
This lecture

The conditional approach to selective inference:

– Motivation and main ideas: Fithian, Sun, Taylor (2017). “Optimal
inference after model selection”, arXiv:1410.2597.

– Conditional inference with affine selection rules: Lee, Sun, Sun,
Taylor (2016). “Exact post-selection inference, with application to
the lasso”, The Annals of Statistics.

– Selective inference for clustering: Gao, Bien, Witten (2022).
“Selective inference for hierarchical clustering”, Journal of the
American Statistical Association.
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The conditional approach

So far we have explored construction of confidence regions

{RM(Y ) : M ∈ M} (1)

satisfying (at least approximately)

P
(
βM̂ ∈ RM̂(Y )

)
≥ 1− α, M̂ : Rn → M. (2)

Alternatively, one might require the confidence regions to be valid
conditionally on the selected model, that is, to satisfy

P
(
βM̂ ∈ RM̂(Y ) | M̂ = M

)
(3)

= P
(
βM ∈ RM(Y ) | M̂ = M

)
≥ 1− α, (4)

where the selection event {M̂ = M} = {y ∈ Rn : M̂(y) = M} is formed
by all the data points that would have led to selection of the same model
as the data actually observed.
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The conditional approach

We shall refer to this approach to selective inference as the conditional
approach.

For each M ∈ M, denote by EM = {M̂ = M} the selection event.

Clearly, inferential procedures with conditional guarantees are also valid
unconditionally, as

P
(
βM̂ ∈ RM̂(Y )

)
=
∑

M∈M

P(EM)P (βM ∈ RM(Y ) | EM) ≥ 1− α, (5)

but the reverse is not true in general. We can see this very clearly in the
following example.
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The conditional approach

Example

(Selected mean problem) Let Yi ∼ N(µi , 1), i = 1, . . . , n, independently,
and define the data-dependent parameter of interest ψ = µI , where
I = argmax{Yi}, i.e. inference is provided for the mean of the maximum
observation.

The standard PoSI intervals RI = [YI ± K ], where K satisfies

P
(

max
i=1,...,n

|Yi − µi | ≤ K

)
= 1− α, (6)

are unconditionally valid 1− α selective CIs.

However, conditionally on having selected one of the means, the coverage
can be well below the nominal one.
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The conditional approach

Example

Figure: Coverages of 95% unconditional selective CIs with n = 2 samples, for
µ1 = 0 and µ2 ∈ [0, 3]. In black, unconditional coverage; in red, coverage
conditionally on selecting µ1; in blue, coverage conditionally on selecting µ2.
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The conditional approach

The conditional approach asserts that the answer to an inferential
question selected with the data must be valid given that the question
was asked.

This ensures that, for example, (1− α)% of the confidence intervals
reported for a specific parameter βM contain the true value β0

M .

Abstractly, we can think about the conditional approach as a form of
sample splitting: the component of the data used for selection is the
random variable Z = 1(Y ∈ EM), and the data used for inference is
Y | Z = 1.

−→ Conditioning on selection effectively discards all the information
contained in the data that has been used for selection, making the
inferential analysis independent of the selection step.
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The conditional approach

Example

“Publication bias” refers to the influence that the results of a statistical
analysis have on the probability of reporting/publishing the findings.

As an idealised example, suppose n research groups take independent
measurements of a quantity µ, obtaining respective samples Yi = µ+ εi ,
but that they only report the analysis if the data indicates that µ is
significant, e.g. if |Yi | > 2.

Then, the collection of published analyses on this particular effect µ will,
on average, overstate the size of the true underlying effect.

According to the conditional approach, the published analysis ought to be
carried out conditionally on the event that the mean appeared significant,
i.e. on {|Yi | > 2}.
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Affine selection rules

Most analytic methodology for conditional inference is restricted to the
class of affine selection rules, for which all the selection events can be
written in the form

EM = {y ∈ Rn : Ay ≤ b} (7)

for some A ∈ Rm×n and b ∈ Rm independent of the data (but dependent
on M).

This class is general enough to accommodate some important, non-trivial
types of selection rules.

The events of the selected mean problem can also be written in this
way. For example, E1 = {y ∈ Rn : y1 = maxi=1,...,n{yi}} has b = 0 and

A =


−1 1 0 0 · · · 0
−1 0 1 0 · · · 0
...

...
...

...
...

...
−1 0 0 0 . . . 1

 . (8)
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Affine selection rules

A popular tool for high-dimensional regression is the lasso estimator and
its variants.

