
Recap

A typical data analysis follows this structure:

1. Obtain data D = [Y ,X ], from a potentially very complex
distribution, with an objective in mind.

2. Statistician performs an exploratory analysis on D to select a
working model M to fit and a set of inferential objectives.

3. Model-fitting and inference are carried out using the same data set.

The key idea is that the selection step injects additional sampling
variability that needs to be accounted for to ensure repeated-sampling
validity of the inferences in the last step.
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Recap

For a quantitative response Y , with E[Y ] = µ, we introduced the
projection-parameter as the solution of the misspecified least-squares
problem,

βM = X †
Mµ, (1)

which can be thought of as the best approximation of µ in the linear
model {µ = XMβM : βM ∈ Rp}.

PoSI framework (and extensions) provides valid inference for a selected
βM̂ universally over all model selection procedures M̂ by expanding
the classical confidence intervals via the PoSI constant K , for which

P

(∣∣∣∣∣ β̂jM̂ − βjM̂

σ̂[(XT
M̂
XM̂)−1

jj ]1/2

∣∣∣∣∣ ≤ K ∀ j = 1, . . . , |M̂|

)
≥ 1− α. (2)
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More powerful selective inference

PoSI is necessarily conservative because it is required to protect against
any selection rule, even those which make little sense.

To remedy this, in addition to restricting the model space, one can
decrease the size of the PoSI confidence regions by limiting the set of
allowed selection rules.

Motivated by ideas from differential privacy, a powerful restriction comes
via the notion of algorithmic stability.

Loosely speaking, a selection rule is stable if it is not very sensitive to
the data.

Broadly, the idea is that, for a stable selection rule, the degree of
dependence between model selection and inference is bounded, and
therefore the selection bias can be controlled.
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More powerful selective inference

Stability is a property of randomised selection rules.

The output of a randomised selection rule M̂, M̂(y), is a random variable
on the power set of {1, . . . , p}.

In general, starting from a deterministic rule M̂ : Rn → M,
M ⊆ 2{1,...,p}, a randomised version can be obtained by applying it to a
noisy version of the data, such as Ỹ = Y +W , where W is artificial
noise from a known distribution generated by the statistician.

Conditionally on Y = y , M̂(y +W ) is a random variable whose output is
more or less similar to M̂(y) depending on the distribution of W .

In general, stability is a property of randomised algorithms (not
necessarily model selection rules), A : Rn → S, where S is a set of
random variables.
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More powerful selective inference

Closeness between the output of two randomised algorithms is formalised
via the concept of indistinguishability (aka max-divergence).

Definition

A random variable A is (η, τ)-indistinguishable from a random variable
B, denoted A ≈η,τ B, if for all measurable sets E ,

P(A ∈ E ) ≤ eηP(B ∈ E ) + τ. (3)

The parameters are η > 0 and τ ∈ [0, 1].

→ In the context of differential privacy, η is a user-specified parameter
that controls the trade-off between security and accuracy, and τ is the
probability of having a security breach.

→ In selective inference, we think of η as balancing the information
allocated to selection and inference respectively, and of τ as being
proportional to the miscoverage probability of a confidence set.
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More powerful selective inference

With this notion in mind, we define a stable randomised algorithm as one
for which, for most samples y , we can “guess” the distribution of A(y)
(given y) knowing only the underlying distribution P but not the data y .

Definition

Let A be a randomised algorithm. We say it is (η, τ, ν)-stable with
respect to a distribution P on Rn if there exists a random variable A0,
possibly depending on P, such that

P (y ∈ Rn : A(y) ≈η,τ A0) ≥ 1− ν. (4)

When the algorithm is a model-selection rule, we write A and A0 as M̂
and M0.
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More powerful selective inference

Crucially, stability entails the existence of a random variable M0, which
can be thought of as an oracle selection rule, which is independent of
the data, and therefore does not generate selection bias.

So, if we had access to M0, we could use it instead and report classical
confidence intervals for the selected parameter.

The following result makes this intuition rigorous.

Lemma

Let M̂ be (η, τ, ν)-stable selection rule and M0 be the corresponding
oracle rule. Then

[Y , M̂(Y )] ≈η,τ+ν [Y ,M0], (5)

with Y and M0 independent.
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More powerful selective inference

Consider a selective inference problem with data Y ∈ Rn and
model-dependent targets of inference {βM : M ∈ M}.

