Reps of GL_{2} lecture 3

1 Hecke algebras continued

As usual we let F be a non-archimedean local field and $G=\mathrm{GL}_{2}(F)$.
Recall that we defined the K-Hecke algebra $\mathcal{H}(G, K)$ for any open compact subgroup $K \subset G$. If $V \in$ $\underline{S m o}_{G}$ is irreducible, then V^{K} is a simple $\mathcal{H}(G, K)$-module or 0 .

Theorem 1.0.1 (Bushnell and Henniart §4.3). This gives a bijection

$$
\left\{\text { Irreducible } V \text { such that } V^{K} \neq 0\right\} / \cong \rightarrow\{\text { Simple } \mathcal{H}(G, K) \text {-modules }\} / \cong
$$

1.1 Spherical Hecke algebras

We take $G=\mathrm{GL}_{2}(F), K=\mathrm{GL}_{2}(\mathcal{O})$. By the Cartan decomposition the spherical Hecke algebra $\mathcal{H}(G, K)$ is spanned by the elements

$$
\left[K\left(\varpi^{a} \varpi^{b}\right) K\right]
$$

for $a, b \in \mathbb{Z}$, so to reduce notation we'll write the above double coset as $\left[\left(\varpi^{a} \varpi^{b}\right)\right]$. Let

$$
S=\binom{\varpi}{\varpi}, T=\left(\begin{array}{ll}
\varpi & \\
& 1
\end{array}\right) .
$$

Theorem 1.1.1. We have the following ring isomorphism

$$
\mathcal{H}(G, K) \cong \mathbb{C}\left[S, S^{-1}, T\right]
$$

In particular, the spherical Hecke algebra is commutative.
Proof. Let $A_{0}=\mathbb{C}\left[S, S^{-1}\right]$ be the central subring of $\mathcal{H}(G, K)$. We set

$$
\begin{aligned}
A_{n} & =\mathbb{C} \text {-span of }\left[\left(\varpi^{a}\right.\right. \\
& =A_{0} \text {-span of }\left[\left(\varpi^{a}\right)\right] \text { such that } 0 \leq a-b \leq n \\
& 1)] \text { such that } 0 \leq a \leq n
\end{aligned}
$$

Lemma 1.1.2. For all $n \geq 1$, there is $c \geq 1$ such that

$$
T *\left[\left(\varpi^{n} \begin{array}{l}
1
\end{array}\right)\right]=c\left[\left(\varpi^{n+1} 1 .\right)\right] \bmod A_{n-1}
$$

Proof. Any double coset in the support of $T *\left[\left(\varpi_{1}^{n}\right)\right]$ has determinant ϖ^{n+1} up to units (c.f. the definition of c_{γ}) and is in $M_{2 \times 2}(\mathcal{O})$ so it is either [$\left(\varpi^{n+1}\right)$] or [$\left(\varpi^{a} \varpi^{b}\right)$] for $a+b=n+1, a \geq b \geq 1$ the former is definitely in the support, so $c \neq 0$ and the latter is in A_{n-1} for all a, b.

We now claim that A_{n} is spanned as an A_{0}-module by $\left(1, T, \ldots, T^{n}\right)$ and that these are A_{0}-linearly independent. This is clear for $n=0,1$ and follows for all n by induction using the above lemma.

1.2 Unramified principal series

Let χ, ψ be smooth unramfied characters of F^{\times}(i.e. restricton to \mathcal{O}^{\times}is trivial, ergo they are of the form $\chi(x)=\alpha^{v(x)}, \psi(x)=\beta^{v(x)}$ where $\left.\alpha=\chi(\varpi), \beta=\psi(\varpi)\right)$.

Proposition 1.2.1. $I(\chi, \psi)^{K}$ is one-dimensional and S acts as $\alpha \beta$, T as $q^{1 / 2}(\alpha+\beta)$.
Proof. Since $G=B K$ by the Iwasawa decomposition, $I(-)^{K}$ has dimension ≤ 1 for any χ, ψ. However, we can write down an element $f_{\text {sph }} \in I(\chi, \psi)$ given by

$$
f_{\mathrm{sph}}(b k)=\left|\frac{a}{d}\right|^{1 / 2} \chi(a) \psi(d)
$$

for $b=\binom{a}{d}$, which is well defined since if $b \in K$ then $a, d \in \mathcal{O}^{\times}$so $\chi(a), \psi(d)$ and $\left|\frac{a}{d}\right|^{1 / 2}$ are all trivial (here we use that χ, ψ are unramified). This gives an isomorphism