For data y ∈ Rn, X ∈ Rn×p, the lasso estimate is defined as an
L1-penalised version of the least squares problem,

β̂ = argmin
β

1

2
∥y − Xβ∥22 + λ∥β∥1, (9)

where λ > 0 is a user-specified parameter that controls the amount of
regularisation (we shall assume uniqueness of the solution, which is
guaranteed under mild assumptions on the design).

Since the nature of the L1 norm forces some of the coefficients of β̂ to be
zero, a natural model selection rule is given by

M̂ = {j = 1, . . . , p : β̂j ̸= 0}. (10)
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Affine selection rules

It turns out that the selection events for this model selector are given by
the union of 2|M| affine regions, where each region corresponds to a
combination of signs of the active lasso coefficients β̂j ̸= 0.

For every M ∈ 2{1,...,p} \ ∅ and s ∈ {−1, 1}|M|, define

AM(s) =

 λ−1XT
−M(I − PM)

−λ−1XT
−M(I − PM)

−diag(s)X †
M

 , bM(s) =

 1− XT
−M(XT

M )†s
1+ XT

−M(XT
M )†s

−λdiag(s)(XT
MXM)−1s

 ,

where X−M contains the columns that are not in M and PM is the
projection onto span(XM).

For a lasso solution β̂ such that M̂ = M, let ŝ ∈ {−1, 1}|M| be the vector
of signs of the active lasso coefficients, e.g. if β̂ = (2, 0,−3, 0)T ,
ŝ = (1,−1)T .
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Affine selection rules

Theorem

For the lasso model selector M̂ given in (10), it holds that

{M̂ = M, ŝ = s} = {AM(s)y ≤ bM(s)}. (11)

The full selection event can be then recovered as

EM =
⋃

s∈{−1,1}|M|

{AM(s)y ≤ bM(s)}. (12)

However, we will often work with the finer events EM(s) = EM ∩ {ŝ = s},
as they are easier to handle analytically and computationally, and the
extra conditioning does not affect the validity of the inferences.

In some cases there are stronger reasons for conditioning on the signs
conceptually; e.g. if an effect is only included in the model if it is positive.
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Affine selection rules

Figure: Plot of a lasso selection region for n = 2, p = 3 (Lee et al., 2020).
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Affine selection rules

Proof.

If the lasso solution is unique, for almost every y , a vector of coefficients
β̂ ∈ Rp and a full vector of signs ŝ ∈ Rp are the solution of the lasso
problem if and only if they satisfy the KKT conditions:

XT (X β̂ − y) + λŝ = 0; (13)

ŝj = sign(β̂j) if β̂j ̸= 0; (14)

ŝj ∈ (−1, 1) if β̂j = 0. (15)

Partition the equations into the components relative to M and −M:

XT
M (XM β̂M − y) + λŝM = 0; (16)

XT
−M(XM β̂M − y) + λŝ−M = 0; (17)

sign(β̂M) = ŝM ; (18)

∥ŝM∥∞ < 1. (19)
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Affine selection rules

Proof.

The KKT conditions are necessary and sufficient. Therefore, we have that
{(M̂, ŝ) = (M, s)} if and only if there exists vectors w and u such that

XT
M (XMw − y) + λs = 0; (20)

XT
−M(XMw − y) + λu = 0; (21)

sign(w) = s; (22)

∥u∥∞ < 1. (23)

Solve the first two equations for w and u:

w = (XT
MXM)−1(XT

My − λs); (24)

u = XT
−M(XT

M )†s +
1

λ
XT
−M(In − PM)y ; (25)

and combine them with the condition sign(w) = s and ∥u∥∞ < 1.
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Affine selection rules

Proof.

Writing out these two conditions explicitly gives the desired result:

{sign(w) = s} = {diag(s)w > 0} (26)

= {diag(s)(XT
MXM)−1(XT

My − λs) > 0}; (27)

{∥u∥∞ < 1} =

{
−1 < XT

−M(XT
M )†s +

1

λ
XT
−M(In − PM)y < 1

}
. (28)
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Affine selection rules

Other affine selection rules:

– Elastic net, based on the L1 + L2-penalised estimator

β̂ = argmin
β

1

2
∥y − Xβ∥22 + λ∥β∥1 + γ∥β∥2, λ, γ > 0. (29)

– Marginal screening, which selects the predictors with largest
correlations |XT

j Y |, where X has been standardised to have unit
norm columns.

