Reps of GL_{2} lecture 2

1 The principal series

As usual let F be a non-archimedean local field and let $q,|\cdot|$ etc. be as before.

1.1 Some subgroups and decompositions

Let

- $B=\binom{*}{*}$ is the Borel subgroup, $B=T \ltimes N, T=\left({ }^{*}{ }_{*}\right), N=\left(\begin{array}{r}1 \\ 1 \\ 1\end{array}\right)$.
- $K_{0}=\mathrm{GL}_{2}(\mathcal{O})$

Proposition 1.1.1. 1. $G=B \cup B w B$, where $w=\left(1^{1}\right)$, this is the Bruhat decomposition of G.
2. $G=B K_{0}$, this is the Iwasawa decomposition
3. $G=\sqcup_{a \leq b \in \mathbb{Z}} K_{0}\left(\varpi^{a} \varpi^{b}\right) K_{0}$, this is the Cartan decomposition

For part 2 of the above proposition note that $G / B=\mathbb{P}^{1}(F)=\mathbb{P}^{1}(\mathcal{O})=K_{0} / K_{0} \cap B$.
Proposition 1.1.2. - B is not unimodular

- G is unimodular

Proof. For the first part we use the decomposition $B=T \ltimes N$. The restriction of δ_{B} to N has to be trivial since every element of N is contained in an open compact subgroup (indeed $N \cong F$ and so every element of N is contained in $\varpi^{n} N$ for some $n \in \mathbb{Z}$ and this is a subgroup of $\left.\left(T \cap K_{0}\right) \times \varpi^{n} N\right)$. It's also clearly trivial on the centre. Consider the element $g=\left(\begin{array}{c}1 \\ \end{array}\right)$ and let $B_{0}=B \cap K_{0}$. If $b=\binom{a b}{d}$ then $g^{-1} b g=\binom{a \varpi b}{d}$. We then compute

$$
\delta_{B}(g)=\frac{\mu\left(B_{0} g\right)}{\mu\left(B_{0}\right)}=\frac{\mu\left(g^{-1} B_{0} g\right)}{\mu\left(B_{0}\right)}
$$

and since $\left[B_{0}: g^{-1} B_{0} g\right]=q$ we have $\delta_{B}(g)=1 / q=\# \mathcal{O} / \varpi \mathcal{O}$. More generally we have $\delta_{B}\left(\left(\begin{array}{cc}r & s \\ t\end{array}\right)\right)=|t / r|$.
For the second part we note that, via the Cartan decomposition, it is sufficient to show that

$$
\delta_{G}\left(\left({ }^{1} \varpi\right)\right)=1 .
$$

Let $U=\left\{\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in K_{0}: c \in \wp\right\}$, then g conjugates U to \bar{U}, the subgroup defined instead by the condition that $b \in \wp$. Then U has the same index as U in K_{0} so they have the same Haar measure whence we conclude that $\delta_{G}(g)=1$.

We remark that the F-points of reductive groups are always unimodular.

1.2 The representations $I(\chi, \psi)$

Let $\chi, \psi: F^{\times} \rightarrow \mathbb{C}^{\times}$be smooth characters (which in practice means that $\left.\chi\right|_{\mathcal{O} \times}$ factors through $\left(\mathcal{O} / \varpi^{n}\right)^{\times}$for some n). The value $\chi(\varpi)$ can be chosen arbitrarily. We can then define a character of the Borel B via

$$
\begin{aligned}
\chi \boxtimes \psi: B & \rightarrow \mathbb{C}^{\times} \\
\left(\begin{array}{cc}
a & b \\
d
\end{array}\right) & \mapsto \chi(a) \psi(d) .
\end{aligned}
$$

We set
$I(\chi, \psi)=I_{B}^{G}(\chi \boxtimes \psi)=\left\{f: G \rightarrow \mathbb{C}: f(b g)=\chi(a) \psi(d)|a / d|^{1 / 2} f(g)\right.$ and $\exists K$ open compact such that $\left.f \in I(\chi, \psi)^{K}\right\}$
Exercise: Show that if the first condition holds, the second condition is equivalent to the function be ing locally constant.

