Measure Theory: Exercises 2

- 1. Show that for each bounded subset A of \mathbf{R} that there is a Borel set B of \mathbf{R} such that $A \subseteq B$ and $\lambda^*(B) = \lambda^*(A)$.
- 2. Show that a subset A of the real numbers is Lebesgue measurable if and only if for every finite length interval I it holds that $\lambda^*(A \cap I) + \lambda^*(I \setminus A) = \lambda^*(I)$.
- 3. Let A be a subset of \mathbf{R} . Show that the following are equivalent:
- (a) A is Lebesgue measurable,
- (b) A is the union of an F_{σ} and a set of Lebesgue measure zero,
- (c) there is a set B that is an F_{σ} and satisfies $\lambda^*(A\Delta B) = 0$ (where Δ stands for symmetric difference).
- 4. Show that there is a closed subset C of [0,1] of positive Lebesgue measure that contains no open subset of [0,1].
- 5. Let μ be an outer measure defined on all subsets of X and let \mathcal{A} be a sigma algebra such that μ is finitely additive on \mathcal{A} . Show that μ is also countably additive on \mathcal{A} .