
This lecture

Information splitting for more powerful conditional inference:

– The Gaussian case: Garcia Rasines, Young (2022). “Splitting
approaches for post-selection inference”, Biometrika.

– Extension: Leiner, Duan, Wasserman, Ramdas (2023). “Data
fission: splitting a single data point”, arXiv:2112.11079.
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Issues with the conditional approach

The conditional approach provides error guarantees which are specific to
a parameter.

As such, in many situations conditional methods enjoy a sounder
theoretical justification than unconditional ones.

However, stronger requirements lead to a loss of robustness against
misspecification of the model and/or the selection rule.

In this lecture we will explore ways for providing conditional inference
that bypass these issues.
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Sensitivity to misspecification

Most conditional methods rely on a normality assumption to get rid of
nuisance parameters by conditioning on the direction of interest.

In non-selective regimes, a Gaussian model can sometimes be justified on
asymptotic grounds after some sort of dimensionality reduction.

However, asymptotic approximations tend to perform poorly in
low-probability regions.

In high dimensions, selection events are almost always low-probability
regions, which makes conditional methods very sensitive to deviations
from Gaussianity.
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Sensitivity to misspecification

Suppose we have n IID samples Y1, . . . ,Yn from an unknown distribution.

Under mild conditions, we can use the CLT approximation

Ȳ ∼̇ N(µ, σ2/n), (1)

to provide inference for µ = E(Y1), where σ
2 = Var(Y1) can be

estimated with the data.

Now, suppose we are in a selective regime, where µ is only analysed if
Ȳ > 0, say. The corresponding approximation would be

Ȳ | Ȳ > 0 ∼̇ N(µ, σ2/n) | [0,∞). (2)

→ If µ << 0, this approximation will likely be inaccurate.

→ Furthermore, estimating σ2 is difficult.
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Sensitivity to misspecification

Suppose we construct selective CIs for µ according to the model
Yi = µ+N(0, 1), i = 1, . . . , 100, and selection event Ȳ > 0, but the true
error distribution is t3/

√
2 (which has unit variance). The following plot

shows how the coverage deteriorates as µ decreases. In the analogous
situation without selection, the coverage is independent of µ.

Figure: In blue, coverage of 90% selective CIs under misspecification; in red,
coverage of 90% standard CIs under misspecification.
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Low probability events

This is especially problematic in high dimensions, where it is very
common for all the selection events to have a very low probability.

This is very simple to illustrate in the variable-selection setting, where
there are 2p − 1 (non-empty) models to choose from.

Suppose, for example, that the lasso is applied to data from a linear
model, and that it wrongly selects a few non-significant predictors.

What is the probability that, on repeated sampling from the same
distribution, the exact same false discoveries are made if p = 200, say?
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Low probability events

Consider a case with n = 80 and 10 ≤ p ≤ 40. For each p, we sampled
104 data points from Y ∼ N(Xβ, In), with β = (2, 2, 2, 2, 2, 0, . . . , 0)T ,
and each time we run the lasso with cross-validation and recorded the
selected model.
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Figure: Proportion of samples in which the most selected model was picked.
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Uniform validity

Another natural criticism of the conditional approach is that it requires
knowledge of the selection event.

This precludes the use of very complex selection rules, and more
importantly of data-based decisions during the selection process.

This is not even possible when we can partially restrict the collection of
selection rules.

For example, suppose it is suspected an analysis for an effect µ is only
reported if Y = µ+ ε ≥ t for some unknown t. Upon observing y , we
cannot discard any t ≤ y . In particular, for the boundary case t = y we
obtain a semi-infinite CI.

In general, if we want to protect against a collection of selection events
{Ei : i ∈ I}, we need to have conditional validity for the smaller event

E =
⋂

i : y∈Ei

Ei . (3)
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Lack of power

Intervals can be arbitrarily wide whenever the truncation region is
upper/lower bounded, as the resulting truncation models are not
identifiable in the respective limits.

Consider the model Y ∼ N(µ, 1) | [0,∞). Upon observing y = 0.0001,
say, one cannot discard µ0 = −10 as the true generating mean, even if
this value is nonsensical for the problem.

Furthermore, for such extreme values of the parameter, any distributional
assumption is probably violated, and this has an important effect on the
inferential conclusions.