Suppose that we can find a collection {R̂α
M(·) : M ∈ M, α ∈ (0, 1)} such

that
P
(
βM ∈ R̂α

M(Y )
)
≥ 1− α for all M ∈ M, α ∈ (0, 1). (6)

Theorem

Fix δ ∈ (0, 1) and let M̂ be a (η, τ, ν)-stable selection algorithm. Then

P
{
βM̂ ∈ R̂δe−η

M̂
(Y )

}
≥ 1− (δ + τ + ν). (7)

→ Under stability, we can effectively ignore selection and report classical
intervals with a “selection-adjusted” nominal coverage.

For a given a (δ, τ, ν) and a desired coverage 1− α, the adjusted nominal
coverage needs to be α̃ = (α− τ − ν)e−η.

Daniel Garćıa Rasines LTCC: Selective Inference 9 / 41



More powerful selective inference

Proof.

By the lemma,

P
{
βM̂ /∈ R̂δe−η

M̂
(Y )

}
≤ eηP

{
βM0 /∈ R̂δe−η

M0
(Y )

}
+ τ + ν

= eηE
[
P
{
βM0 /∈ R̂δe−η

M0
(Y ) | M0

}]
+ τ + ν.

By construction,

P
{
βM0 /∈ R̂δe−η

M0
(Y ) | M0

}
≤ δe−η, (8)

and therefore

P
{
βM̂ /∈ R̂δe−η

M̂
(Y )

}
≤ eηe−ηδ + τ + ν = δ + τ + ν. (9)
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More powerful selective inference

In the PoSI framework, where Y ∼ N(µ, σ2In) and βM = X †
Mµ, these

confidence regions specialise to the joint confidence intervals[
β̂jM̂ ± KM̂(δe−τ )[(XT

M̂
XM̂)−1]

1/2
jj σ̂

]
, j = 1, . . . , |M̂| (10)

where σ̂ is a suitable estimator of σ, and KM(α) is a model-dependent
PoSI constant: the minimum value of K satisfying

P

(
max

1≤j≤|M|

∣∣∣∣∣ β̂jM − βjM

[(XT
MXM)−1]

1/2
jj σ̂

∣∣∣∣∣ ≤ K

)
≥ 1− α. (11)
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More powerful selective inference

In many cases, stable selection rules can be derived from existing ones via
addition of Laplace noise.

Let Y ∼ N(µ, σ2In) for a known σ > 0, and suppose that the selection
rule is a function of the randomised algorithm A(Y ) = aTY +W for
some fixed a ∈ Rn, where

W ∼ Laplace

(
z1−ν/2σ∥a∥

η

)
, (12)

This is, M̂ = M ⇐⇒ A(Y ) ∈ EM for some EM ⊆ R.

We have that M̂ is (η, 0, ν)-stable.
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More powerful selective inference

To see this, let Yν = {x ∈ Rn : |aT x − aTµ| ≤ z1−ν/2σ∥a∥}, so that

P(Yν) = P(|N(0, 1)| ≤ z1−ν/2) = 1− ν. (13)

Consider the oracle randomised algorithm A(µ) = aTµ+W , which uses
the true unknown mean.

Since the density ratio of a Laplace(b) and a u+Laplace(b) distribution is
upper bounded by e|u|/b, we have, for all x ∈ Yν and all measurable E ,

P{A(x) ∈ E}
P{A(µ) ∈ E}

≤ eη. (14)

Therefore, A and any function of it are (η, 0, ν)-stable.
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More powerful selective inference

From a basic stable rule such as the previous one, more sophisticated
stable rules can be derived using the following two properties.

Postprocessing:

If A is (η, τ, ν)-stable, then any composition B ◦A is also (η, τ, ν)-stable.

For example, if we have a stable version of the lasso algorithm, with
maximiser β̂, the selection rule M̂ = {1 ≤ j ≤ p : β̂j ̸= 0} is also stable.

Composition:

Consider a sequence of algorithms At : S1 × · · · × St−1 × Rn → St for
t = 1, . . . , k . If each algorithm is stable, their composition is also stable,
and the stability parameters can be written as a function of the stability
parameters of the At ’s.

In its most simple form, if each algorithm is (η, 0, 0)-stable, their
composition is (kη, 0, 0)-stable.

