LTCC: Time Series Analysis Concise Solutions to the Mock Exam

Part I: R

1. Prices often evolve in a "multiplicative" way according to percentage changes. For example, imagine the investment of one pound in a bank, where the interest rate is 3% yearly. After one year, we have 1.03 pounds, after two years 1.03^{2}, and so on. A logarithmic transformation brings this "geometric" progression onto a linear scale.
2. Plots produced by
$>\log p<-\log (p)$
> plot.ts(p)
> plot.ts(logp)
Visual features: strong upward trend in both, except it drops sharply and bounces back in two time periods: in the middle and towards the end (namely, financial crisis and the pandemic). Because of the trends, the series do not really appear stationary.
3. $>u=\operatorname{diff}(\log p)$

Figure 1: House prices on the natural (left) and log (right) scale.

Figure 2: U_{t} (left) and V_{t} (right).
> v = diff(u)
> plot.ts(u)
> plot.ts(v)
See Figure 2. Both series look more stationary than the original one.
4. $>\operatorname{acf}(u)$
$>\operatorname{pacf}(u)$
$>\operatorname{acf}(v)$
$>\operatorname{pacf}(\mathrm{v})$
See Figure 3.
5. The ACF and PACF plots suggest that we cannot model U_{t} or V_{t} using just AR or MA. Now try:

```
> library(forecast)
> auto.arima(logp,ic="aic")
> auto.arima(logp,ic="bic")
```

They all pointing to a $\operatorname{ARIMA}(1,2,1)$ model for $\log P_{t}$, i.e. $\operatorname{ARMA}(1,1)$ for V_{t} (with zero-mean).

```
Series: logp
ARIMA(1, 2, 1)
Coefficients:
    ar1 ma1
    -0.1542 -0.7487
s.e. 0.0806 0.0677
```


Figure 3: ACF and PACF for U_{t} (top row) and V_{t} (bottom row).

```
sigma^2 = 0.00014: log likelihood = 1009.43
AIC=-2012.86 AICc=-2012.79 BIC=-2001.43
```

However, note that the parameter estimates for ϕ_{1} is not significant at 5% (which is fine for the purpose of prediction...)
6. > model<-Arima(logp, $c(1,2,1))$
> forecast(model,3)
We get

| Point | Forecast | Lo 80 | Hi 80 | Lo 95 | Hi 95 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 337 | 13.20797 | 13.19281 | 13.22313 | 13.18478 | 13.23116 |
| 338 | 13.21049 | 13.18799 | 13.23300 | 13.17607 | 13.24491 |
| 339 | 13.21308 | 13.18282 | 13.24333 | 13.16681 | 13.25935 |

Then take exponential to converge these figures to the price level.

Part II: Theory

1. (a) Rewriting the process as:
$(1-0.5 B) X_{t}=\left(1-1.4 B+0.45 B^{2}\right) \epsilon_{t}=(1-0.5 B)(1-0.9 B) \epsilon_{t}$.
Since $z=2$ is the common root in AR and MA polynomials, the process can be simplified to

$$
X_{t}=(1-0.9 B) \epsilon_{t}=\epsilon_{t}-0.9 \epsilon_{t-1}
$$

Therefore, this is actually an $\mathrm{MA}(1)$ process, i.e. $\operatorname{ARMA}(p, q)$ with $p=0$ and $q=1$.
(b) It is causal (as all MA (q) are causal). It is also invertible, because the root for the MA polynomial (i.e. setting $1-0.9 z=0$) lies outside the unit circle.
(c) The ACF for $\operatorname{MA}(1)$ is $r_{0}=1, \rho_{-1}=\rho_{1}=-0.9 / 1.81$ and $\rho_{h}=0$ for $|h|>1$.
2. (a) Using the law of iterated expectation,
$\mathbb{E}\left(X_{t}\right)=\mathbb{E}\left(\sigma_{t} \epsilon_{t}\right)=\mathbb{E}\left(\mathbb{E}\left(\sigma_{t} \epsilon_{t} \mid X_{t-1}\right)\right)=\mathbb{E}\left(\sigma_{t} \mathbb{E}\left(\epsilon_{t} \mid X_{t-1}\right)\right)=\mathbb{E}\left(\sigma_{t} \mathbb{E}\left(\epsilon_{t}\right)\right)=0$.
In addition,

$$
\begin{aligned}
\mathbb{E}\left(X_{t}^{2}\right) & =\mathbb{E}\left(\sigma_{t}^{2} \epsilon_{t}^{2}\right) \\
& =\mathbb{E}\left(\left(\alpha_{0}+\alpha_{1} X_{t-1}^{2}\right) \epsilon_{t}^{2}\right) \\
& =\left(\alpha_{0}+\alpha_{1} \mathbb{E}\left(X_{t-1}^{2}\right)\right) \mathbb{E}\left(\epsilon_{t}^{2}\right) \\
& =\alpha_{0}+\alpha_{1} \mathbb{E}\left(X_{t}^{2}\right),
\end{aligned}
$$