– Stepwise regression with a fixed number of steps, whereby
predictors are sequentially added/extracted from M̂ to increase the
RSS of a linear fit.

– Least angle regression with a fixed number of steps, a “stepwise
version” of the lasso.
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The polyhedral lemma

A key methodological result for conditional selective inference is the
polyhedral lemma, which provides exact and analytically tractable
confidence intervals (or p-values) when the data is Gaussian and the
selection rule is affine.

Suppose that Y ∼ N(µ,Σ), with Σ > 0 known, and that the parameters
of interest for a selected model M can be written as linear combinations
of the mean: ψM = η(M)Tµ for some η(M) ∈ Rn.

Note that the coefficients of the projection parameter βM = X †
Mµ can be

written in this form, with ηj(M) = (X †
M)T ej for j = 1, . . . , |M|.

Importantly, this method does not provide joint inference for the whole
vector βM , only marginal inferences for the coefficients.
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The polyhedral lemma

For a generic direction of interest η ∈ Rn, decompose Y into two
independent components,

ηTY and Z = (In − cηT )Y , (30)

where c = (ηTΣ−1η)−1Ση.

Lemma

(Polyhedral lemma) For any A and b,

{Ay ≤ b} = {V−(z) ≤ ηT y ≤ V+(z),V0(z) ≥ 0}, (31)

where

V−(z) = max
j : (Ac)j<0

bj − (Az)j
(Ac)j

; (32)

V+(z) = min
j : (Ac)j>0

bj − (Az)j
(Ac)j

; (33)

V0(z) = min
j : (Ac)j=0

bj − (Az)j . (34)
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The polyhedral lemma

Figure: Geometric interpretation of the polyhedral lemma (Lee et al., 2016).
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The polyhedral lemma

Proof.

Write y = c(ηT y) + z and rewrite the polyhedron as

{Ay ≤ b} =
{
A(c(ηT y) + z) ≤ b

}
=
{
Ac(ηT y) ≤ b − Az

}
=
{
(Ac)j(η

T y) ≤ bj − (Az)j for all j
}

=


ηT y ≤ bj−(Az)j

(Ac)j
for j : (Ac)j > 0,

ηT y ≥ bj−(Az)j
(Ac)j

for j : (Ac)j < 0,

0 ≤ bj − (Az)j for j : (Ac)j = 0

 .

Since ηT y is the same quantity for all j , it must be at least the maximum
of the lower bounds, which is V−(z), and no more than the minimum of
the upper bounds, which is V+(z).
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The polyhedral lemma

By the polyhedral lemma, we have that

ηTY | {AY ≤ b} d
= ηTY | {V−(Z ) ≤ ηTY ≤ V+(Z ),V0(Z ) ≥ 0}, (35)

with Z independent of ηTY . Thus, by further conditioning on Z = z ,
where z is such that Ay ≤ b, we have that

ηTY | {AY ≤ b,Z = z} d
= ηTY | {V−(z) ≤ ηTY ≤ V+(z)}, (36)

which is simply a truncated univariate Gaussian distribution, for which
inference is available in closed form.

Specifically, we require inference for ψ = ηTµ in the model

ψ̂ ∼ N(ψ, γ2) | [a, b], γ = ηTΣη, a = V−(z), b = V+(z). (37)

We can have a = −∞ and/or b = ∞, in which case the corresponding
direction is not truncated.
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The polyhedral lemma

Let Y ∼ N(µ, σ2) and consider a generic truncation event E ⊆ R. The
CDF of Y | E is

F E
µ (y) = Pµ(Y ≤ y | Y ∈ E ) =

∫ y

−∞

σ−1ϕ{σ−1(µ− y ′)}
φ(µ)

dy ′, (38)

where φ(µ) = Pµ(Y ∈ E ) is the selection probability.

A 1−α CI for µ valid conditionally on {Y ∈ E} is given by [L(Y ),U[Y ]],
where

FE
L(Y )(Y ) = q1; (39)

F E
U(Y )(Y ) = q2; (40)

with q1 − q2 = 1− α. For example, we can take q2 = 1− q1 = α/2.
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The polyhedral lemma

Figure: CIs for the truncated Gaussian model with 1− α = 0.9 and σ2 = 1, as
a function of the data y . On the left, E = [0,∞); on the right, E = [−2, 2]. In
blue, conditional intervals; in red, unadjusted (classical) intervals.
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The polyhedral lemma

Figure: Coverage of the confidence intervals in the previous setting, as a
function of µ.
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The polyhedral lemma

This result can be used to provide conditional selective inference for the
lasso and other important selection rules by conditioning on the signs of
the selected coefficients.