For example, this can be applied to stepwise algorithms if each step is
known to be stable.
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More powerful selective inference

As an example, consider a stable version of the lasso algorithm.

For data [Y ,X ] ∈ Rn × Rn×p, the (standard) lasso estimator is the
solution of

β̂ = argmin
β

1

2
∥Y − Xβ∥22 s.t. ∥β∥1 ≤ C , (15)

for a chosen L1 restriction penalty C > 0.

The stable lasso is obtained by running a numerical optimisation routine
for (15) adding Laplacian noise at each step.
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More powerful selective inference

The tuning parameters of the algorithm are the penalty C , the number of
steps k, and the stability-inducing parameters δ and η. Furthermore, let
{ei}pi=1 be the canonical basis of Rp. For theoretical guarantees, we
require Y ∼ N(µ, σ2In) and assume we have an estimator σ̂ of σ.

Stable lasso: Set β(1) = 0. For t = 1, . . . , k :

1. For all ϕ ∈ C · {±ei}pi=1, sample

Wt,ϕ ∼ Laplace

(
4tr ,1−δ/(2d)C∥X∥2,∞

ηn

)
, ∥X∥2,∞ = max

i
∥Xi∥2.

(16)

2. For all ϕ ∈ C · {±ei}pi=1, let αϕ = − 2
nσ̂ϕ

TXT (Y − Xβt) +Wt,ϕ.

3. Set ϕt = argminαϕ.

4. Set β(t+1) = (1−∆t)β
(t) +∆tϕt , where ∆t = 2/(t + 1).

Report β̂ = β(k+1).
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More powerful selective inference

This is essentially a randomised version of the classical Frank-Wolfe
algorithm for the standard lasso which uses the stability of the additive
Laplace noise as a building block. We have the following result.

Theorem

Assume that Y ∼ N(µ, σ2In) and σ̂2 ∼ σ2χ2
r /r . The randomised lasso

algorithm is both

– (kη2/2,
√
2k log(1/δ), δ)-stable.

– (kη, 0, δ)-stable.

By the post-processing property, any model-selection procedure based on
the output of this algorithm, such as

M̂ = {j ∈ {1, . . . , p} : β̂j ̸= 0}, (17)

is stable.

→ Similar results hold for stable versions of other well-established
procedures such as marginal screening.
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Fixed vs. random design

So far we have assumed that the design X is fixed.

This makes modelling and computation easier.

Conceptually, it can be justified in one of the following cases:

– The covariate values are fixed by the experimenter.

– Ancillarity argument: X is random but its distribution is independent
of any parameter of interest. Then, by the Conditionality Principle,
inference ought to be provided conditionally on the observed X .

The latter assumption is often sensible when the working model is
well-specified, but is problematic under misspecification.
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Figure: Buja et al. (2020). “Models as approximations I: consequences
illustrated with linear regression”.

→ The best linear approximation of the true regression function
µ(X ) = E[Y | X ] depends on the distribution of X.
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In view of this, some authors have approached the selective inference
problem from a random-design perspective.

Two main proposals:

– UPoSI: reformulation of the original PoSI framework in the
random-X setting.

– Data splitting: basing model selection and inference on independent
subsamples of the data. Inferential step is thereby unaffected by
selection, allowing usage of standard statistical techniques.
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The inferential target

Let (Yi ,X
T
i )T ∈ R× Rp, i = 1, . . . , n be n samples of observations,

independent but not necessarily identically distributed, and set
Y = (Y1, . . . ,Yn)

T and X = [X1, . . . ,Xp]
T .

For a model M ⊆ {1, . . . , p} define the population and empirical risks of
the squared loss:

Rn(θ;M) =
1

n

n∑
i=1

E
[
{Yi − Xi (M)T θ}2

]
(18)

R̂n(θ;M) =
1

n

n∑
i=1

{Yi − Xi (M)T θ}2, (19)

where Xi (M) = (Xij)j∈M ∈ R|M|, and their respective minimisers

βn,M = arg min
θ∈R|M|

Rn(θ;M), β̂n,M = arg min
θ∈R|M|

R̂n(θ;M). (20)
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The inferential target

Define the full-model second order matrices and vectors

Σn =
1

n

n∑
i=1

E
[
XiX

T
i

]
, Σ̂n =

1

n

n∑
i=1

XiX
T
i (21)

Γn =
1

n

n∑
i=1

E
[
XiY

T
i

]
, Γ̂n =

1

n

n∑
i=1

XiY
T
i (22)

The analogous quantities for a given model M are defined with X (M)
instead of X . They are simply submatrices and subvectors of the
full-model versions.