This can be partially solved with prior distributions, but lack of
information remains problematic, as the posterior is almost identical to
the prior in the boundary cases. Furthermore, inferences turn out to be
too sensitive to the prior assumptions (more on this next lecture).
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Solution

Many of these problems can be bypassed by limiting the information
available in the selection stage.

There are, essentially, two ways of doing this:

– Data splitting: if the data can be written as Y = [Y (1),Y (2)], with
Y (1) and Y (2) independent, use only Y (1), say, for selection.

– Randomisation: base selection on a noisy version of the data,
denoted by U.

In general, write U = u(Y ,W ), where Y is the original data and W
is artificial noise generated by the statistician.

For example, U = Y +W , W ∼ N(0, In).
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Data splitting

If selection is based on a subsample Y (1), we have two possibilities:

– Base inference on remaining data Y (2): this ignores the specificities
of the selection step, and the problem becomes a non-selective one,
to which we can apply standard machinery.

• This ensures that the analysis is valid conditionally and
universally for any selection rule.

• In particular, the validity of the conclusions is less affected by
model misspecification.

• BUT, inference is not admissible, as it discards the
information about the selected parameter provided by Y (1).

– Data carving: base inference on the conditional distribution
Y | {Y (1) ∈ E1}, where E1 is the selection event in terms of Y (1).

• It is more powerful, but requires knowledge (and tractability) of
the selection event.
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Randomisation

The same ideas apply to randomisation.

Given a randomisation scheme U, there exist two possibilities:

• Base inference on Y | U, thereby discarding all the information
provided by U.

• Data carving: base inference on Y | {U ∈ EU}, where EU is the
selection event in terms of U.

The main difference with respect to data splitting is that for
randomisation, even the first option might be difficult to apply if the
conditional distribution Y | U is complicated.
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Information trade-off

The loss of power incurred by basing inference on a split vs. doing data
carving depends on the parameter.

Consider the model Y ∼ N(θ, 1/100), and suppose the selection event is
U = Y +W > 0, where W ∼ N(0, γ/100).

→ In solid black, Fisher information for θ in Y | {U > 0}.

→ In dashed black, Fisher information for θ in Y | U.
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Randomisation of Gaussian data

One case where the distribution of Y | U admits a very simple form is
when the data is Gaussian.

Let Y ∼ N(µ,Σ), with µ ∈ Rn unknown and Σ ∈ Rn×n known and
positive definite.

A convenient randomisation strategy is given by U = Y +W , where
W ∼ N(0,ΣW ) for some positive definite covariance ΣW ∈ Rn×n. We
then have that

U ∼ N(µ,Σ+ ΣW ). (4)
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Randomisation of Gaussian data

Furthermore, if we define

V = Y − Σ−1
W ΣW , (5)

we have that [U,V ] is jointly sufficient for Y and that U ⊥ V , so basing
inference on Y | U amounts to basing it on the marginal distribution of
V , which is Gaussian. We call this the “(U,V ) decomposition”.

Note that this scheme can accommodate different covariance structures.

In regression we are often interested in Σ = σ2In, in which case a natural
option is to take W ∼ N(0, γ2σ2In) for some γ > 0 which controls
information split between selection and inference, so that,
independently

U ∼ N(µ, σ2{1 + γ2}In);
V ∼ N(µ, σ2{1 + γ−2}In).
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Randomisation of Gaussian data

Two main differences with data splitting:

– It is applicable in more settings, as it doesn’t require independent
observations.

→ For example, it can be used to split time series data.

– Unlike data splitting, it requires knowledge of the variance.

→ In practice, a plug-in approach turns out to work quite well,
provided the variance can be estimated with reasonable
accuracy.
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Randomisation as information averaging

An appealing feature of randomisation is that it provides a way of
averaging information over multiple data splits using a single noise
sample.

This supports the intuition that it provides a more balanced
information split than data splitting, and offers a possible a way of
selecting the randomisation variance.

This also points to a formal advantage in terms of inferential power
over the data splits it averages over.
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Randomisation as information averaging

Let Y ∼ F(β;X ) ∈ Rn be a random vector whose distribution depends
on the design X and on a parameter β ∈ Rp.

For a given subset r ⊆ {1, . . . , n}, denote the corresponding data split by
Y r = (Yi )i∈r .

Moreover, denote the Fisher information matrix of Y by IY (β).