$$
I(\chi, \psi)^{K}=(\chi \boxtimes \psi)^{B \cap K}
$$

The action of S is clear (since S is central). We then have

$$
\begin{aligned}
\left(T * f_{\mathrm{sph}}\right)(1) & =\int_{G} T(g)\left(g \cdot f_{\mathrm{sph}}\right)(1) d g \\
& =\frac{1}{\mu(K)} \int_{K\left(\begin{array}{ll}
\varpi & 1
\end{array}\right) K} f_{\mathrm{sph}}(g) \\
& =\sum_{g \in K\left(\varpi_{1}\right.} f_{\mathrm{sph}}(g) d g \\
& =\sum_{a \in \mathcal{O} / \wp} f_{\mathrm{sph}}\left(\left(\begin{array}{ll}
\varpi & a \\
1
\end{array}\right)\right)+f_{\mathrm{sph}}\left(\left(\begin{array}{ll}
1 & \varpi
\end{array}\right)\right)
\end{aligned}
$$

then $f_{\mathrm{sph}}\left(\left(\begin{array}{cc}\varpi & a \\ 1\end{array}\right)\right)=q^{-1 / 2} \alpha f_{\mathrm{sph}}(1)$ and $f_{\mathrm{sph}}\left(\binom{{ }^{1} \varpi}{\varpi}\right)=q^{1 / 2} \beta f_{\mathrm{sph}}(1)$, so $\left(T * f_{\mathrm{sph}}\right)(1)=\left(q\left(q^{-1 / 2} f_{\mathrm{sph}}(1)\right)+\right.$ $\left.q^{1 / 2} \beta\right) f_{\mathrm{sph}}(1)$

Equivalently, consider 'Satake polynomial'

$$
X^{2}-q^{-1 / 2} T X+S \in \mathcal{H}(G, K)[X]
$$

then α, β are the roots of the Satake polynomial acting on $I(\chi, \psi)^{K}$.
Corollary 1.2.2. Every irreducible representation V of G such that $V^{K} \neq 0$ is one of the following:

- $I(\chi, \psi)$ for some unramified χ, ψ satisfying $\chi / \psi \neq|\cdot|^{ \pm 1}$
- One-dimensional representations $\chi \circ \operatorname{det}$ for χ unramified.

Proof. These exhaust all possible simple $\mathcal{H}(G, K)$-modules (since $\mathcal{H}(G, K)$ is commutative all simple modules are one-dimensional). More explicitly, a simple $\mathcal{H}(G, K)$-module is given by a homomorphism $\theta: \mathcal{H}(G, K) \rightarrow$ \mathbb{C}. Under the isomorphism $\mathcal{H}(G, K) \cong \mathbb{C}\left[S, S^{-1}, T\right]$ this corresponds to choosing values $\gamma=\theta(S), \delta=\theta(T)$. By considering the polynomial

$$
X^{2}-q^{-1 / 2} \delta X+\gamma
$$

we see there exist complex numbers α, β such that $\gamma=\alpha \beta, \delta=q^{1 / 2}(\alpha+\beta)$. When $\alpha / \beta \neq q^{ \pm 1}$ these correspond to spherical principal series representations. Otherwise its not hard to see that these correspond to representations of the second type.

1.3 The Iwahori Hecke algebra

Let $I=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in K: c \in \wp\right\}$, the Iwahori subgroup of G.
Proposition 1.3.1. 1. If $V=I(\chi, \psi)$ for χ, ψ unramified, $\chi / \psi \neq|\cdot|^{ \pm}$, then V^{I} is two-dimensional.
2. $U:=\left[I\left({ }^{\varpi}{ }_{1}\right) I\right]$ acts with eigenvalues $\left\{q^{1 / 2} \alpha, q^{1 / 2} \beta\right\}$

