Measure Theory Third Week

Theorem (1.4.10):

Let A be a Lebesgue measurable subset of \mathbf{R} such that $\lambda(A)>0$.

The set diff $(A):=\{x-y \mid x, y \in A\}$ contains an open interval containing 0 .

Proof: Without loss of generality, we can assume that A is compact.

With $\lambda(A)=r>0$,
there is an open set B such that B contains A and $\lambda(B)<(1+\epsilon) r$. for any $\epsilon>0$.

We require that ϵ be less than 1 .
As $\mathbf{R} \backslash B$ is closed, disjoint from A and thus has a positive distance d to A,
$A+\delta$ is contained in B for all δ satisfying $|\delta|<d$.

But if there were no overlap between the sets A and $A+\delta$ for $\delta<d$,
then $A \cup(A+\delta)$ would be a Lebesgue measurable set of measure $2 r$ inside of B, which is impossible since $\lambda(B)<(1+\epsilon) r$.

So for any given δ with $|\delta|<d$ there is an $a \in A \cap A+\delta$,
meaning that $a=a^{\prime}+\delta$ for some other $a^{\prime} \in A$ and $\delta=a-a^{\prime}$.

We see that for every ϵ there is a d such that all but an ϵ fraction of the set A is used to get the difference set to include $(-d, d)$.

Theorem (1.4.11): Assuming A.C., there is a partition of \mathbf{R} into two parts A, B, meaning $A \cap B=\emptyset$ and $A \cup B=\mathbf{R}$, such that for every finite interval I :

$$
\lambda^{*}(A \cap I)=\lambda^{*}(B \cap I)=\lambda^{*}(I) \text { and }
$$

every Lebesgue measurable subset C either contained in either A or B has measure zero.

Note: The natural idea, a ring homomorphism from \mathbf{R} to \mathbf{Z}_{2} and letting $A=\phi^{-1}(0)$ and $B=\phi^{-1}(1)$, is not possible,
whenever $\phi(r)=1$ then what should be $\phi\left(\frac{r}{2}\right)$?

Need a group homomorphism.

Proof:

Let $W=\mathbf{Q}+\mathbf{Z} \sqrt{2}$,
$\phi: W \rightarrow \mathbf{Z}_{2}$ is defined by
$\phi\left(\frac{a}{b}+n \sqrt{2}\right)=n(\bmod 2)$.
Because $\sqrt{2}$ is irrational, ϕ is well defined and a group homomorphism.

Also both $G_{0}:=\phi^{-1}(0) \subset W$ and $G_{1}:=$ $\phi^{-1}(1) \subset W$ are dense in \mathbf{R}, (and this can be shown with the Euclidean algorithm on the pair 1 and $\sqrt{2}$).

Define an equivalence relation \sim by $r \sim s$ if and only if $r-s \in W$.

Let E be a set such that $|E \cap C|=1$ for every equivalence class C.

For every $r \in \mathbf{R}, \quad r=e+\frac{a}{b}+n \sqrt{2}$,
for some $e \in E, a, b \in \mathbf{Z}, n \in \mathbf{Z}$, and uniquely so.
A is the subset where n is even and B is the subset where n is odd.
A and B are well defined because r cannot equal $e^{\prime}+\frac{a^{\prime}}{b^{\prime}}+n^{\prime} \sqrt{2}$ for any other choices, as then e and e^{\prime} would belong to the same equivalence class.

Assume that either A or B contained a Lebesgue measurable set of positive measure.

Either $A-A$ or $B-B$ must contain some member of the dense set G_{1}, in other words
$\frac{a_{0}}{b_{0}}+n_{0} \sqrt{2}=e_{1}+\frac{a_{1}}{b_{1}}+n_{1} \sqrt{2}-e_{2}-\frac{a_{2}}{b_{2}}-n_{2} \sqrt{2}$
with n_{0} odd, both n_{1} and n_{2} either even or odd, and $e_{1}, e_{2} \in E$.

As e_{1} and e_{2} must be equal (otherwise they would represent the same equivalence relation), $n_{0}=n_{1}-n_{2}$ would be a contradiction.

Now suppose that either $A \cap I$ or $B \cap I$ has an outer Lebesgue measure less than I for some finite interval I.

That means $A \cap I$ or $B \cap I$ can be covered by some open set of measure strictly less than I.
implying that either $I \backslash A=I \cap B$ or $I \backslash B=$ $I \cap A$ contains a closed set of positive measure, which, by the above, neither does. \square

The same is true for three or more sets, but is much more difficult to show.

A measure μ of a measure space (X, \mathcal{A}, μ) is complete
if $A \in \mathcal{A}, \mu(A)=0$ and $B \subseteq A$ imply that $B \in \mathcal{A}$.