Proposition 1.2.1. 1. $I(\chi, \psi)$ is smooth and admissible as a G-representation.
2. $I\left(\chi^{-1}, \psi^{-1}\right)=I(\chi, \psi)^{\vee}$
3. $I(\chi, \psi)$ has central character $\chi \psi$.

Proposition 1.2.2. If $\chi / \psi=|\cdot|^{ \pm 1}, I(\chi, \psi)$ reducible.
Proof. If $\chi / \psi=|\cdot|^{-1}$, then there exists a 1-dimensional subspace spanned by the function

$$
f(g)=|\operatorname{det}(g)|^{1 / 2} \psi(\operatorname{det}(g))
$$

By duality there is a 1 -dimensional quotient if $\chi / \psi=|\cdot|$.
Definition 1.2 .3 . The Steinberg representation $S t$ is the kernel of the map $I\left(|\cdot|^{1 / 2},|\cdot|^{-1 / 2}\right) \rightarrow \mathbb{C}$.
Theorem 1.2.4. 1. If $\chi / \psi \neq|\cdot|^{ \pm 1}, I(\chi, \psi)$ is irreducible and $I(\chi, \psi) \cong I(\psi, \chi)$.
2. If $\chi / \psi=|\cdot|$, then $I(\chi, \psi)$ has a codimension 1 subrepresentation $S t \otimes \psi|\cdot|^{1 / 2}$ and this is irreducible.
3. If $\chi / \psi=|\cdot|^{-1}, I(\chi, \psi)$ has a 1-dimensional subrepresentation and the quotient is $S t \otimes \psi|\cdot|^{-1 / 2}$ (in particular $\left.S t=S t^{\vee}\right)$.
4. There are no further isomorphisms between these representations.

Corollary 1.2.5. Let V be an irreducible representation of G. Then the following are equivalent:

1. V is a subquotient of some $I(\chi, \psi)$
2. V is a subspace of some $I(\chi, \psi)$
3. The N-coinvariants $V_{N} \neq 0$.

Proof. $1 \Longrightarrow 2$ is from the theorem, $2 \Longrightarrow 3$ is from Frobenius reciprocity.
If V does not satisfy these conditions we say that V is supercuspidal. Note that we have a complete classification of non-supercuspidal irreducible representations: every such representation is of the form

- $I(\chi, \psi)$ for $\chi / \psi \neq|\cdot|^{ \pm 1}$
- St $\otimes \chi$ for a smooth character $\chi: F^{\times} \rightarrow \mathbb{C}^{\times}$
- A one-dimensional representation $\chi \circ$ det.

1.3 Jacquet modules and maps between induced representations

Lemma 1.3.1. 1. Let $V \in \underline{S m o}_{N}$. Then the kernel of the natural map $V \rightarrow V_{N}$ is given by

$$
\left\{v \in V: \int_{N_{0}} n \cdot v d \mu_{N}(n)=0 \text { for some open compact } N_{0} \subset N\right\}
$$

2. $V \mapsto V_{N}$ is an exact functor on $\underline{S m o}_{N}$ (right exactness is obvious).

Definition 1.3.2. For $V \in \underline{S m o}_{B}$ let $J_{B}(V)=V_{N} \otimes \delta_{B}^{1 / 2} \in \underline{S m o}_{T}$, the Jacquet module associated to V.
Then $\operatorname{Hom}_{G}\left(V, I_{B}^{G}(\chi \boxtimes \psi)\right)=\operatorname{Hom}_{T}\left(J_{B}(V), \chi \boxtimes \psi\right)$.
Proposition 1.3.3. Let $\eta=\chi \boxtimes \psi$ character of T and $\eta^{w}=\psi \boxtimes \chi$. Then there is a short exact sequence of B-representations

$$
\left.0 \rightarrow V \rightarrow I(\eta)\right|_{B} \rightarrow \eta \otimes \delta_{B}^{-1 / 2} \rightarrow 0
$$