Proof. Assume that $\alpha \neq \beta$. I has two orbits on $\mathbb{P}^{1}(\mathcal{O})$ (lift the Bruhat decomposition for $\mathrm{GL}_{2}(k)$), represented by 1 and $w=\left(1^{1}\right)$ we therefore have the following decomposition

$$
V^{I}=\left(\chi \boxtimes \psi \delta^{-1 / 2}\right)^{B \cap I} \oplus\left(\chi \boxtimes \psi \delta^{-1 / 2}\right)^{B \cap w I w^{-1}}
$$

which is two-dimensional. We compute that if $f \in V^{I}$,

$$
\begin{aligned}
{\left[I\left(\begin{array}{ll}
\varpi_{1}
\end{array}\right) I\right] * f } & =\sum_{a \in \mathcal{O} / \wp} f\left(\left(\begin{array}{cc}
\varpi & a \\
1
\end{array}\right)\right) \\
& =q \cdot q^{-1 / 2} \alpha f(1)
\end{aligned}
$$

so evaluation at 1 is a non-zero linear functional on V^{I} factoring through projection to the $U=q^{1 / 2} \alpha$ eigenspace. By symmetry, $q^{1 / 2} \beta$ eigenspace is also non-zero. If $\alpha=\beta, U$ acts with matrix $q^{1 / 2}\binom{\alpha}{\alpha}$ (in particular, not semisimply).

2 Local new vectors

2.1 Statement

Let V be an irreducible representation of G. Assume V is not one-dimensional. Let $K_{n}=\{g \in K: g \equiv$ $\left.\binom{*}{1} \bmod \wp^{n}\right\}$ (some maniacs might refer to this as a mirahoric subgroup).

Theorem 2.1.1 (Casselman). 1. There is n such that $V^{K_{n}} \neq 0$
2. If c is the smallest such n such that $V^{K_{n}} \neq 0$ then $V^{K_{n}}$ is one-dimensional. Let v be any basis vector for this space (new vector).
3. For all $n \geq c, V^{K_{n}}$ has dimension $n-c+1$ and $\left\{\left({ }^{1} \varpi^{n}\right) v: 0 \leq a \leq n-c\right\}$ is a basis of $V^{K_{n}}$.

2.2 The Kirillov model

As usual, let $N=\left\{\binom{1}{1}\right\} \cong(F,+)$.
Lemma 2.2.1. 1. Let $0 \neq W \in \underline{S m o}_{N}$. Then there exists a character $\theta: N \rightarrow \mathbb{C}^{\times}$, and $\psi \in \operatorname{Hom}_{N}(W, \theta)$ such that $\psi \neq 0$. Moreover, for any non-zero $w \in W$ there is ψ and θ, as above such that $\psi(w) \neq 0$
2. For V as in the previous theorem, $V^{N}=0$.

Proof. 1. this reduces to showing that for all N_{0} open-compact there is θ such that

$$
p_{\theta}(w):=\int_{N_{0}} \theta(n)^{-1} n w d n \neq 0
$$

Let $N_{1} \subset N_{0}$ be an open-compact subgroup fixing w. Then w generates a non-trivial finite dimensional complex representation of the finite abelian group N_{0} / N_{1} and we observe that the map p_{θ} is the projection to the θ-isotypic component in this representation. As N_{0} / N_{1} is abelian there must be a character occurring as an irreducible component in this representation.
2. See Bump Proposition 4.4.6

The following is often called the 'local multiplicity one' theorem.
Theorem 2.2.2 (Kirillov). For any non-trivial character θ of N

$$
\operatorname{dimHom}_{N}(V, \theta)=1
$$

Proofs are in Bump or Jacquet-Langlands.
Fix any non-trivial character θ, then every other character of N is of the form $x \mapsto \theta(a x)$ for some $a \in F$.
Definition 2.2.3. Fix a basis λ of $\operatorname{Hom}_{N}(V, \theta)$. For $v \in V$, let ϕ_{v} be the function on F^{\times}defined by

$$
\phi_{v}(a)=\lambda\left(\left({ }^{a}{ }^{1}\right) v\right)
$$

the Kirillov function of v. We write

$$
K(V, \theta)=\left\{\phi_{v}: v \in V\right\}
$$

One should think of this as a 'Fourier coefficient' of V.
Proposition 2.2.4. 1. If $v \in V,\left(\begin{array}{cc}a & b \\ d\end{array}\right) \in B$, then

$$
\phi_{\left(\begin{array}{ll}
a & b \\
d
\end{array}\right) v}(x)=\omega_{V}(d) \theta\left(\frac{b x}{d}\right) \phi_{v}\left(\frac{a x}{d}\right)
$$

where ω_{V} is the central character of V.
2. $v \mapsto \phi_{v}$ is an injection.
3. Any $\phi \in K(V)$ is supported on $F^{\times} \cap($ compact set in $F)$
4. $K(V) \supset C_{c}^{\infty}\left(F^{\times}\right)$
5. $K(V) / C_{c}^{\infty}\left(F^{\times}\right)$is finite-dimensional and is 0 if and only if V is supercuspidal.