While the extra conditioning makes the analysis computationally simple,
it unavoidably results in a loss of power: the more conditioning, the less
powerful is the inference.

Assume the conditioning event is E =
⋃

s{A(s)Y ≤ b(s)} and define the
quantities V−

s (z) and V+
s (z) analogously. By a similar argument, we have

ηTY | {E ,Z = z} d
= ηTY |

⋃
s

{V−
s (z) ≤ ηTY ≤ V+

s (z)}, (41)

i.e. the problem is reduced to inference on the mean of a univariate
Gaussian distribution truncated to a union of intervals (note that this
requires computation of 2|M|+1 truncation limits, as opposed to only 2).
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The polyhedral lemma

Figure: Conditioning on a union of polyhedra (Lee et al., 2016).
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The polyhedral lemma

How much power is lost by conditioning on the coefficient signs depends
on how strong the signal is, as demonstrated in the following figure (Lee
et al, 2016). Data was simulated with n = 25 and p = 50, but only the
first 20 coefficients are shown.
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The polyhedral lemma

To be able to use these methods we need to know the variance or at least
have a good estimate of it to plug in.

If p/n is small, estimating σ2 via the residual sum of squares of the full
model µ = Xβ tends to give reasonable results.

In moderate and high-dimensional settings, an effective option is to
construct σ̂2 from the residual sum of squares using a lasso fit tuned by
cross validation.

Alternatively, conservative but safer confidence intervals can be obtained
by using an overestimate of σ2, such as the unconditional sample
variance of Y .
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The polyhedral lemma

To see the polyhedral lemma in practice we return to the diabetes data
example (n = 442, p = 10). In blue, conditional 90% selective intervals
for the coefficients of the projection parameter after lasso selection with
λ = 7 (conditioning on coefficient signs). In red, unadjusted (classical)
intervals. The variance was estimated in the classical way.
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The conditional approach

The conditional approach has two important drawbacks:

– It relies on the selection rule being fixed prior to the analysis:
universal guarantees are unattainable conditionally, as the procedure
would need to be valid given any event containing the observed y ,
whose intersection is E = {y}, leaving no information for inference.

– Even though inferences are specific to a selection rule, they can be
very conservative, as conditioning discards too much information
about the parameter of interest. For example, if Y ∼ N(µ, 1) and
the selection event E has inf(E ) ̸= −∞ or sup(E ) ̸= ∞, the
conditional CIs have infinite expected length:

E[U(Y )− L(Y ) | Y ∈ E ] = ∞. (42)

This result extends to the multidimensional setting when we
condition on the direction of interest.
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The conditional approach

Outside the realm of affine selection rules, there are few rules which
admit nice and tractable selection events.

Loftus (2015)1 characterised the selection events of the lasso tuned with
cross validation (rather than with a prespecified penalty) as intersections
of quadratic sets in y , of the form yTAy + bT y + c > 0.

Alternatively, if the shape of the selection events is unknown but the
selection rule can be reapplied to simulated data, Monte Carlo procedures
might be used for estimating the conditional distribution, but these tend
to be very costly.

1“Selective inference after cross-validation”, arxiv:511.08866
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Selective inference for clustering

Reduction of conditional selective problems to univariate Gaussian models
have been exploited in other areas outside regression.

An important framework of application is inference after clustering.

A common inferential objective in clustering is to test differences in the
means of the different clusters.

Classical testing procedures are useful in situations when the groups are
known or have been selected independently of the data.

However, when the groups are selected using the data, classical tests
yield an extremely inflated false positive rate.
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Selective inference for clustering

Consider the following matrix Gaussian model for n observations of p
features:

X ∼ Nn×p(µ, In, σ
2Ip), (43)

where µ ∈ Rn×p, with rows µi , is unknown, and σ
2 > 0 is known.

In other words, the rows of X are independent N(µi , σ
2In) random

variables.