Moreover $V \cong c-\operatorname{Ind}_{T}^{B}\left(\eta^{w} \otimes \delta_{B}^{1 / 2}\right)$
Proof. Evaluation at 1_{G} gives a surjective B-homomorphism $I(\eta) \rightarrow \eta \otimes \delta_{B}^{-1 / 2}$. If $f \in \operatorname{ker}(\operatorname{this}$ map) then support $(f) \subset \mathbb{P}^{1}(F)$ has to be distinct from some open neighbourhood of 1_{G}, hence contained in some open compact subset of $\mathbb{A}^{1}(F)$. Thus evaluation at $w=\left({ }_{1}{ }^{1}\right)$, which is a T-homomorphism to $\eta^{w} \otimes \delta_{B}^{1 / 2}$ (which is equivalent to a B-homomorphism to $\operatorname{Ind}_{T}^{B}\left(\eta^{w} \otimes \delta_{B}^{1 / 2}\right)$ by Frobenius reciprocity) lands in $c-\operatorname{Ind}_{T}^{B}(-)$. Can show that this map is an isomorphism.

Remark 1.3.4. The induced B-map $V \rightarrow \operatorname{Ind}_{T}^{B}\left(\eta^{w} \otimes \delta_{B}^{1 / 2}\right)$ is given by $f \mapsto(b \mapsto f(w b))$. Any $f \in V$ has support in an open compact subset K of $B \backslash B w B=B \backslash B w N$ and for any such open-compact subset there is an open-compact subgroup $N_{0} \subset N$ such that f is supported on $B \backslash B w N_{0}$. From this it is clear that $b \mapsto f(w b) \in c-\operatorname{Ind}_{T}^{B}\left(\eta^{w} \otimes \delta_{B}^{1 / 2}\right)$.

Proposition 1.3.5. $J_{B}(V)$ is 1-dimensional and isomorphic to η^{w}.
Proof. For $f \in V, x \in T$ let $f_{N}(x)=\int_{N} f(x w n) d n=\eta \delta_{B}^{-1 / 2}(x) f_{N}(1)$. Then the map $f \mapsto f_{N}(1)$ gives the isomorphism $V_{N} \cong \eta^{w} \otimes \delta_{D}^{1 / 2}$.

Remark 1.3.6. This proof implicitly uses that the Haar measure on N is the restriction of the Haar measure on B, which follows from the theory of invariant measures.

Thus

$$
0 \rightarrow V_{N} \rightarrow I(\eta)_{N} \rightarrow\left(\eta \otimes \delta_{B}^{-1 / 2}\right)_{N} \rightarrow 0
$$

is exact and we conclude that $J_{B}(I(\eta))$ is 2-dimensional and characters of T appearing are η and η^{w}.
Corollary 1.3.7. $\operatorname{Hom}_{G}\left(I(\eta), I\left(\eta^{\prime}\right)\right)$ is 0 unless $\eta^{\prime}=\eta$ or $\eta^{\prime}=\eta^{w}$ and if $\eta \neq \eta^{w}$ in these cases it is 1-dimensional.

Proof. We have

$$
\operatorname{Hom}_{G}\left(I(\eta), I\left(\eta^{\prime}\right)\right)=\operatorname{Hom}_{T}\left(J_{B}(I(\eta)), \eta^{\prime}\right)
$$

Let $\phi: J_{B}(I(\eta)) \rightarrow \eta^{\prime}$ be a nontrivial T-homomorphism. Then ϕ is nontrivial on $\eta^{w} \subset J_{B}(I(\eta))$ if and only if $\eta^{w}=\eta^{\prime}$ and if ϕ restricts to zero on η^{w} then it factors through the quotient $J_{B}(I(\eta)) / \eta^{w} \cong \eta$ so this is non-zero if and only if $\eta^{\prime}=\eta$. If $\eta \neq \eta^{w}$ then clearly only one of these cases can hold and so we conclude that in this case $\operatorname{Hom}_{G}\left(I(\eta), I\left(\eta^{\prime}\right)\right)$ is one-dimensional.