A data split r distributes the total information between the selection
and inferential tasks as

IY (β) = IY r (β) + EY r [IY rc |Y r=y r (β)] ≡ Ir (β) + Ir c |r (β), (6)

while a randomisation rule U = u(Y ,W ) divides the information as

IY (β) = IU(β) + EU [IY |U=u(β)] ≡ IU(β) + IY |U(β). (7)
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Randomisation as information averaging

Consider an ordered collection of data splits R = (r1, . . . , rm) and a
collection of positive weights P = (p1, . . . , pm) adding up to one.

We say that a randomisation strategy U = u(Y ,W ) averages the
information over the splits in R with respect to P if

IU(β) =
m∑
i=1

piIri (β). (8)

Note that this also implies that

IY |U(β) =
m∑
i=1

piIr ci |ri (β). (9)

→ The idea is that, if such a randomisation strategy exists, we can
“borrow strength” from several splits with a single noise sample.
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Randomisation as information averaging

For linear Gaussian models with known covariance, information averaging
can be achieved through additive Gaussian randomisation.

Lemma

Let Y ∼ N(Xβ,Σ), with Σ invertible. For a given (R,P) such that
∪m
i=1ri = {1, . . . , n}, a randomisation scheme that averages the

information over R with respect to P is given by U = Y +W , where
W ∼ N(0n,ΣΣW ),

ΣW =

{
m∑
i=1

piAriΣ

}−1

− In, (10)

Ari = ET
ri (EriΣE

T
ri )

−1Eri and Eri is the 0/1 matrix such that Y ri = EriY .
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Randomisation as information averaging

For the case Σ = σ2In, the appropriate noise distribution is
W ∼ Nn(0, σ

2ΣW ), where ΣW is diagonal with elements w−1
i − 1, with

wi =
∑

r :i∈r pr .

In particular, if R contains all subsets of {1, . . . , n} of size n1 and all
weights are equal, we have wi = n1/n ≡ f .

Then, the appropriate randomisation has ΣW = (1− f )f −1In.
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Randomisation as information averaging

The optimality of the Fisher information is commonly measured through
summary statistics of its inverse.

The following result shows that any randomisation rule which averages
over a random data splitting strategy provides a more efficient division
of the information.

Proposition.

Let R be a random data splitting rule induced by (R,P) and φ be a
real-valued function defined on the set of p × p positive definite matrices
which is convex and strictly increasing.

Let U = u(Y ,W ) be randomisation scheme that averages over R with
respect to P, and assume that Ir (β) and Ir c |r (β) are invertible for all
r ∈ R, and that Ir1(β) ̸= Ir2(β) for some r1, r2 ∈ R. Then,

φ
{
IU(β)−1

}
< E

[
φ
{
IR(β)−1

}]
; (11)

φ
{
IY |U(β)

−1
}

< E
[
φ
{
IRc |R(β)

−1
}]
. (12)
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Randomisation as information averaging

Common examples of φ include:

– φ(A) = tr(A): average variance of the estimates of the regression
coefficients.

– φ(A) = vTAv for v ∈ Rp: estimation variance of vTβ.

– φ(A) = max{diag(A)}: estimation variance of the regression
coefficients.

– φ(A) = λmax(A): variance estimation of the first principal
component.
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Randomisation as information averaging

In the linear Gaussian model this has a more transparent interpretation.

Assume that Y ∼ N(Xβ, σ2In), with XTX invertible and σ2 known, and
denote by β̂r c and β̂V the maximum likelihood estimators of β based on
Y r c and V , respectively.

When providing inference with a data split r c , the estimation variance
ought to be considered conditional on the split:

Var(β̂r c | R = r) = Ir c (β)−1,

rather than unconditionally, as R is an ancillary.

Taking φ(A) = ηTAη for some η ∈ Rp \ {0n}, the previous result gives

Var(ηT β̂V ) < E[Var(ηT β̂r c | R = r)].
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Randomisation as information averaging

Therefore, randomisation produces, on average over the data splits,
smaller confidence intervals for any linear combination ηTβ than the
data splitting rule it is designed to improve upon.

By the law of total variance we also have the unconditional version of the
result, where the variance is computed relative the data and the data
splitting rule distributions:

Var(ηT β̂V ) < Var(ηT β̂Rc ).

This has a different interpretation: on repeated application of the
method, estimates based on V will be, on average, more accurate than
estimates based on Y Rc

.
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Randomisation as information averaging

In summary:

– (U,V ) decomposition (selection using U, inference using V ) is
better than data splitting simultaneously for selection and
inference.

