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Daniel Garćıa Rasines LTCC: Selective Inference 1 / 48



Structure of the course

1. Introduction.

2. Unconditional inference.

• Fixed design.

• Random design.

3. Conditional inference.

• Most powerful conditional inference.

• Information-splitting methods.

4. Bayesian approaches.

5. Other topics.
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Key references

Review papers:

– Zhang, Khalili, Asgharian (2022). “Post-model-selection inference in
linear regression models: an integrated review”, Statistics Surveys.

– Kuchibhotla, Kolassa, Kuffner (2022). “Post-selection inference”,
Annual Review of Statistics and Its Application.

Week 1:

– Berk, Brown, Buja, Zhang, Zhao (2013). “Valid post-selection
inference”, Annals of Statistics.

– Bachoc, Preinerstorfer, Steinberg (2020). “Uniformly valid
confidence intervals post-model-selection”, Annals of Statistics.
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Motivation

The classical approach to statistical inference assumes that all the
models to fit and all the inferential objectives are fixed prior to the
data analysis.

For example, a common regression problem assumes observation of a
vector Y ∼ N(Xβ, σ2I ) and seeks inference for β.

However, this is not how statistics operates in practice.
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Motivation

Typically, the practitioner interacts with the data in order to select a
suitable model to fit and/or a set of relevant inferential questions to
address—the selection stage.

Such data exploration allows the practitioner to focus only on the most
relevant aspects of the data-generating process.

BUT it invalidates the assumptions of a fixed model or inferential
objectives, leading to a (possible) loss of the inferential guarantees
indicated by classical theory.
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Motivation

The further sampling variability introduced in the pre-analysis stage
often leads to:

– Overstatement of statistical significance (exaggerated p-values).

– Confidence intervals with low coverage.

– Overestimation of effect sizes.

– Underestimation of variances.
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Motivation

Selection effects are regularly overlooked in statistical practice, and
are often cited as one of the main causes of the replicability crisis in
science.

Famously, Breiman (1992) referred to this issue as a “quiet scandal in the
statistical community”.

→ The goal of selective inference is to restore validity of inference
after selection.
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Example: inference on winners

Let Yi ∼ N(θi , 1) independently for i = 1, . . . , n, and suppose a
confidence interval is required for the mean of the largest observation,
θI (Y ), where

I (Y ) = argmax
i=1,...,n

Yi .

Plot shows the coverage of conventional 90% confidence intervals
[yI (Y ) − 1.64, yI (Y ) + 1.64] for the case θ1 = . . . = θn as n → ∞.
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Example: inference after model selection

Y ∼ N(0, I80) and X ∈ R80×20 with N(0, 1) entries independent of Y .

A forward stepwise algorithm minimising the AIC is used to select a linear
submodel, and a marginal p-value is computed to test significance for
each variable in the selected model.
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CDF of p−values

∼ 35% of selected coefficients deemed significant at a 0.05 level,
even though none of them are!
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Approaches

Selective inference has a long and rich history.

Many approaches have been advocated to estimate/control selection
effects, such as

– Simultaneous inference (Bonferroni, BH, ...).

– Bayesian methods: model averaging, empirical Bayes.

– Bootstrap.

– Differential privacy.

The goal of this course is to give an overview of recent proposals and
describe how they fit within the general framework.
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Framework

Data matrix denoted by [Y ,X ], where

– Y = (Y1, . . . ,Yn)
T ∈ Rn is a quantitative response vector.

– X = [X1, . . . ,Xp] ∈ Rn×p is a n × p design matrix, containing
observations of p covariates. For now assume design is fixed.

In general (provided finite expectation), one can write

Y = µ+ ε, where µ = E [Y ] and ε = Y − µ. (1)

Often µ is assumed to belong to a parametric class, such as the linear
model {Xβ : β ∈ Rp}, and inference is sought for the corresponding
parameter.
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Framework

If p ∼ n or p > n it is common to seek a smaller model due to
identifiability issues and lack of interpretability of the larger model.

