Measure Theory: Exercises 1

1. Consider the collection \mathcal{A} of subsets A_1, A_2, \ldots of the integers such that $A_i = \{ni \mid n \text{ is an integer}\}$. Determine what is $\sigma(\mathcal{A})$.

2. Assume that μ is defined on all subsets of X, that $\mu(\emptyset) = 0$, and for all increasing sequences $A_1 \subseteq A_2 \subseteq \dots$ it holds that $\lim_{i\to\infty} \mu(A_i) = \mu(\bigcup_{i=1}^{\infty} A_i)$. True or false: μ is finitely additive.

3. If A_1, \ldots, A_n are measurable sets each of finite measure show that $\mu(\bigcup_{i=1}^n A_i) = \sum_{S \subseteq \{1,2,\ldots,n\}} (-1)^{|S|+1} \mu(\bigcap_{i \in S} A_i).$

4. Determine the smallest sigma algebra on \mathbf{R} that is generated by the collection of all one-point subsets of \mathbf{R} .