The least squares parameter and its estimator satisfy

Σ̂n(M)β̂n,M = Γ̂n(M) and Σn(M)βn,M = Γn(M). (23)
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The inferential target

Some remarks:

– βn,M is the best linear predictor of Y using X (M) relative to the
squared loss.

– The normal equations are written implicitly because the framework
allows for non-unique minimisers. In such cases the corresponding
confidence regions will contain a subspace of Rp.

– For a fixed M,

√
n{β̂n,M − βn,M} d−→ N(0,VM) (24)

for some matrix VM > 0 under mild conditions.

– In general, for M ⊆ M ′ it does not hold that βn,M is a subvector of
βn,M′ due to dependence among the columns of X .
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The inferential target

As usual focus on inference via confidence regions.

Asymptotic normality lends itself for the construction of regions
R̂n,M ⊆ R|M| such that

lim inf
n→∞

P
(
βn,M ∈ R̂n,M

)
≥ 1− α. (25)

UPoSI confidence regions satisfy instead

lim inf
n→∞

P
(
βn,M̂ ∈ R̂n,M̂

)
≥ 1− α (26)

for an arbitrary measurable M̂ : Rn × Rn×p → M, where M is the power
set of {1, . . . , p}.
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Selective inference as simultaneous inference

Theorem

For any set of confidence regions {R̂n,M : M ∈ M} and 0 < α < 1,

P
(
βn,M̂ ∈ R̂n,M̂

)
≥ 1− α for all M̂ : P(M̂ ∈ M) = 1 (27)

if and only if

P

( ⋂
M∈M

{
βn,M ∈ R̂n,M

})
≥ 1− α. (28)

→ We can solve the selective inference problem (27) by solving the
simultaneous inference problem (28).

For asymptotic validity of the confidence regions, require

lim inf
n→∞

P

( ⋂
M∈M

{
βn,M ∈ R̂n,M

})
≥ 1− α. (29)
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Selective inference as simultaneous inference

Proof.

For M ∈ M, define the event AM =
{
βn,M ∈ R̂n,M

}
.

(28) ⇒ (27) : It is clear that

⋂
M∈M

AM ⊆ AM̂ for all M̂.

(27) ⇒ (28) : Let M̂ be such that M̂ ∈ argminM∈M 1{AM}, so that
1{AM̂} = minM∈M 1{AM}. It follows that⋂

M∈M

AM = AM̂ .
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Selective inference as simultaneous inference

Worst possible selection rule:

The second part of the proof shows existence of an “adversarial selection
rule” that picks a model if the corresponding parameter is not covered by
the confidence region.

As in the fixed-X case, this selection rule is not actionable, as it depends
on the population parameter.

Inherent high-dimensionality:

In view of the theorem, selective inference requires inference for a very
large number of parameters βn,M .

For instance, if p < n, there are p2p−1 parameters in the various
submodels.
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UPoSI confidence regions

Recall the second-order arrays and their estimators:

Σn =
1

n

n∑
i=1

E
[
XiX

T
i

]
, Σ̂n =

1

n

n∑
i=1

XiX
T
i (30)

Γn =
1

n

n∑
i=1

E
[
XiY

T
i

]
, Γ̂n =

1

n

n∑
i=1

XiY
T
i (31)

and their submodel versions Σn(M), Σ̂n(M), Γn(M), Γ̂n(M), and
introduce the estimation errors

DΣ
n = ∥Σ̂n − Σn∥∞ = max

M∈M2

∥Σ̂n(M)− Σn(M)∥∞ (32)

DΓ
n = ∥Γ̂n − Γn∥∞ = max

M∈M1

∥Γ̂n(M)− Γn(M)∥∞, (33)

where Mk = {M : |M| ≤ k}.
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UPoSI confidence regions

The UPoSI confidence regions are

R̂n,M = {θ ∈ R|M| : ∥Σ̂n{β̂n,M − θ}∥∞ ≤ CΓ
n (α) + CΣ

n (α)∥θ∥1} (34)

R̂†
n,M = {θ ∈ R|M| : ∥Σ̂n{β̂n,M − θ}∥∞ ≤ CΓ

n (α) + CΣ
n (α)∥β̂n,M∥1} (35)

where CΓ
n (α) and CΣ

n (α) are bivariate joint upper α quantiles of DΓ
n and

DΣ
n :

P
(
DΓ

n ≤ CΓ
n (α) and DΣ

n ≤ CΣ
n (α)

)
≥ 1− α. (36)

Note:

– R̂n,M has finite-sample guarantees and requires less assumptions, but
it is more difficult to interpret and analyse.