An index set M = {i1, . . . , im} ⊆ {1, . . . , p} will denote a linear
submodel containing only the covariates in M, where m = |M|.

If XM = [Xi1 , . . . ,Xim ] denotes the submatrix of X that contains only the
covariates in M, the linear submodel corresponding to M posits

Y = XMβM + ε, βM ∈ Rm. (2)
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The projection parameter

In selective inference one normally treats models as approximations of
a (potentially very complex) true underlying distribution.

This aligns more naturally with the model-selection framework and is
considerably more realistic.

Even if µ /∈ span(XM) = {XMb : b ∈ Rm} for some M, one can still define
a meaningful model-dependent parameter, the projection parameter:

βM = argmin
b∈Rp

E∥Y − XMb∥2 = (XT
MXM)−1XT

Mµ = X †
Mµ ∈ Rm, (3)

for all M with m < n and rank(XM) = m, where A† := (ATA)−1AT .

→ It is the best linear predictor of µ in M with respect to the squared
error loss.
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The projection parameter

The entries of the projection parameter, denoted by βjM , j ∈ M, have a
different interpretation to the conventional regression coefficients.

→ If Y = XMβM + ε, βM
j is the average difference in the response

for a unit difference in Xij , ceteris paribus in the model M.

→ In the non-linear case, βjM is the average difference in the
response approximated in the submodel M.

Naturally, if the selected model is in fact correct, then βM = βM and the
usual interpretation holds.
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Interpretation of the projection parameter

For j ∈ M, let XjM be the corresponding column of XM , and define

rjM =
{
In − XM\{j}X

†
M\{j}

}
XjM , (4)

the residual vector of the regression of XjM on the other predictors in M.

We can rewrite the j-th coefficient of βM as

βjM =
1

∥rjM∥2
rTjMµ, (5)

so βjM is a measure the relevance of the j-th covariate once we have
adjusted for the other covariates in M.
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Interpretation of the projection parameter

More specifically, denote by PM = XMX †
M the projection matrix onto

span(XM).

We can decompose it as

PM = PM\{j} + (rTjMXjM)rjM rTjM . (6)

→ The null hypothesis H0 : βjM = 0 is equivalent to

PMµ = PM\{j}µ. (7)
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PoSI

PoSI1 (Post Selection Inference) is a framework for selective inference
for projection parameters with

– Finite sample guarantees for any dimension (n, p).

– Universal validity over (virtually) all model selection procedures.

Seminal work; introduced ideas which constitute the basis of much of the
contemporary work on selective inference.

Crucially, it requires very strong distributional assumptions.

Extensions with less restrictive assumptions will be considered later.

1Berk, Brown, Buja, Zhang, Zhao (2013). “Valid post-selection inference”, Ann.
Stat.
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PoSI

Assume a Gaussian response Y ∼ N(µ, σ2In), with µ ∈ Rn and σ2 > 0.

PoSI requires an estimator σ̂ which is independent of all estimates β̂jM ,
and such that

σ̂2 ∼ σ2χ
2
r

r
. (8)

We write r = ∞ if σ2 is known.
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PoSI

Distributional requirements constitute a major practical limitation of the
approach.

However, they are only needed for finite-sample validity; asymptotic
guarantees can be derived under much weaker conditions, as we shall see.

A valid variance estimator will be available if p < n and the full model
Y ∼ N(Xβ, σ2In) is (at least approximately) valid.
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PoSI

For a fixed submodel M, a natural estimator of βM is

β̂M = X †
MY ∼ N(βM , σ2(XT

MXM)−1). (9)

If a suitable estimate of σ2 is available, confidence sets and testing
procedures for βM are provided by classical normal theory.

Introduce the t-values relative to submodel M:

tjM =
βjM − β̂jM

[(XT
MXM)−1]

1/2
jj σ̂

∼ tr , j ∈ M. (10)

A valid 1− α valid confidence interval for βjM is given by

CIjM(K ) = [β̂jM ± K [(XT
MXM)−1]

1/2
jj σ̂], K = tr ,1−α/2. (11)
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PoSI

In the selective context, however, the submodel M is allowed to depend
on the data, i.e. it is random, which invalidates the previous CI.