– Different choices of φ have direct interpretation in terms of
inferential accuracy.

– Theoretical implications for selection are harder to pinpoint. They
will be demonstrated empirically.
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Data carving

The previous comparison concerns cases where all the information
contained in the data used for selection is discarded (i.e. when inference
is conditioned on Y r = y r or U = u).

What about data carving?

We have two main results:

– Carved confidence intervals after randomisation have bounded
length uniformly over the observed data y .

– Carved confidence intervals after data splitting have, in general,
infinite expected length.
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Data carving: randomisation

Let Y ∼ N(µ, σ2In), µ ∈ Rn, and suppose that inference is sought for
ψ = ηTµ for some η ∈ Rn.

Let U = Y +W , V = Y − Σ−1
W W , and for a model M ⊆ {1, . . . p} write

the selection event as E = {u : M̂(u) = M}.

Let Pη = ∥η∥−2ηηT be the projection matrix onto the line spanned by η,

and Fψ(x) = P{ψ̂ ≤ x | U ∈ E , (In − Pη)Y = z}.

→ A confidence interval of coverage α = q2−q1 is given by [a(Y ), b(Y )],
where the endpoints solve Fa(Y )(ψ̂) = q2 and Fb(Y )(ψ̂) = q1.
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Data carving: randomisation

If the interval was constructed from the marginal distribution of V alone,
via the distribution of ηTV , it would have length

l(q1, q2) = {ηTΣV η}1/2{Φ−1(q2)− Φ−1(q1)}, (13)

where ΣV = σ2{In +Σ−1
W }.

Since carved inference incorporates extra information coming from
U | {U ∈ E}, the resulting intervals should intuitively not be larger than
l(q1, q2). This is in fact the case.

Proposition.

The confidence interval defined before has b(Y )− a(Y ) ≤ l(q1, q2).
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Data carving: data splitting

For data splitting, assume that selection has been carried out on a subset
of the observations Y r , r ⊂ {1, . . . , n}, so that the selection event can be
written as Y r ∈ Er for some Er ⊆ R|r |.

A carving approach would be based on the distribution Y | {Y r ∈ Er},
which involves n − |r | observations unaffected by selection.

This is, however, not enough in general to avoid arbitrarily large
confidence intervals.

Daniel Garćıa Rasines LTCC: Selective Inference 30 / 51



Data carving: data splitting

Define [a(Y ), b(Y )] as before, but with

Fψ(x) = P{ψ̂ ≤ x | Y r ∈ Er , (In − Pη)Y = z}. (14)

The following result extends the “infinite expected length result” for
univariate Gaussian models.

Proposition.

Let Er ⊆ R|r | and the selected parameter be ηTµ = ηTr µr + ηTr cµr c for
some η ∈ Rn. For an observed y with y r ∈ Er , define z = (In − Pη)y . If
inf{w ∈ R : z r + wηr ∈ Er} > −∞ or sup{w ∈ R : z r + wηr ∈ Er} <∞,
then E[b(Y )− a(Y )] = ∞.

Interpretation: Each coordinate Yi is only informative about its mean µi ,
so the only information about µr available in the conditional distribution
Y | Y r ∈ Er comes from a truncated Gaussian and the resulting intervals
can be arbitrarily large as a consequence.
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Model misspecification: CLT

In Gaussian models, efficient information splits are easily achievable via
an additive perturbation of the data. However:

– If the errors are not Gaussian, the distributions of U and Y | U are
generally not available in closed form.

– If the observation variance has to be estimated or the normality
assumption is mildly violated, basing inference on the marginal
distribution of V is not formally justified.

Nonetheless, even when the model is not Gaussian, the (U,V )
decomposition can still provide valid inferences asymptotically.
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Model misspecification: CLT

Let Y = µ+ ε, where the components of ε = (ε1, . . . , εn)
T are IID with

mean zero, variance σ2, and E(|ε1|3) <∞.

Set U = Y +W and V = Y − γ−1W , where W = σ̂Z , Z ∼ N(0n, γIn)
independent of the data, and σ̂ is an estimator of σ depending only on
the first [n/2] observations.

Assume that the selection event can be written as {MTu ∈ E}, where M
is an m × n matrix and E ⊆ Rm is convex.