With (X, \mathcal{A}, μ) a measure space,
the completion \mathcal{A}_{μ} is the collection of subsets A
for which there are sets $E, F \in \mathcal{A}$ with $E \subseteq A \subseteq F$ and $\mu(F \backslash E)=0$.

The completion $\bar{\mu}$ is the measure defined on \mathcal{A}_{μ}
such that $\bar{\mu}(A)=\mu(E)=\mu(F)$.
This is well defined as there cannot be two such levels (otherwise monotonicity is violated).

Lemma (1.5.1): Let (X, \mathcal{A}, μ) be a measure space.
\mathcal{A}_{μ} is a σ-algebra on X that includes \mathcal{A} and $\bar{\mu}$ is a measure defined on \mathcal{A}_{μ} that is complete.

Proof: Containment of \mathcal{A} in \mathcal{A}_{μ} and closure by complementation are trivial.

If A_{1}, A_{2}, \ldots is a sequence of sets in \mathcal{A}_{μ} and E_{i} and F_{i} are sequences in \mathcal{A}
with $\forall i \quad E_{i} \subseteq A_{i} \subseteq F_{i}$ and $\mu\left(F_{i} \backslash E_{i}\right)=0$ then by countable additivity
$0=\sum_{i=1}^{\infty} \mu\left(F_{i} \backslash E_{i}\right) \geq \mu\left(\cup_{i=1}^{\infty}\left(F_{i} \backslash E_{i}\right)\right) \geq$ $\mu\left(\cup_{i=1}^{\infty} F_{i} \backslash \cup_{i=1}^{\infty} E_{i}\right) \geq 0$,
implying that $\cup_{i=1}^{\text {infty }} A_{i} \in \mathcal{A}$.
And if the A_{1}, A_{2}, \ldots are disjoint the same pairs E_{i} and F_{i} of sequences show that
$\sum_{i=1}^{\infty} \mu\left(F_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right) \leq \bar{\mu}\left(\cup_{i=1}^{\infty} A_{i}\right) \leq$
$\sum_{i=1}^{\infty} \mu\left(F_{i}\right)$,
hence equality and countable additivity. \square

Let (X, \mathcal{A}, μ) be a measure space, and A any subset of X.
$\mu^{*}(A)=\inf \{\mu(B) \mid A \subseteq B, B \in \mathcal{A}\}$ and
$\mu_{*}(A)=\sup \{\mu(B) \mid A \supseteq B, B \in \mathcal{A}\}$.
$\mu^{*}(A)$ is the outer measure and $\mu_{*}(A)$ is the inner measure.

Lemma: μ^{*} is an outer measure.

Proof: $\mu^{*}(\emptyset)=0$ and monotonicity are trivial.

Let A_{1}, A_{2}, \ldots be a sequence of sets.

Suppose that $\sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right)<\infty$:

For every $i=1,2, \ldots$ let B_{i} be a set in \mathcal{A} containing A_{i}
such that $\mu\left(B_{i}\right) \leq \mu^{*}\left(A_{i}\right)+\frac{\epsilon}{2^{i}}$.
$B=\cup_{i=1}^{\infty} B_{i}$ includes $A=\cup_{i=1}^{\infty} A_{i}$ and
$\sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right) \geq \sum_{i=1}^{\infty} \mu\left(B_{i}\right)-\epsilon \geq \mu(B)-$ $\epsilon \geq \mu^{*}(A)-\epsilon$.

True for every ϵ implies the inequality. $\quad \square$

Lemma (1.5.5) Given that $\mu^{*}(A)<\infty$, A belongs to \mathcal{A}_{μ} if and only if $\mu_{*}(A)=$ $\mu^{*}(A)$.

Proof: \Rightarrow If A belongs to \mathcal{A}_{μ} then there are sets $E, F \in \mathcal{A}$ such that $E \subseteq A \subseteq F$ and $\mu(F \backslash E)=0$.

From $\mu(E) \leq \mu_{*}(A) \leq \mu^{*}(A) \leq \mu(F)$
all are equal.
\Leftarrow On the other hand, if $\mu_{*}(E)=\mu^{*}(E)<$ ∞
there are sequences of sets A_{1}, A_{2}, \ldots and B_{1}, B_{2}, \ldots
with $A_{i} \subseteq E$ and $E \subseteq B_{i}$ and $\mu\left(A_{i}\right) \geq \mu_{*}(E)-\frac{1}{2^{i}}$ and $\mu^{*}(E)+\frac{1}{2^{i}} \geq \mu\left(B_{i}\right)$.

The sets $A=\cup_{i}^{\infty} A_{i}$ and $B=\cap_{i}^{\infty} B_{i}$ are both in \mathcal{A} and have the same common measure size $\mu^{*}(E)=\mu_{*}(E)$.