Write a random submodel as M̂ ≡ M̂(Y ) ⊆ {1, . . . , p}.

Think of M̂ as the result of some variable-selection procedure such as
LASSO, stepwise regression, visual diagnostics, etc.

In principle, M̂ : Rn → Mall can be any measurable map, where

Mall = {M ⊆ {1, . . . , p} : rank(XM) = |M|}, (12)

i.e. the projection parameter needs to be identifiable.
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PoSI

Associated with a random model M̂ there is a random projection
parameter βM̂ = X †

M̂
µ, which constitutes the moving target of

inference.

Note that

– βM̂ has random dimension |M̂|.

– For a fixed j , it might not be the case that j ∈ M̂.

– Conditionally on j ∈ M̂, the parameter βM̂ is random.

Furthermore, the corresponding estimator

β̂M̂ = X †
M̂
Y (13)

is not normally distributed due to the extra variability from the
selection step, so classical normal theory does not apply.
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PoSI

Given the stochastic nature of the parameter, what constitutes a valid
inferential procedure this setting?

In the fixed-M setting, the 1− α confidence interval CIjM(K ) for βjM

satisfies
P (βjM ∈ CIjM(K )) = 1− α. (14)

In the random-model setting, the PoSI (Post-Selection Inference)
framework seeks a value of K such that

P
(
βjM̂ ∈ CIjM̂(K ) ∀ j ∈ M̂

)
≥ 1− α, (15)

for any selection procedure M̂. K is called the PoSI constant.
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PoSI

Some key aspects of this approach:

– Universality: CIs are valid regardless of the selection procedure,
even if this involves subjective and informal decisions; the
practitioner is even allowed to change their mind and report a
different model post-hoc.

– Intervals tend to be very conservative as a result: the actual
coverage can be well above the nominal one for some selection rules.

– However, there exists a selection procedure that requires full
protection: unless there is a strong reason for discarding certain
ill-behaved selection rules, PoSI is optimal.

– It provides only unconditional guarantees (more on this later).

– Implemented via simulation (computationally demanding if p ≈ 20).
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PoSI: restricted model space

The conservative nature of PoSI can be partially alleviated under the
assumption that not all models in Mall are being searched.

In many applications, there is a priori knowledge about the set of
plausible selected models, e.g.

– A subset of the covariates is forced into the model (e.g. an
intercept).

– There is a size restriction on the model: |M| ≤ k (sparsity).

– Hierarchical restrictions: polynomial regression, interactions, etc.
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PoSI: restricted model space

If such assumption can be made, we denote by M ⊆ Mall the
pre-specified set of allowed models.

With sufficiently strong restrictions on M (particularly the sparsity one),
the PoSI approach becomes computationally manageable for large p.

Further reduction can be achieved by discarding variables ignoring the
response, e.g. if there is collinearity.
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PoSI: the selection-adjusted constant

The PoSI constant K is formally defined as

K (X ,M, α, r) = min

{
K > 0: P

(
max
M∈M

max
j∈M

|tjM | ≤ K

)
≥ 1− α

}
,

(16)

where, recall,

tjM =
βjM − β̂jM

[(XT
MXM)−1]

1/2
jj σ̂

=
eTj X †

M(Y − µ)

[(XT
MXM)−1]

1/2
jj σ̂

. (17)

T = maxM∈M maxj∈M |tjM | is distribution constant, so K is
computable.
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PoSI: proof of coverage control

For any measurable model-selection procedure M̂ : Rn → M, we have
the trivial bound

max
j∈M̂

|tjM̂ | ≤ max
M∈M

max
j∈M

|tjM |. (18)

Thus,

P
(
max
j∈M̂

|tjM̂ | ≤ K

)
≥ P

(
max
M∈M

max
j∈M

|tjM | ≤ K

)
≥ 1− α, (19)

where K = K (X ,M, α, r).
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PoSI: achievement of nominal coverage

Among all possible model-selection procedures, there is one for which the
nominal covarage is achieved, i.e. for which the PoSI constant is sharp.

