b ∈ K then a, d ∈ O× so χ(a), ψ(d) and |ad |
1/2 are all trivial (here

we use that χ, ψ are unramified). This gives an isomorphism

I(χ, ψ)K = (χ⊠ ψ)B∩K

The action of S is clear (since S is central). We then have

(T ∗ fsph)(1) =
∫
G

T (g)(g · fsph)(1)dg

=
1

µ(K)

∫
K(ϖ 1 )K

fsph(g)

=
∑

g∈K(ϖ 1 )K/K

fsph(g)dg

=
∑

a∈O/℘

fsph((
ϖ a

1 )) + fsph(( 1 ϖ ))

then fsph((
ϖ a

1 )) = q−1/2αfsph(1) and fsph(( 1 ϖ )) = q1/2βfsph(1), so (T ∗ fsph)(1) = (q(q−1/2fsph(1)) +
q1/2β)fsph(1)

Equivalently, consider ‘Satake polynomial’

X2 − q−1/2TX + S ∈ H(G,K)[X]

then α, β are the roots of the Satake polynomial acting on I(χ, ψ)K .

Corollary 1.2.2. Every irreducible representation V of G such that V K ̸= 0 is one of the following:

• I(χ, ψ) for some unramified χ, ψ satisfying χ/ψ ̸= | · |±1

• One-dimensional representations χ ◦ det for χ unramified.

Proof. These exhaust all possible simpleH(G,K)-modules (sinceH(G,K) is commutative all simple modules
are one-dimensional). More explicitly, a simple H(G,K)-module is given by a homomorphism θ : H(G,K) →
C. Under the isomorphism H(G,K) ∼= C[S, S−1, T ] this corresponds to choosing values γ = θ(S), δ = θ(T ).
By considering the polynomial

X2 − q−1/2δX + γ

we see there exist complex numbers α, β such that γ = αβ, δ = q1/2(α + β). When α/β ̸= q±1 these
correspond to spherical principal series representations. Otherwise its not hard to see that these correspond
to representations of the second type.

2



1.3 The Iwahori Hecke algebra

Let I = {
(
a b
c d

)
∈ K : c ∈ ℘}, the Iwahori subgroup of G.

Proposition 1.3.1. 1. If V = I(χ, ψ) for χ, ψ unramified, χ/ψ ̸= | · |±, then V I is two-dimensional.

2. U := [I(ϖ 1 )I] acts with eigenvalues {q1/2α, q1/2β}

Proof. Assume that α ̸= β. I has two orbits on P1(O) (lift the Bruhat decomposition for GL2(k)), represented
by 1 and w = ( 1

1 ) we therefore have the following decomposition

V I = (χ⊠ ψδ−1/2)B∩I ⊕ (χ⊠ ψδ−1/2)B∩wIw−1

which is two-dimensional. We compute that if f ∈ V I ,

[I(ϖ 1 )I] ∗ f =
∑

a∈O/℘

f((ϖ a
1 ))

= q · q−1/2αf(1)

so evaluation at 1 is a non-zero linear functional on V I factoring through projection to the U = q1/2α
eigenspace. By symmetry, q1/2β eigenspace is also non-zero. If α = β, U acts with matrix q1/2( α 1

α ) (in
particular, not semisimply).

2 Local new vectors

2.1 Statement

Let V be an irreducible representation of G. Assume V is not one-dimensional. Let Kn = {g ∈ K : g ≡
( ∗ ∗

1 ) mod ℘n} (some maniacs might refer to this as a mirahoric subgroup).

Theorem 2.1.1 (Casselman). 1. There is n such that V Kn ̸= 0

2. If c is the smallest such n such that V Kn ̸= 0 then V Kn is one-dimensional. Let v be any basis vector
for this space (new vector).

3. For all n ≥ c, V Kn has dimension n− c+ 1 and {
(
1
ϖn

)
v : 0 ≤ a ≤ n− c} is a basis of V Kn .

2.2 The Kirillov model

As usual, let N = {( 1 ∗
1 )} ∼= (F,+).

Lemma 2.2.1. 1. Let 0 ̸=W ∈ SmoN . Then there exists a character θ : N → C×, and ψ ∈ HomN (W, θ)
such that ψ ̸= 0. Moreover, for any non-zero w ∈W there is ψ and θ, as above such that ψ(w) ̸= 0

2. For V as in the previous theorem, V N = 0.

Proof. 1. this reduces to showing that for all N0 open-compact there is θ such that

pθ(w) :=

∫
N0

θ(n)−1nwdn ̸= 0.