Theorem

Under mild assumptions on M, if max(η)∥η∥−1 = O(n−1/2),
E(|σ̂2 − σ2|) = O(n−1/2) and P(S = s)−1 = o(m−3/2n1/2), then

(1 + γ−2)−1/2σ̂−1∥η∥−1(ηTV − ηTµ) | {M̂ = M} d−→ N(0, 1). (15)
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Model misspecification: CLT

Some remarks on the assumptions of the result:

– The asymptotic condition on the selection probability ensures that σ̂
is consistent for σ also conditionally on selection.

– Estimating σ using using only a subset of the observations limits the
dependence between σ̂ and MTY , ensuring that the distribution of
the latter is asymptotically Gaussian.

– The asymptotic condition on η ensures that the asymptotic support
of η/∥η∥ is unbounded. Projection parameters satisfy this condition.

– For some standard selection rules the selection event can be
represented in the form described above with M = X . Furthermore,
for these rules selection events can be written as convex polytopes
after conditioning on the sign of the selected coefficients.
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Model misspecification: CLT

What about more complicated selection rules?

Many complex variable-selection rules are built upon existing, more
simple rules such as the lasso or marginal screening.

In those cases, if the base rule admits the required linear representation,
the same usually holds for the complex rule.

For example, starting from the fixed-penalty lasso, one can derive more
interesting selection rules by:

– Cross-validation, which optimises for prediction accuracy.

– Fixed-X knockoffs, which controls the false discovery rate.

– Stability selection, which controls the expected number of false
discoveries.
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Simulation

Empirical comparison between data splitting and the (U,V )
decomposition.

– The data was generated according to the model
Y = Xβ + N(0n, σ

2In), where σ
2 = 1 but is treated as unknown.

– We used a lasso-based estimator of σ2.

– Covariates were generated as Xi ∼ N(0, Γ), where Γij = ρ|i−j|.

– For data splitting we used the DUPLEX algorithm.

– We compare data splitting with splitting fraction f with randomised
procedure with ΣW = (1− f )f −1In.
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Simulation

For selection, we considered two algorithms:

– Fixed-X knockoff.

FDR control set at 0.3.

– Stability selection with lasso.

Expected number of false discoveries ≤ 3.
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Simulation: selection power

– True values of β generated by sampling 10 non-zero positions
uniformly at random and filling them with independent random
variables distributed uniformly in the set
{−1,−0.9,−0.8, . . . ,−0.1, 0.1, . . . , 0.9, 1}.

– We compare the selection ability compared according to:

• True positive rate: average number of correct discoveries
divided by the total number of active covariates.

• Power: average number of times a coefficient with absolute
value |βi | is selected.
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Simulation: selection power

Table: Normalised true positive rate of the selection algorithms applied after
data splitting (DS) and randomisation (R); n = 200.

Knockoff Split
f ρ p DS R

1/2 0 30 0.90 0.94
1/2 0 50 0.74 0.92
1/2 0.5 30 0.82 0.91
1/2 0.5 50 0.65 0.89
3/4 0 30 0.97 0.98
3/4 0 50 0.94 0.97
3/4 0.5 30 0.94 0.96
3/4 0.5 50 0.89 0.97

Stability Split
f ρ p DS R

1/2 0 200 0.69 0.87
1/2 0 1000 0.49 0.82
1/2 0.5 200 0.69 0.86
1/2 0.5 1000 0.48 0.82
3/4 0 200 0.90 0.95
3/4 0 1000 0.83 0.93
3/4 0.5 200 0.89 0.95
3/4 0.5 1000 0.83 0.93
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Simulation: selection power

Knockoff: randomisation, data splitting, full dataset.
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Simulation: selection power

Stability: randomisation, data splitting, full dataset.
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Simulation: selection stability

– The selection output should not depend strongly on the random
split, so we compare the robustness of the two splitting methods
with respect to this criterion.

– Set β = (1, 0.9, . . . , 0.1, 0, . . . , 0)T .

– For each (f , p), we generated 100 pairs (Y ,X ) and, for each pair,
we sampled 50 selection sets uniformly at random and 50
realisations of W .

– For each (Y ,X ) we estimate P(i ∈ M|Y ,X ).
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Simulation: selection stability

Figure: Mean ± standard dev. of P(i ∈ M|Y ,X ); randomisation, data
splitting; n = 200, p = 50, 400, f = 1/2.
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Simulation: inferential power

Finally, we compare the two methods in terms of the power available at
the inferential stage.