It is the significance-hunting procedure, which seeks the model with
the most significant observed effect:

M̂∗(Y ) = argmax
M∈M

max
j∈M

|tjM |. (20)

Although it is generally not advisable to select a model via M̂∗,
protection against it is a guarantee against bad practice.
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PoSI: computation of the PoSI constant

Closed-form expressions for K are not available.

Brute force Monte Carlo used to approximate the 1− α quantile of

T = max{|tjM | : M ∈ M, j ∈ M}. (21)

→ If rank(X ) = p and M = Mall, need to evaluate p2p−1 t-values.

→ Computations are specific to the design X .

→ Universal bounds needed in high-dimensional problems.
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PoSI: one primary predictor

Sometimes the analysis is centred on a predictor of interest, Xj , while the
other predictors in M act as controls, so that

– The submodel space is Mj = {M ∈ Mall : j ∈ M}.

– Only the t-statistic associated with Xj is relevant.

In this context, the PoSI constant is defined differently:

Kj(X ,M, α, r) = min

{
K > 0: P

(
max
M∈Mj

|tjM | ≤ K

)
≥ 1− α

}
. (22)

As in the unrestricted case, exact coverage with this constant is achieved
by the significance-hunting procedure

M̂∗
j (Y ) = argmax

M∈Mj

|tjM |. (23)
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PoSI: Scheffé bound

PoSI provides simultaneous inference for up to p2p−1 linear contrasts βjM .

Scheffé’s method provides simultaneous protection for all linear
combinations without all the computational burden.

Write

tx =
(Y − µ)T x

σ̂∥x∥
, x ∈ span(X ) \ {0}. (24)

Recall that for x ∝ rjM ∈ span(X ), tx = tjM , so simultaneous inference for
all the directions in the column space of X is an overkill for our problem.

Daniel Garćıa Rasines LTCC: Selective Inference 32 / 48



PoSI: Scheffé bound

Scheffé’s constant, explicitly given by KS(α, d , r) =
√

dFd,r ,1−α, with
d = dim{span(X )}, satisfies

P

(
sup

x∈span(X )

|tx | ≤ KS

)
= 1− α, (25)

and thus it provides valid selective intervals regardless of the design.

Naturally K ≤ KS for any X , and often the difference is substantial,
but provides a valid solution when simulation of PoSI constant is too
costly.
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PoSI: size of the PoSI constant

Asymptotic bounds for n ≥ p, p → ∞ and M = Mall:

– Lower bound: K = Ω(
√
log p), achieved by orthogonal designs.

– Upper bound: K = O(
√
p), achieved by equicorrelated designs.

→ For orthogonal X , βjM ≡ βj for all (j ,M), so only p directions need to
be covered.

→ Large range (
√
log p,

√
p) suggests strong dependence on X .

→ Scheffé constant has KS ∼ √
p, so its optimality is case-dependent.

For sparse model spaces, Ms = {M ⊆ {1, . . . , p} : |M| ≤ s},

K = O
(√

s log(p/s)
)
. (26)
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PoSI: other universal bounds

A general upper bound for K is given by

QT{g(M,X ), r , 1− α/2} ≤ g(M,X ) + A

1− Br−1/2
(27)

for some known constants A,B > 0, where QT (x , r , α) is the α quantile
of a non-central t distribution with r degrees of freedom and
non-centrality parameter x , and

g(M,X ) = E
[
max
M∈M

max
j∈M

|wT
jMZ |

]
,Z ∼ N(0, In),w

T
jM = eTjMX †

M/∥eTjMX †
M∥.

(28)
Two important cases:

– Orthogonal designs: g(M,X ) =
√

2 log(2p).

– Sparse models, Ms = {M : |M| ≤ s}: g(M,X ) =
√

2s log(6p/s).

Further refinements are available in the literature combining these two
cases under the Restricted Isometry Property.
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PoSI: size of the PoSI constant (empirical)

Set p = 10, n ∈ {10, . . . , 40}, r = ∞ and α = 0.05; predictors generated
as Gaussian vectors with covariance Σii = 1, Σij = 0.5; Nsim = 5× 104.