which yields

$$
\mathbb{E}\left(X_{t}^{2}\right)=\frac{\alpha_{0}}{1-\alpha_{1}}
$$

Next,
$\mathbb{E}\left(X_{t}^{3}\right)=\mathbb{E}\left(\sigma_{t}^{3} \epsilon_{t}^{3}\right)=\mathbb{E}\left(\mathbb{E}\left(\sigma_{t}^{3} \epsilon_{t}^{3} \mid X_{t-1}\right)\right)=\mathbb{E}\left(\sigma_{t}^{3} \mathbb{E}\left(\epsilon_{t}^{3} \mid X_{t-1}\right)\right)=\mathbb{E}\left(\sigma_{t}^{3} \mathbb{E}\left(\epsilon_{t}^{3}\right)\right)=0$.
Finally,

$$
\begin{aligned}
X_{t}^{4} & =\left(\alpha_{0}+\alpha_{1} X_{t-1}^{2}\right)^{2} \epsilon_{t}^{4} \\
& =\left(\alpha_{0}^{2}+2 \alpha_{0} \alpha_{1} X_{t-1}^{2}+\alpha_{1}^{2} X_{t-1}^{4}\right) \epsilon_{t}^{4}
\end{aligned}
$$

Since $E \epsilon_{t}^{4}=1.8$ (unlike the Gaussian case, which equals 3), hence,

$$
\mathbb{E}\left(X_{t}^{4}\right)=1.8\left(\alpha_{0}^{2}+2 \alpha_{0} \alpha_{1} \frac{\alpha_{0}}{1-\alpha_{1}}+\alpha_{1}^{2} \mathbb{E}\left(X_{t}^{4}\right)\right)
$$

which gives

$$
\mathbb{E}\left(X_{t}^{4}\right)=\frac{1.8 \alpha_{0}^{2}\left(1+\alpha_{1}\right)}{\left(1-\alpha_{1}\right)\left(1-1.8 \alpha_{1}^{2}\right)}
$$

(b) Let $v_{t}=\sigma_{t}^{2}\left(\epsilon_{t}^{2}-1\right)$.

$$
\mathbb{E}\left(v_{t}\right)=\mathbb{E}\left[\mathbb{E}\left(v_{t} \mid \mathcal{F}_{t-1}\right)\right]=\mathbb{E}\left[\sigma_{t}^{2} \mathbb{E}\left(\epsilon_{t}^{2}-1 \mid \mathcal{F}_{t-1}\right)\right]=0
$$

It is easy to show that $\mathbb{E} v_{t}^{2}<\infty\left(\right.$ since $\left.\mathbb{E} X_{t}^{6}<\infty\right)$ For any $h>0$, $\mathbb{E}\left(v_{t} v_{t+h}\right)=\mathbb{E}\left[\mathbb{E}\left(v_{t} v_{t+h} \mid \mathcal{F}_{t+h-1}\right)\right]=\mathbb{E}\left[v_{t} \sigma_{t+h}^{2} \mathbb{E}\left(\epsilon_{t+h}^{2}-1 \mid \mathcal{F}_{t+h-1}\right)\right]=0$.

Therefore, $\left\{v_{t}\right\}$ is indeed white noise.
(c) First, for the ACVF of $\left\{X_{t}\right\}$, for any $h>0$, it is easy to see (by conditioning on \mathcal{F}_{t+h-1}) that $\mathbb{E} X_{t} X_{t+h}=0$. Therefore, $\gamma_{0}^{X}=$ $\frac{a_{0}}{1-a_{1}}$ and $\gamma_{h}^{X}=0$ for any $h \neq 0$.
Second, for the ACVF of $\left\{X_{t}^{2}\right\}$, using the $\operatorname{AR}(1)$ representation of $\operatorname{ARCH}(1), X_{t}^{2}=\alpha_{0}+\alpha_{1} X_{t-1}^{2}+v_{t}$. Therefore,

$$
\gamma_{h}^{X^{2}}=\alpha_{1}^{|h|} \operatorname{Var}\left(X_{t}^{2}\right)=\alpha_{1}^{|h|}\left\{\mathbb{E} X_{t}^{4}-\left(\mathbb{E} X_{t}^{2}\right)^{2}\right\}
$$

where the values for $\mathbb{E} X_{t}^{4}$ and $\mathbb{E} X_{t}^{2}$ were derived from the previous sub-question.
(d) From the previous results, we conclude that $\left\{X_{t}\right\}$ is white noise, while $\left\{X_{t}^{2}\right\}$ is not (as $\alpha_{1} \neq 0$).