For G ⊆ {1, . . . , n}, define

µ̄G =
1

|G|
∑
i∈G

µi , X̄G =
1

|G|
∑
i∈G

Xi , (44)

which will be referred to as the mean of G and the empirical mean of G
in X .
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Selective inference for clustering

Given a realisation x of X , consider the two-step adaptive procedure:

1. A clustering algorithm C is used to obtain a partition C(x) of
{1, . . . , n}.

2. For two clusters C1, C2, the same data x is used to test

H0 : µ̄C1 = µ̄C2 versus H1 : µ̄C1 ̸= µ̄C2 . (45)

The classical (non-selective) Wald test computes the p-value as

PH0

(
∥X̄C1 − X̄C2∥2 ≥ ∥x̄C1 − x̄C2∥2

)
, (46)

where, under H0, ∥X̄C1 − X̄C2∥22 ∼ σ2(|C1|−1 + |C2|−1)χ2
p.
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Selective inference for clustering

However, this test does not account for the double-use of the data and is
therefore affected by selection bias.

Since the clusters are selected using the data, it is natural that we will
observed significant differences between the group means, even if they
are equal (just as selected effects in a regression model tend to be
overestimated by their face-value estimators).

We can see this empirically in the following figure.
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Selective inference for clustering

Figure: Gao el al. (2022)
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Selective inference for clustering

Perhaps surprisingly, data splitting does not work for this problem.

→ In the testing stage we need to assign the observations to the clusters
using the training set, thereby breaking independence.

Figure: Gao el al. (2022)
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Selective inference for clustering

In the spirit of the conditional approach, a testing procedure is deemed
valid if the errors guarantees hold conditionally on the groups having
been selected by the clustering algorithm, i.e. if the p-value

PH0

(
∥X̄C1 − X̄C2∥2 ≥ ∥x̄C1 − x̄C2∥2 | C1, C2 ∈ C(X )

)
(47)

is less than a prespecified level α.

Interpretation: Among all realisations of X for which C1 and C2 are
chosen, what proportion have a difference in empirical cluster means at
least as large as the one observed in the dataset, when, in fact,
µ̄C1 = µ̄C2?
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Selective inference for clustering

The unconditional distribution of X̄C1 − X̄C2 under H0 is independent of
the unknown µ, but conditioning on selection breaks the independence,
so we need to get rid of the nuisance parameters.

Write X̄C1 − X̄C2 = XTν, where

[ν]i =
1(i ∈ C1)

|C1|
− 1(i ∈ C2)

|C2|
. (48)

Just as in the polyhedral lemma, we decompose the data into two
orthogonal components, the projection in the direction of interest,

D =

(
X̄C1 − X̄C2

)
∥X̄C1 − X̄C2∥2

, (49)

and its complement,
Z = (In − Pν)X . (50)
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Selective inference for clustering

We can then define the p-value conditionally on Z and D:

p(x) = PH0

(
∥X̄C1 − X̄C2∥2 ≥ ∥x̄C1 − x̄C2∥2 | C1, C2 ∈ C(X ),Z = z ,D = d

)
.

In the direction of interest, the conditioning event can be rewritten as

S(x ; {C1, C2}) =

{
ϕ > 0: C1, C2 ∈ C

(
z +

(
ϕ

1
|C1| +

1
|C2|

)
ν(C1, C2)dT

)}
≡ {ϕ > 0: C1, C2 ∈ C (x ′(ϕ))} .

Theorem

For any non-overlapping C1 and C2,

p(x) = 1− F

(
∥x̄C1 − x̄C2∥2;σ

√
1

|C1|
+

1

|C2|
;S(x ; {C1, C2})

)
, (51)

where F(t; c ,S) is the CDF of a cχ2
p distribution truncated to S.
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Selective inference for clustering

To understand this better let’s analyse the function x ′(ϕ).

Since xTν = x̄C1 − x̄C2 , the i-th row of x ′(ϕ) is

[x ′(ϕ)]i =


xi +

(
|C2|

|C1|+|C2|

)
(ϕ− ∥x̄C1 − x̄C2∥2) d , if i ∈ C1;

xi −
(

|C1|
|C1|+|C2|

)
(ϕ− ∥x̄C1 − x̄C2∥2) d , if i ∈ C2;

xi , otherwise.

(52)

Thus, the function x ′(ϕ) is a perturbation of the observed data in the
direction of x̄C1 − x̄C2 : it pulls apart C1 and C2 if ϕ > ∥x̄C1 − x̄C2∥2, and it
pushes together C1 and C2 otherwise.

→ The goal is to find the range of perturbations such that the clustering
algorithm selects the groups of interest C1 and C2.
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Selective inference for clustering

Figure: Gao el al. (2022)
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Selective inference for clustering

To compute p(x) it suffices to characterise the truncation set S, which
constitutes the main challenge in the application of the method.

For a restricted class of algorithms, S can be computed exactly, as we
shall see.