Let N1 ⊂ N0 be an open-compact subgroup fixing w. Then w generates a non-trivial finite dimensional
complex representation of the finite abelian group N0/N1 and we observe that the map pθ is the
projection to the θ-isotypic component in this representation. As N0/N1 is abelian there must be a
character occurring as an irreducible component in this representation.
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2. See Bump Proposition 4.4.6

The following is often called the ‘local multiplicity one’ theorem.

Theorem 2.2.2 (Kirillov). For any non-trivial character θ of N

dimHomN (V, θ) = 1

Proofs are in Bump or Jacquet–Langlands.
Fix any non-trivial character θ, then every other character of N is of the form x 7→ θ(ax) for some a ∈ F .

Definition 2.2.3. Fix a basis λ of HomN (V, θ). For v ∈ V , let ϕv be the function on F× defined by

ϕv(a) = λ(( a 1 )v)

the Kirillov function of v. We write
K(V, θ) = {ϕv : v ∈ V }.

One should think of this as a ‘Fourier coefficient’ of V .

Proposition 2.2.4. 1. If v ∈ V,
(
a b

d

)
∈ B, then

ϕ( a b
d

)
v
(x) = ωV (d)θ(

bx

d
)ϕv(

ax

d
)

where ωV is the central character of V .

2. v 7→ ϕv is an injection.

3. Any ϕ ∈ K(V ) is supported on F× ∩ (compact set in F )

4. K(V ) ⊃ C∞
c (F×)

5. K(V )/C∞
c (F×) is finite-dimensional and is 0 if and only if V is supercuspidal.

Remark 2.2.5. 1. and 4. imply that all supercuspidal representations are isomorphic as reps of ( ∗ ∗
1 )

(mirabolic subgroup).

Proof. 1. Immediate from definitions

2. If ϕv = 0, then ψ(v) = 0 for all homomorphisms ψ to non-trivial characters ofN . Let w = nv−v, n ∈ N .
This now dies in every N character quotient which implies w = 0 by the lemma, which implies that
v ∈ V N = 0.

3. Since V is smooth, v = ( 1 b
1 )v for some b ̸= 0, so ϕv(x) = θ(bx)ϕv(x) for all x. For v(x) ≪ 0, θ(bx) ̸= 1,

so ϕv(x) must be zero.

4. We first show that K(N)/K(N) ∩ C∞
c is finite-dimensional: consider V (N) = ⟨n · v − v : v ∈ V, n ∈

N⟩ ⊂ V so that VN = V/V (N) is finite dimensional (and trivial for V supercuspidal). Hence V (N) ̸= 0.
We compute that ϕ( 1 b

1 )v−v
(x) = (θ(bx) − 1)ϕv(x) and since for v(x) ≫ 0 we have θ(bx) − 1 = 0 we

conclude that ϕv ∈ C∞
c for v ∈ V (N).

5. Since V (N) ̸= 0, K(V ) ∩ C∞
c (F×) ̸= 0 but C∞

c (F×) is irreducible as a B-representation.
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2.3 Proof of Casselman’s theorem

Proposition 2.3.1. For n ∈ Z let N̄n = {( 1
x 1 ) : x ∈ ℘n}. then N̄n and K∞ :=

(
O× O

O×

)
generate Kn for

n ≥ 0 and if n ≤ −1 they generate a group containing SL2(F )

Proof. Exercise.

Now let V be as in the theorem, v 7→ ϕv a Kirillov model and we take the character θ to be trivial on O
but not on ϖ−1O because we can. It’s then an easy exercise to show that:

v ∈ V K∞ ⇐⇒ ϕv supported on O and constant on cosets of O×

v ∈ V Kn ⇐⇒ v ∈ V K∞ and v ∈ V N̄n for n ≥ 0

and if v ∈ V K∞ ∩ V N̄−1 , then v = 0.

Lemma 2.3.2 (Key Lemma). ( 1 ϖ ) maps V Kn to a subspace of V Kn+1 of codimension ≤ 1.

Proof. If V Kn+1 and ϕv(1) = 0 then ϕv is identically zero on O×. Hence ( 1 ϖ )
−1
v corresponds to a function

on F× supported on O and stable under scaling by O× and thus preserved by K∞ and also stable under
N̄n therefore ( 1 ϖ )

−1
v ∈ V Kn . So the subspace of V Kn+1 such that ϕv(1) = 0 is in the image of ( 1 ϖ ) on

V Kn .

Proof of Casselman’s theorem. Let c = min{n : V Kn ̸= 0}. The Key Lemma implies that V Kn is one
dimensional and if v is a basis then ϕv(1) ̸= 0 (exercise!) which implies that the codimension in the Key
Lemma is 1 for all n ≥ c and v is a basis of V Kn+1/{image of V Kn by ( 1 ϖ )}.
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