– By contrast, R̂†
n,M provides asymptotic guarantees and requires

additional assumptions, but they are more transparent.
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UPoSI confidence regions

Some considerations:

– Bivariate quantiles, and therefore the confidence regions, are not
unique. One may marginally increase one and decrease the other
suitably, maintaining the bivariate coverage probability.

– The quantiles need to be estimated from the data. A bootstrap
approach can be used to this end.

– Under mild conditions, max{CΓ
n (α),C

Σ
n (α)} → 0 as n → ∞.

– As opposed to fixed-X PoSI, there is no gain here from using sparse
model spaces. This is because the estimation errors depend only on
models of sizes 1 and 2.
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UPoSI confidence regions

Theorem

The confidence regions {R̂n,M : M ∈ M}, where

R̂n,M = {θ ∈ R|M| : ∥Σ̂n{β̂n,M − θ}∥∞ ≤ CΓ
n (α) + CΣ

n (α)∥θ∥1}, (37)

satisfy

P

( ⋂
M∈M

{
βn,M ∈ R̂n,M

})
≥ 1− α. (38)

An analogous result holds for the alternative regions R̂†
n,M under extra

regularity conditions. Note:

– If |M| > n, Σ̂n is singular, and R̂n,M contains a nontrivial affine
subspace of Rp.

– Independence is not required (though it is needed for quantile
estimation).
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UPoSI confidence regions

Proof.

The proof is based on deterministic inequalities. Start from

Σ̂n(M)(β̂n,M − βn,M) + (Σ̂n(M)− Σn(M))βn,M = Γ̂n(M)− Γn(M).

The triangle inequality gives

∥Σ̂n(M)(β̂n,M−βn,M)∥∞
≤ ∥Γ̂n(M)− Γn(M)∥∞ + ∥(Σ̂n(M)− Σn(M))βn,M∥∞
≤ ∥Γ̂n(M)− Γn(M)∥∞ + ∥Σ̂n(M)− Σn(M)∥∞∥βn,M∥1
≤ ∥Γ̂n − Γn∥∞ + ∥Σ̂n − Σn∥∞∥βn,M∥1.

Therefore

P

( ⋂
M∈M

{
∥Σ̂n(M)(β̂n,M − βn,M)∥∞ ≤ DΓ

n +DΣ
n ∥βn,M∥1

})
= 1. (39)

Substituting the errors by the quantiles gives the result.
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UPoSI confidence regions

Some important remarks:

– A bootstrap algorithm can be used to estimate the error quantiles
such that the confidence sets are asymptotically valid under the
quasi-exponential asymptotic regime log(p)7 = o(n).

– The UPoSI confidence sets are not hyperrectangles, and therefore do
not immediately imply marginal confidence intervals for each
component, but there exists algorithms for constructing the smallest
covering hyperrectangle for the sets.

– This method can be applied also in the fixed-X setting and can in
fact produce smaller, though less interpretable, regions.
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UPoSI confidence regions

Simulation study with fixed-X :1

Comparison of PoSI, UPoSI and UPoSI smallest hyperrectangle.

The data-generating model is Yi = XT
i β + εi , with β = (0, . . . , 0)T and

ε ∼ N(0, 1) independently, n = 200, p = 15.

Three covariate settings considered:

A. Orthogonal design: Σ̂n = Ip.

B. Exchangeable design: Σ̂n = Ip − (p + 2)−11p1Tp .

C. Worst-case design:

Σ̂n =

[
Ip−1 c1p−1

0Tp−1

√
1/2

]
. (40)

Settings A and B are theoretically optimal for the original PoSI approach,
while setting C leads to the largest PoSI constant.