Remark 2.2.5. 1. and 4. imply that all supercuspidal representations are isomorphic as reps of (* $_{1}^{*}$) (mirabolic subgroup).

Proof. 1. Immediate from definitions
2. If $\phi_{v}=0$, then $\psi(v)=0$ for all homomorphisms ψ to non-trivial characters of N. Let $w=n v-v, n \in N$. This now dies in every N character quotient which implies $w=0$ by the lemma, which implies that $v \in V^{N}=0$.
3. Since V is smooth, $v=\left(\begin{array}{cc}1 & b \\ 1\end{array}\right) v$ for some $b \neq 0$, so $\phi_{v}(x)=\theta(b x) \phi_{v}(x)$ for all x. For $v(x) \ll 0, \theta(b x) \neq 1$, so $\phi_{v}(x)$ must be zero.
4. We first show that $K(N) / K(N) \cap C_{c}^{\infty}$ is finite-dimensional: consider $V(N)=\langle n \cdot v-v: v \in V, n \in$ $N\rangle \subset V$ so that $V_{N}=V / V(N)$ is finite dimensional (and trivial for V supercuspidal). Hence $V(N) \neq 0$. We compute that $\phi_{\left(\begin{array}{rl}1 & b\end{array}\right) v-v}(x)=(\theta(b x)-1) \phi_{v}(x)$ and since for $v(x) \gg 0$ we have $\theta(b x)-1=0$ we conclude that $\phi_{v} \in C_{c}^{\infty}$ for $v \in V(N)$.
5. Since $V(N) \neq 0, K(V) \cap C_{c}^{\infty}\left(F^{\times}\right) \neq 0$ but $C_{c}^{\infty}\left(F^{\times}\right)$is irreducible as a B-representation.

2.3 Proof of Casselman's theorem

Proposition 2.3.1. For $n \in \mathbb{Z}$ let $\bar{N}_{n}=\left\{\left(\begin{array}{ll}1 & 1 \\ x & 1\end{array}\right): x \in \wp^{n}\right\}$. then \bar{N}_{n} and $K_{\infty}:=\binom{\mathcal{O}^{\times}$}{$\mathcal{O}^{\times}}$generate K_{n} for $n \geq 0$ and if $n \leq-1$ they generate a group containing $\mathrm{SL}_{2}(F)$

Proof. Exercise.
Now let V be as in the theorem, $v \mapsto \phi_{v}$ a Kirillov model and we take the character θ to be trivial on \mathcal{O} but not on $\varpi^{-1} \mathcal{O}$ because we can. It's then an easy exercise to show that:

$$
\begin{aligned}
v \in V^{K_{\infty}} & \Longleftrightarrow \phi_{v} \text { supported on } \mathcal{O} \text { and constant on cosets of } \mathcal{O}^{\times} \\
v \in V^{K_{n}} & \Longleftrightarrow v \in V^{K_{\infty}} \text { and } v \in V^{\bar{N}_{n}} \text { for } n \geq 0
\end{aligned}
$$

and if $v \in V^{K_{\infty}} \cap V^{\bar{N}_{-1}}$, then $v=0$.
Lemma 2.3.2 (Key Lemma). (${ }^{1}{ }_{\omega}$) maps $V^{K_{n}}$ to a subspace of $V^{K_{n+1}}$ of codimension ≤ 1.
Proof. If $V^{K_{n+1}}$ and $\phi_{v}(1)=0$ then ϕ_{v} is identically zero on \mathcal{O}^{\times}. Hence $\left({ }^{1} \varpi\right)^{-1} v$ corresponds to a function on F^{\times}supported on \mathcal{O} and stable under scaling by \mathcal{O}^{\times}and thus preserved by K_{∞} and also stable under \bar{N}_{n} therefore $\left({ }^{1} \varpi\right)^{-1} v \in V^{K_{n}}$. So the subspace of $V^{K_{n+1}}$ such that $\phi_{v}(1)=0$ is in the image of (${ }^{1} \varpi$) on $V^{K_{n}}$.

Proof of Casselman's theorem. Let $c=\min \left\{n: V^{K_{n}} \neq 0\right\}$. The Key Lemma implies that $V^{K_{n}}$ is one dimensional and if v is a basis then $\phi_{v}(1) \neq 0$ (exercise!) which implies that the codimension in the Key Lemma is 1 for all $n \geq c$ and v is a basis of $V^{K_{n+1}} /\left\{\operatorname{image}\right.$ of $V^{K_{n}}$ by $\left.\binom{1}{\varpi}\right\}$.