M = Mall; M = {M : |M| ≤ 5}.
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→ The Scheffé constant for this problem is 4.28.
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PoSI: coverage

Empirical coverages of 95% CIs over 5000 samples; setting as before.

Data generated as Y = Xβ + N(0, In) under two parameters:

– β(1) = 0.
– β(2) = (1, 1,−1,−1, 0, . . . , 0)T .

Variable-selection rules:

– Lasso with cross-validation.
– Screening: a predictor is selected iff its significance p-value in the

full linear model µ = Xβ is below 0.05.

p = 10,n = 30 p = 10,n = 1000

β(1)

β(2)

Lasso Screen.
PoSI 97.6 97.2

Scheffé 99.8 99.8
Unadj. 63.6 62.5
PoSI 99.5 99.5

Scheffé 99.9 100
Unadj. 93.4 92.8

Lasso Screen.
PoSI 95.7 95.4

Scheffé 99.7 99.8
Unadj. 50.5 50.4
PoSI 99.2 99.1

Scheffé 100 99.9
Unadj. 92.5 88.7
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PoSI: extensions

The original PoSI framework has some practical limitations, most notably
the restrictive distributional assumptions

Y ∼ N(µ, σ2In), σ̂2 ∼ σ2χ
2
r

r
. (29)

Bachoc et al.2 develop a more general framework that

– Provides asymptotically valid (but fixed-p) confidence intervals
without parametric assumptions on the errors ε.

– Does not require a consistent estimator of σ.

– Is applicable with other types of data (e.g. binary).

2Bachoc, Preinerstorfer, Steinberg (2020). “Uniformly valid confidence intervals
post-model-selection”. Ann. Stat.

Daniel Garćıa Rasines LTCC: Selective Inference 38 / 48



Generalised PoSI: framework

– Data Y = (Y1, . . . ,Yn)
T ∼ Pn has independent but not

necessarily identically distributed components.

– Pn ∈ Pn, where Pn is a large non-parametric family of distributions.

– Statistician has a set of models Mn = {M1,n, . . . ,Md,n}, possibly
misspecified, where each Mj,n is a set of distributions over B(Rn).

– For each model M ∈ Mn there is a prespecified parameter of
interest, θM,n(Pn) ≡ θM,n, of dimension m(M), and a corresponding

estimator θ̂M,n. Typically θM,n is a projection of Pn onto Pn.

Note: We can phrase the original PoSI problem as a special case of this
framework with Pn = N(µn, σ

2In), M = {N(XMβM , σ2In) : β
M , σ2}, and

θM,n = X †
Mµn.
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Generalised PoSI: objective

For a fixed α ∈ (0, 1), define a family of intervals for θ
(j)
M,n,

{CI (j)1−α,M : M ∈ Mn, 1 ≤ j ≤ m(M)}, (30)

satisfying

lim inf
n→∞

Pn

(
θ
(j)
M,n ∈ CI

(j)
1−α,M for all 1 ≤ j ≤ m(M),M ∈ Mn

)
≥ 1− α.

(31)

It then follows that

lim inf
n→∞

Pn

(
θ
(j)

M̂n,n
∈ CI

(j)

1−α,M̂n
for all 1 ≤ j ≤ m(M̂n)

)
≥ 1− α (32)

for any model-selection procedure M̂n : Rn → Mn.
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Generalised PoSI: notation

Let θn = (θTM1,n
, . . . , θTMd ,n

)T and θ̂n = (θ̂TM1,n
, . . . , θ̂TMd ,n

)T .

Assume regularity conditions such that

d
{
diag(Vn)

†/2(θ̂n − θn),N(0, corr(Vn))
}
→ 0 as n → ∞. (33)

for a sequence of covariances Vn, where d{·} is any distance metrising
convergence in distribution, and

– diag(A) is the diagonal matrix sharing the diagonal with A.

– A1/2 is the square root of a SPD matrix A.

– A†/2 = (A†)1/2.