– For a given M we construct CI’s for βi with i ∈ M in the model
Y = Xβ + ε.

– We compare the coverage and average length of equal-tailed 90%
intervals obtained by both methods.
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Simulation: inferential power

Table: Coverage of CIs for selected coefficients: knockoff, n = 200, p = 30.

|βi |

f ρ Split 0 0.2 0.5 1

1/2 0
DS 89.8 91.3 90.0 90.0
R 89.8 89.2 90.0 90.4

1/2 0.5
DS 90.0 90.8 89.9 90.2
R 89.6 89.9 89.9 90.3

3/4 0
DS 90.3 89.7 89.7 89.6
R 89.8 90.2 90.0 89.6

3/4 0.5
DS 90.6 90.1 90.4 89.8
R 89.2 90.4 89.7 89.6
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Simulation: inferential power

Table: Average length of CIs for selected coefficients: knockoff, n = 200,
p = 30.

|βi |

f ρ Split 0 0.2 0.5 1

1/2 0
DS 0.39 0.39 0.39 0.39
R 0.36 0.36 0.36 0.36

1/2 0.5
DS 0.51 0.51 0.51 0.48
R 0.46 0.46 0.46 0.44

3/4 0
DS 0.65 0.65 0.65 0.65
R 0.50 0.50 0.51 0.51

3/4 0.5
DS 0.90 0.90 0.90 0.85
R 0.64 0.65 0.65 0.62
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Randomisation: extension

Instead of relying on an asymptotic result for quantitative data, we might
want to devise a randomisation strategy that adapts better to different
types of observations.

In general, given data Y with distribution F (y ; θ), known up to the
parameter θ, we want to find a U = u(Y ,W ) such that, for all θ:

– The marginal distribution of U is tractable.

– The conditional distribution of Y | U is tractable.
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Randomisation: extension

Leiner et al. (2023) propose a “conjugate prior reversal” idea that works
with any exponential family.

Suppose Y follows a distribution that is a conjugate prior distribution of
the parameter in some likelihood.

The idea is to generate U from that likelihood, treating Y as a parameter.

Then, by construction, the conditional distribution Y | U will be of the
same form as Y (with a different parameter depending on the value of
U).
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Randomisation: extension

Suppose Y has density/mass function of the form

f (y | θ1, θ2) = H(θ1, θ2) exp{θT1 y − θT2 A(y)}, (16)

and suppose we can find h(·), T (·) and θ3 such that

f (u | y , θ3) = h(u) exp{yTT (u)− θT3 A(y)} (17)

is a well-defined distribution

Then, if U ∼ f (u | y , θ3), we have

f (u | θ1, θ2, θ3) = h(u)
H(θ1, θ2)

H(θ1 + T (u), θ2 + θ3)
; (18)

f (y | u, θ1, θ2, θ3) = f (y | θ1 + T (u), θ2 + θ3). (19)

As a trivial instance of this result we can recover the Gaussian
decomposition, but other examples are more interesting.

Daniel Garćıa Rasines LTCC: Selective Inference 49 / 51



Randomisation: extension

– Binary data: If Y ∼ Bernoulli(θ), let W ∼ Bernoulli(p), where
p ∈ (0, 1) is a tuning parameter, and set U = Y (1−W ) + (1− Y )W .

Then, U ∼ Bernoulli(θ + p − 2pθ), and

Y | U ∼ Bernoulli

(
θ

θ(1− θ)[p/(1− p)]2U−1

)
.

Note: Small values of p allocate more information to U.

– Count data: If Y ∼ Poisson(θ), let U ∼ Binomial(Y , p), where
p ∈ (0, 1) is a tuning parameter.

Then, U ∼ Poisson(pθ), and V = Y − U ∼ Poisson((1− p)θ) is
independent of U.

Note: Large values of p allocate more information to U.
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Randomisation: extension

Some remarks:

– This method is adaptive: if we deem the information in U
insufficient for selection, we can simply generate more samples from
the “posterior distribution” until we have enough information.

– The reverse is not true: if we have randomised too little, we cannot
increase the information available for inference post-hoc.

– A drawback of this method with respect to data splitting and the
Gaussian (U,V ) decomposition is that, for a prespecified proportion
f ∈ (0, 1), we cannot manually allocate f 100% of the information to
selection, as the information depends on the unknown parameter.

Note that with data splitting we can simply use fn samples for
selection and the remaining (1− f )n for inference.
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