In general, the p-value needs to be approximated via Monte Carlo. If
∥x̄C1 − x̄C2∥2 is large, vanilla Monte Carlo is very slow and importance
sampling should be used instead:

1. Sample ω1, . . . , ωN ∼ N
(
∥x̄C1 − x̄C2∥2, σ2(|C1|−1 + |C2|−1)

)
.

2. Set πi = f1(ωi )/f2(ωi ), where f1 is the density of the scaled
chi-square distribution and f2 is the density of the Gaussian proposal,
and

p̂(x) =

∑N
i=1 πi1 {ωi > ∥x̄C1 − x̄C2∥2, C1, C2 ∈ C(x ′(ωi ))}∑N

i=1 πi1 {C1, C2 ∈ C(x ′(ωi ))}
. (53)
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Selective inference for clustering

A set of algorithms for which the truncation set has been characterised
analytically is the family of hierarchical clustering algorithms, defined as
follows.

Let γ(G,G′; x) be a function that quantifies the dissimilarity between two
groups of observations

An agglomerative hierarchical clustering algorithm proceeds as
follows:

Let C(1)(x) = {{1}, . . . , {n}}. For t = 1, . . . , n − 1:

1. {W(t)
1 (x),W(t)

2 (x)} = argmin{γ(G,G′; x) : G,G′ ∈ C(t)(x),G ̸= G′}.

2. C(t+1)(x) = C(t)(x) ∪ {W(t)
1 (x) ∪W(t)

2 (x)} \ {W(t)
1 (x),W(t)

2 (x)}.
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Selective inference for clustering

For hierarchical algorithms, the set S can be written as a function of the
distance metric between groups, γ.

First, we have the following lemma, which states that x ′(ϕ) leads to the
same final cluster as x if and only if all the intermediate merges coincide.

Lemma

Let C = Cn−K+1. We have that C1, C2 ∈ C(x ′(ϕ)) if and only if
C(t)(x ′(ϕ)) = C(t)(x) for all t = 1, . . . , n − K + 1.

To characterise all the intermediate merges, define the set of “losing
pairs” as all coexisting pairs of clusters that are never the “winning pairs”
after n − K steps:

L(x) =
n−K⋃
t=1

{
{G,G′} : G,G′ ∈ C(t)(x),G ≠ G′, {G,G′} ≠ {W(t)

1 (x),W(t)
2 (x)}

}
.
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Selective inference for clustering

Each pair {G,G′} ∈ L(x) has a “lifetime”, [lG,G′(x), uG,G′(x)] ≡ [l , u],
defined as the lowest and highest steps in the algorithm in which they
coexist.

This leads to the following representation.

Theorem

Let C = Cn−K+1. Then

S =
⋂
L(x)

{
ϕ > 0: γ(G,G′; x ′(ϕ)) > max

l≤t≤u
γ(W(t)

1 ,W(t)
2 ; x)

}
. (54)

The remaining step is to compute the function

γ(G,G′; x ′(ϕ)) (55)

for a given distance γ.
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Selective inference for clustering

This can be done, among others, for a class of squared Euclidean
distances, defined by

γ({i}, {i ′}; x) = ∥xi − xi ′∥22 (56)

for all singletons {i}, {i ′}, and then recursively via the linkage function

γ(G1 ∪G2,G3; x) = α1γ(G1,G3; x) +α2γ(G2,G3; x) + βγ(G1,G2; x), (57)

for some coefficients α1, α2, β.

Proposition.

For these distances, γ(G1 ∪ G2,G3; x
′(ϕ)) can be written as a quadratic

function in ϕ whose coefficients can be recursively derived from those of
γ(G1,G2; x

′(ϕ)), γ(G1,G3; x
′(ϕ)) and γ(G2,G3; x

′(ϕ)) in O(1) time.
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The conditional approach: an overview

Some important remarks about the conditional approach:

– Conditional methods require the selection rule to be known and
fixed prior to the data analysis. In particular, they cannot account
for informal model-checking, unlike PoSI and related approaches.

– Due to the need for working with truncated distributions, in
high-dimensional settings they can only be applied analytically with
(approximate) Gaussian data, as this allows dimension reduction via
conditioning.

– Conditional methods are not robust against model misspecification
when the selection probability is low.

– They tend to produce very wide confidence intervals, sometimes
with infinite expected length; very long intervals are less likely to be
reported in practice, which defeats the goal of enforcing error
guarantees.
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