– corr(A) = diag(A)†/2A diag(A)†/2.
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Generalised PoSI: notation

Define K1−α(Σ) as the 1− α quantile of ∥Z∥∞, where Z ∼ N(0,Σ).

This new “PoSI constant” is based on a Gaussian distribution because
the guarantees of this method are asymptotic for fixed p.

The original PoSI constant in the known-σ2 case (r = ∞) can be written
as K1−α(corr(ΓX )), where the |Mi | × |Mj | block of ΓX is given by

X †
Mi
(X †

Mj
)T , (34)

for Mi ,Mj ∈ M.
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Generalised PoSI: consistent variance estimation

Theorem

(Bachoc et al., Theorem 2.3) Let V̂n be a consistent estimator of Vn.
Under certain asymptotic conditions on θ̂n and V̂n, the intervals

CI
(j)
1−α,M = θ̂

(j)
M,n ±

√
[V̂n]ρ(M)+jK1−α(corr(V̂n)) (35)

are asymptotically valid post-selection 1− α confidence intervals for θjM ,

where for M = Mj,n, ρ(M) =
∑j−1

l=1 m(Ml,n).

→ Since guarantees are only aymptotic, the PoSI constant is computed
from a multivariate Gaussian instead of a multivariate t distribution.

→ In a fully non-parametric setting consistent estimation of the variance
is rarely possible, so this construction is still of limited use.
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Generalised PoSI: variance overestimation

Theorem

(Bachoc et al., Theorem 2.5) Suppose there exists estimators v̂2
j,n of

[Vn]j , and an estimator K̂n of K1−α(corr(Vn)) such that

P

(
K1−α(corr(Vn))

K̂n

max
j

√
[Vn]j
v̂2
j,n

> 1 + ε

)
→ 0 for all ε > 0. (36)

Then, under the same conditions as before, the intervals

CI
(j)
1−α,M = θ̂

(j)
M,n ±

√
v̂2
ρ(M)+j,nK̂n (37)

are asymptotically valid post-selection 1− α confidence intervals for θjM .

→ Estimators v̂2
j,n are possible to construct in a variety of settings.

→ Widely applicable upper bounds for K1−α(corr(Vn)) are available.
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Generalised PoSI: homoskedastic quantitative data

Consider a misspecified version of original PoSI, where

– The true distribution of Y is such that the entries are independent,
have identical variance σ2

n, and

max
i=1,...,n

[
E
(
|Yi − E(Yi )|2+δ

)] 2
2+δ ≤ τσ2

n (38)

for some δ > 0, τ ≥ 1.

– The set of working models Mn for Y contains homoskedastic linear
models E(Y ) = XMβM , M ⊆ {1, . . . , p}, with p fixed.

Asymptotically valid selective CIs for projection parameters are given by

CI
(j)
1−α,M = β̂

(j)
M,n ±

√
σ̂2
M,n[(X

T
MXM)−1]jjK1−α(corr(ΓX )); (39)

σ̂2
M,n =

∥(In − PM)Y ∥2

n − |M|
. (40)
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Generalised PoSI: homoskedastic quantitative data

The resulting intervals are very similar to original PoSI intervals, but
there are two key differences:

– The variance is estimated using the residual sum of squares from
the fit of the selected model. This will in general overestimate
the true variance, but adapts to misspecification.

– Since validity is guaranteed only asymptotically, the PoSI constant is
computed from a multivariate Gaussian (rather than t) distribution.

This framework can be applied to heteroskedastic and binary data.
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Data example

Diabetes dataset of Hastie and Efron (2012).

442 patients, 10 covariates.

Response: quantitative measure of disease progression.

Covariates: age, sex, BMI, blood pressure, and 6 blood serum
measurements.

We run the LASSO with penalty selected by cross-validation to identify
the most significant predictors, obtaining:

BMI MAP HDL LTG
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Data example

Comparison of unadjusted intervals with PoSI intervals at 95% level.
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HDL is deemed significant (within the selected model) if the selection step
is ignored, but when the appropriate adjustment is made there is no
ground for rejection.
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