
Measure Theory Second Week
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Outer Measures:

Let X be a set,

P(X) the collection of all subsets of X .

An outer measure µ : P(X) → [0,∞] (de-
fined on all subsets) is a function such that

(a) µ(∅) = 0,

(b) if A ⊆ B then µ(A) ≤ µ(B),

(c) if A1, A2, . . . is a sequence of subsets
then

µ(∪∞i=1Ai) ≤
∑∞

i=1 µ(Ai) (subadditive).
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For outer measures µ that are not measures
there is some sequence A1, A2, . . . of dis-
joint sets such that∑∞

i=1 µ(Ai) > µ(∪∞i=1Ai).

For finitely additive measures µ that are not
measures there is some sequence A1, A2, . . .
of disjoint sets such that∑∞

i=1 µ(Ai) < µ(∪∞i=1Ai).

In general, outer measures are not measures,

as they are defined on all subsets;

usually measures require some restriction to
a collection of measurable subsets.
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Examples:

(a) µ(A) = 0 if A = ∅ and

µ(A) = 1 if A 6= ∅.

(b) µ(A) = 0 if A is countable and

µ(A) = 1 if A is uncountable.

(c) Let (X,A, µ) be a measurable space.
Define µ∗(B) = infA∈A, A⊃B µ(A).
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Lebesgue outer measure:

λ∗ is defined on all subsets of R.

λ∗(A) =

inf{
∑∞

i=1 bi − ai | ∪∞i=1 (ai, bi) ⊃ A}.

Lemma (1.3.2): Lebesgue outer measure
is an outer measure and assigns to every in-
terval its length.
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Proof: The empty set is covered by any
collection of open intervals, hence also of
lengths ε/2, ε/4, . . . ,

therefore λ∗(∅) = 0.

If A ⊆ B then any collection of intervals
covering B also covers A.

Hence the collection of coverings for A in-
volves a larger collection than that for B,

and therefore λ∗(A) ≤ λ∗(B).

Let ε > 0 be given. Any covering collection
used to define µ(Ai) to within ε

2i
also is a

covering collection for ∪iAi.

Hence after taking the infinum on all cover-
ings of ∪iAi and ignoring the ε

it follows that λ∗(∪iAi) ≤
∑

i λ
∗(Ai).
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Finally, letting I be any interval from a to
b with b > a, be in closed, open, or open on
one end and closed on the other,

the sequence (a−ε, b+ε) covers the interval,

and so λ∗ of the interval is no more than
b− a.

One the other hand, it suffices to show that
λ∗ of the closed interval [a, b] is at least b−a.

Because it is compact, any collection of cov-
ering open intervals can be reduced to a fi-
nite covering collection.

Now easy to show that if the lengths of this
finite cover did not add up to at least b− a
they could not reach from a to b.
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Definition: Let µ be a outer measure on
X . A subset B is µ-measurable if for every
subset A of X it holds that

µ(A) = µ(A ∩B) + µ(A\B).

Subadditivity of outer meaures implies al-
ready that µ(A) ≤ µ(A ∩B) + µ(A\B),

so only need to check µ(A) <∞.

A Lebesgue measurable set is one that is
measurable with respect to Lebesgue outer
measure,

and the measure λ is the measure λ∗ re-
stricted to the Lebesgue measurable sets.
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Lemma: (1.3.5) Let µ be an outer mea-
sure onX . Every subsetB such that µ(B) =
0 or µ(X\B) = 0 is µ-measurable.

Proof: We need only show for every subset
A that µ(A) ≥ µ(A∩B) +µ(A∩ (X\B)).

With µ(B) = 0 or µ(X\B) = 0 it follows
by monotonicity.
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If µ is an outer measure,

let Mµ be the collection of µ measurable
sets.

Theorem (1.3.6):

Mµ is a sigma-algebra and

µ is a measure onMµ.
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Proof: From the previous lemma and the
definintion of Mµ, X is in Mµ, µ(∅) = 0,
and A ∈Mµ if and only if X\A ∈Mµ.

Next we show thatMµ is an algebra and it
is finitely additive.

Let B1, B2 ∈ Mµ; with closure by comple-
mentation already demonstrated, it suffices
to show that B1 ∩B2 is also inMµ.

Let A be any subset: as B2 is inMµ

µ(A ∩B1) =

µ(A ∩B1 ∩B2) + µ((A ∩B1)\B2) and

µ(A\B1) = µ(A ∩ (X\B1)) =

µ((A\B1) ∩B2) + µ((A\B1)\B2).
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With µ(A) = µ(A ∩B1) + µ(A\B1)

µ(A) = µ(A∩B1∩B2)+µ((A∩B1)\B2)+
µ((A\B1) ∩B2) + µ((A\B1)\B2) ≥

µ(A∩B1∩B2) +µ(A\(B1∩B2)) ≥ µ(A),

(by subadditivity)

hence B1 ∩B2 is also inMµ.

Furthermore, assuming B1, B2 ∈ Mµ are
disjoint,

and letting A = B1 ∪B2 be the set chosen,

we have A\B1 = B2, A ∩B1 = B1

and µ(A) = µ(B1 ∪B2) = µ(B1) + µ(B2).