Remark 1.3.8. 1. Slightly delicate to extract an explicit homomorphism $I(\eta) \rightarrow I\left(\eta^{w}\right)$.
2. Same proof shows that if θ is a non-trivial character of N, then $\operatorname{dimHom}_{N}(I(\eta), \theta)=1$ ('uniqueness of Whittaker functionals').
3. Let V be as above and $W=\operatorname{Ker}\left(V \rightarrow V_{N}\right)$, a codimension 2 subrepresentation of $I(\eta)$

Fact: W is irreducible as a B-representation
4. G / B is a G-variety with an open B-orbit (a spherical variety).

1.4 Supercuspidal representations

Recall that we say a smooth irreducible representation of $G=\mathrm{GL}_{2}(F)$ is supercuspidal if it is not a subspace of any $I(\chi, \psi)$.

Fact: If $p \neq 2$, there is an explicit description of supercuspidal representations.
Definition 1.4.1. An admissible pair is a pair (E, χ), where

- E / F is a quadratic extension
- $\chi: E^{\times} \rightarrow \mathbb{C}^{\times}$is a smooth character
such that

1. χ doesn't factor through $\operatorname{Norm}_{E / F}$
2. If E is ramified then $\left.\chi\right|_{1+\wp_{E}}$ doesn't factor through the norm.

Then there is a map

$$
\{\text { admissible pairs }(E, \chi)\} \rightarrow\left\{\text { Supercuspidal } \mathrm{GL}_{2}(F) \text {-representations }\right\}
$$

and if $p \neq 2$ all supercuspidal representations arise in this way.

2 Hecke algebras

2.1 Definitions

Let G be a locally profinite group, unimodular and let μ be a Haar measure on G. Let $C_{c}^{\infty}(G)$ be the space of locally constant compactly supported functions on G.

Definition 2.1.1. For $V \in \underline{S m o}_{G}, v \in V, F \in C_{c}^{\infty}(G)$ let

$$
F * v=\int_{G} F(g) g \cdot v d \mu(g) \in V
$$

In particular, can take $V=C_{c}^{\infty}(G)$ with

$$
(g \cdot F)(h)=F\left(g^{-1} h\right)
$$

so

$$
(F * G)(h)=\int_{G} F(g) G\left(g^{-1} h\right) d \mu(g)
$$

Exercise: This is associative, so $C_{c}^{\infty}(G)$ becomes a ring $\mathcal{H}(G)$. and any $V \in \underline{S m o}_{G}$ an $\mathcal{H}(G)$-module.
Problem: $\mathcal{H}(G)$ has no identity element unless G discrete

Definition 2.1.2. Let $K \subset G$ be an open compact subgroup. Set

$$
e_{K}=\frac{1}{\mu(K)} \mathbb{1}_{K}
$$

where $\mathbb{1}_{K}$ is the indicator function of K.
Now we have $e_{K} * e_{K}=e_{K}$ so the subring $\mathcal{H}(G, K)=e_{K} \mathcal{H}(G) e_{K}$ is unital, with identity element e_{K}. For $V \in \underline{S m o}_{G}, e_{K} V=V^{K}$ and in particular, $\mathcal{H}(G, K)$ is the functions invariant under left and right translation by K.

Proposition 2.1.3. 1. As a \mathbb{C}-vector space, $\mathcal{H}(G, K)$ has basis consisting of elements

$$
[K g K]=\frac{1}{\mu(K)} \mathbb{1}_{K g K}
$$

for $g \in K \backslash G / K$.
2. We have the formula

$$
[K g K][K h K]=\sum_{\gamma} c_{\gamma}[K \gamma K]
$$

where c_{γ} is the integer

$$
\mu\left(K g K \cap \gamma K h^{-1} K\right) / \mu(K)
$$

which vanishes for all but finitely many γ.
Proof. First part is clear, second is an easy computation.
If $V \in \underline{S m o}_{G}$ is irreducible, then V^{K} is a simple $\mathcal{H}(G, K)$-module or 0 .
Theorem 2.1.4 (Bushnell and Henniart §4.3). This gives a bijection

$$
\left\{\text { Irreducible } V \text { such that } V^{K} \neq 0\right\} / \cong \rightarrow\{\text { Simple } \mathcal{H}(G, K) \text {-modules }\} / \cong
$$