1From Kuchibhotla, Brown, Buja, Cai, George, Zhao (2020). “Valid post-selection
inference in model-free linear regression”, The Annals of Statistics.
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UPoSI confidence regions

Figure: Simulation results for 100 replications. Nominal coverage set at 95%.
Plot shows simultaneous coverage and size of the confidence sets for different
model sizes 1 ≤ |M| ≤ 15. In setting C, models containing the last covariate
produce significantly larger regions than those which do not.
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Data splitting

An alternative, “obvious” approach to selective inference with a random
design is sample splitting, whereby only a subset of the observations is
used for model selection and the rest are used for inference.

Assume we have two subsets of IID observations

D1 = {(Yi ,X
T
i )T : i = 1, . . . , n},D2 = {(Yi ,X

T
i )T : i = n + 1, . . . , 2n}.

Since the data is IID, βn,M is independent of n, so we shall write βM .

Furthermore, we restrict M to the set of M’s such that the least squares
problem has a unique solution, so that

βM = Σ(M)−1Γ(M),

where Σ(M) = E[X (M)X (M)T ] and Γ(M) = E[X (M)Y T ], and similarly
for β̂M .
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Data splitting

Clearly, if {R̂M : M ∈ M} are valid confidence sets for βM for fixed M,
they are also valid under selection for any selection rule M̂, as

P
(
βM̂ ∈ R̂M̂

)
=
∑

M∈M

P
(
βM ∈ R̂M | M̂ = M

)
P
(
M̂ = M

)
(41)

=
∑

M∈M

P
(
βM ∈ R̂M

)
P
(
M̂ = M

)
≥ 1− α. (42)

Trivially, they are also valid conditionally on the selected model, M̂ = M.

For a fixed M, standard inferential procedures can be used to construct
asymptotic non-parametric confidence sets.
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Data splitting: confidence sets based on asymptotic
normality

Under suitable conditions,
√
n
{
βM − β̂M

}
d−→ N(0,VM) for a positive

definite matrix VM .

The confidence sets based on a normal approximation are

R̂M =

{
β ∈ R|M| : ∥β − β̂M∥∞ ≤ tα√

n

}
, (43)

where tα is such that

P
(
∥V̂ 1/2

M Z∥∞ ≤ tα
)
= α, (44)

Z follows an |M|-dimensional standard Gaussian distribution independent
of the data, and V̂M is a plug-in estimator of VM .

Under certain distributional assumptions and bounded model spaces Mn

with maxM∈Mn |M| = o(n1/5), we have, for all M̂,

lim inf
n→∞

P(βM̂ ∈ R̂M) ≥ 1− α. (45)
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Data splitting: bootstrap confidence sets

Evaluation of V̂M and computation of the quantile tα turns out to be
computationally demanding in some settings.

Alternatively, let t∗α be the smallest positive number such that

P
(√

n∥β̂∗
M − β̂M∥∞ ≤ t∗α | D2

)
≥ 1− α, (46)

where β̂∗
M is a (standard) bootstrap copy of β̂M using D2.

The bootstrap confidence sets are defined as

R̂∗
M =

{
β ∈ R|M| : ∥β − β̂M∥∞ ≤ t∗α√

n

}
. (47)

These confidence sets are asymptotically valid under similar conditions as
the previous ones.
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Data splitting

We have presented these constructions for the LS parameter βM , but the
framework can be applied to other type of inferential targets:

– The Leave out covariate inference (LOCO) parameters, which
measure the importance of the selected covariates:

γj(M) = E
[
|Y − β̂T

Mj
X (Mj)| − |Y − β̂T

MX (M)|
]
, (48)

where β̂M is any estimator of βM , and Mj and β̂Mj are obtained by
re-running model selection and estimation after removing the j-th
covariate from the data.

– The prediction parameter, which measures how well the selected
model will predict future observations:

ρM = E
[
|Y − β̂T

MX (M)|
]
. (49)
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Data splitting

Some important remarks about data splitting:

– The main drawback is that it relies on the practitioner committing
themselves to look only at a subset of the data during the selection
stage. Thus, it does not protect against the bad practice of selecting
the most convenient split and not acknowledging it.

– Ignoring some observations in the selection stage might even by
inadvisable; e.g. if selection is the main goal or if one wants to study
the stability of the selection procedure with respect to the split.

– It can sometimes have very little power in both stages (more
powerful splitting strategies will be discussed later).

– The arbitrariness of the data split can be unsettling: two different
statisticians using the same dataset but different splits can end up
providing inference for different parameters.

– It requires identically distributed observations, while UPoSI does not.
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