Therefore µ is finitely additive onMµ.
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Let B1, B2, . . . be an infinite sequence of
mutually disjoint members of Mµ and let
A be any subset:

It follows from finite additivity and induc-
tion that

µ(A) =
∑n

i=1 µ(A ∩Bi) + µ(A\(∪ni=1Bi).

Letting n go to infinity,

µ(A) = limn→∞
∑n

i=1 µ(A∩Bi)+limn→∞ µ(A\(∪ni=1Bi).

By monotonicity µ(A\(∪∞i=1Bi)) ≤ limn→∞ µ(A\(∪ni=1Bi))

and by the definition of infinite sums

limn→∞
∑n

i=1 µ(A∩Bi) =
∑∞

i=1 µ(A∩Bi),

so µ(A) ≥ µ(A\(∪∞i=1Bi))+
∑∞

i=1 µ(A∩Bi)
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Therefore by the above and µ being an outer
measure, µ(A) ≥∑∞

i=1 µ(A ∩Bi) + µ(A\(∪∞i=1Bi)) ≥

µ(A∩ (∪∞i=1Bi)) + µ(A\(∪∞i=1Bi)) ≥ µ(A).

It follows that ∪i=1Bi is inMµ.

Sigma-additivity on the disjoint sequence of
the Bi follows from both finite additivity
and that µ is an outer measure.

Starting from any sequenceA1, . . . of sets in
Mµ, by chosing the disjointBi = Ai\(∪i−1j=0Aj)
(with A0 = ∅) we get ∪∞i=1Ai = ∪∞i=1Bi in
Mµ. 2
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Lemma: Every Borel subset of R is Lebesgue
measurable.

Proof: Given that the Lebesgue measur-
able sets define a a sigma algebra,

and the Borel subsets are the smallest sigma
algebra containing intervals of the form I =
(−∞, c], given any subset A we need that

λ∗(A) = λ∗(A ∩ I) + λ∗(A\I).

We can break the ith open interval (ai, bi)
covering A into two inteverals, (ai, c + ε

2i
)

and (c, bi) whenever ai < c < bi.

In this way we cover bothA∩I andA\I and
show that λ∗(A∩I)+λ∗(A\I) ≤ λ∗(A)+ε
for every ε > 0;

together with subadditivity, the equality fol-
lows.
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More on Lebesgue measure:

Lemma (regularity): LetB be a Lebesgue
measurable subset of finite measure.

For every ε > 0 there is an open set A and
a compact set C such that C ⊆ B ⊆ A

and λ(A\C) < ε.

Proof:

As the measure λ(B) is approximated by
open covers,

there is an open cover of B whose union A
has measure less than λ(B) + ε/3
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By sigma additivity,

there is an n large enough so that

λ(B ∩ [−n, n]) > λ(B)− ε/3.

Cover [−n, n]\B with an open set G so that
λ(G) > λ([−n, n]\B) + ε/3.

C = [−n, n]\G is a closed set contained in
B whose measure is more than λ(B)−2ε/3.
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Lemma: Lebesgue measure is translation
invariant,

meaing that for any given r ∈ R,

a set A is Lebesgue measurable

if and only if A + r := {a + r | a ∈ A} is
Lebesgue measurable

and λ∗(A) = λ∗(A + r).
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Proof: Let (Ii | i = 1, 2, . . . ) be a collec-
tion of open intervals covering A.

The intervals (Ii + r) cover A+ r and each
interval has the same length.

This shows that λ∗(A + r) ≤ λ∗(A),

and the same arguement shifting by−r shows
the opposite inequality.

Likewise the intersection property with any
subset of R that confirms that A and X\A
are Lebesgue measurable

shows the same for A + r and (X\A) + r
after all sets are shifted by r.
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Theorem: Given the axiom of choice,

there is a subset of [0, 1) that is not Lebesgue
measurable.

Proof: Define an equivalence relation on
r, s ∈ [0, 1)

by r ∼ s⇔ r − s is rational.

Define addition modulo 1,

so that b + c is b + c− 1 if b + c ≥ 1.

List the rational numbers a1, a2, . . . in [0, 1).
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Let B be a set of representatives for the
equivalence relation (Axiom of Choice)

meaning that B intersects every equivalence
class one and only once,

or that for every r ∈ [0, 1) there is one and
only one i with r + ai ∈ B.

This means that ∪∞i=1(B − ai) partitions
[0, 1):

for every r there is some b ∈ B and ai such
that r = b− ai

and if r ∈ (B − ai) ∩ (B − aj) 6= ∅ for
distinct ai 6= aj

then r = bi−ai = bj−aj for some bi, bj ∈ B
and the equivalence relation sharing both
r + ai and r + aj have two representatives
bi and bj in B, a contradiction.
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Assume that B is Lesbegue measurable.

Notice that translation invariance holds also
in the modulo arithmetic,

due to a secondary shift of the measurable
subset that went over the value of 1.

So every B + ai must be Lebesgue measur-
able and have the same measure.

This measure can neither be 0 or anything
positive,

as that would imply that the whole set [0, 1)
is either infinite in measure or zero in mea-
sure,

when it is really of measure one.
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