Measure Theory Fifth Week

Integration

With (X, \mathcal{A}) a measurable space,
\mathcal{S} is the collection of simple functions and \mathcal{S}_{+}is the collection of non-negative simple functions.
χ_{A} is the function such that $\chi_{A}(x)=1$ if $x \in A$ and $\chi_{A}(x)=0$ if $x \notin A$.

If μ is also a measure defined on \mathcal{A}, and $f=\sum_{i=1}^{n} a_{i} \chi_{A_{i}} \quad \forall i a_{i} \in \mathbf{R}$ for finitely many disjoint $A_{1}, \ldots, A_{n} \in \mathcal{A}$ define $\int f d \mu=\sum_{i=1}^{n} a_{i} \mu\left(A_{i}\right)$ (where $0 \cdot \infty=\infty \cdot 0=0$).

Need to know that $\int f d \mu$ is well defined:
Suppose $g=f$ and $g=\sum_{j=1}^{k} b_{j} \chi_{B_{j}}$:
We can break down both g and f further as simple functions by the disjoint sets
$\left(A_{i} \cap B_{j} \mid i=1, \ldots, n \quad j=1, \ldots, k\right)$
(assuming $X=\cup_{i} A_{i}=\cup_{j} B_{j}$)
and $f=\sum_{i} \sum_{j} a_{i} \chi_{A_{i} \cap B_{j}}$ and
$g=\sum_{i} \sum_{j} b_{j} \chi_{A_{i} \cap B_{j}}$.

But where $A_{i} \cap B_{j} \neq \emptyset$ by $f=g$ it must be that $a_{i}=b_{j}$ and where $A_{i} \cap B_{j}=\emptyset$ it doesn't matter, because $\mu\left(A_{i} \cap B_{j}\right)=0$.

Therefore $\int g d \mu$ is equal to $\sum_{i} \sum_{j} a_{i} \mu\left(A_{i} \cap B_{j}\right)$, and by $\sum_{j} \mu\left(A_{i} \cap B_{j}\right)=\mu\left(A_{i}\right)$
we have that $\int g d \mu=\int f d \mu$.

The simple functions defined on a measurable space (X, \mathcal{A}) form a vector subspace:
if f is a simple function then αf is also a simple function for any $\alpha \in \mathbf{R}$,
if f, g are simple functions then $f+g$ is a simple function.

The latter is true by taking the collection
$\left(A_{i} \cap B_{j} \mid i=1, \ldots, n \quad j=1, \ldots, k\right)$ where the A_{1}, \ldots, A_{n} define f and the B_{1}, \ldots, B_{k} define g.

The natural question is whether integration is a linear functional on the subspace of simple functions.

Lemma:

$$
\begin{aligned}
& \int \alpha f d \mu=\alpha \int f d \mu \text { and } \\
& \int(f+g) d \mu=\int f d \mu+\int g d \mu .
\end{aligned}
$$

Proof:

Let A_{1}, \ldots, A_{n} and a_{1}, \ldots, a_{n} define f.
αf is defined by the same sets and $a_{i}^{\prime}=\alpha a_{i}$,
therefore $\int \alpha f d \mu=\sum_{i} \alpha a_{i} \mu\left(A_{i}\right)=$ $\alpha\left(\sum_{i} a_{i} \mu\left(A_{i}\right)\right)=\alpha \int f d \mu$.

Let B_{1}, \ldots, B_{k} and b_{1}, \ldots, b_{k} define g.
$f+g$ is defined by $a_{i}+b_{j}$ and the $\left(A_{i} \cap B_{j} \mid i=1, \ldots, n \quad j=1, \ldots, k\right):$
$\int(f+g) d \mu=\sum_{i} \sum_{j}\left(a_{i}+b_{j}\right) \mu\left(A_{i} \cap B_{j}\right)=$
$\sum_{i} \sum_{j} a_{i} \mu\left(A_{i} \cap B_{j}\right)+\sum_{i} \sum_{j} b_{j} \mu\left(A_{i} \cap B_{j}\right)=$ $\int f d \mu+\int g d \mu$.

Lemma: If $f \leq g$ for simple functions f, g
then $\int f d \mu \leq \int g d \mu$.

Proof: $g=f+(g-f)$
and $g-f$ is a simple function in \mathcal{S}_{+}.

Lemma: Let $f \in \mathcal{S}_{+}$
and let $f_{1} \leq f_{2} \leq \ldots$ be a sequence of simple functions in \mathcal{S}_{+}
such that for each x
$f(x)=\lim _{i \rightarrow \infty} f_{i}(x)$.
Then $\int f d \mu=\lim _{i \rightarrow \infty} \int f_{i} d \mu$.

As $f_{i} \leq f$ for every i,
it follows that $\int f_{i} d \mu \leq \int f d \mu$.

For any $\epsilon>0$ define simple functions g_{i}
by $g_{i}(x)=\min \left(f_{i}(x), f(x)-\epsilon\right)$.

Define $B_{i}:=\left\{x \mid g_{i}(x)<f(x)-\epsilon\right\}$:
p.w. convergence $\Rightarrow \cap_{i=1}^{\infty} B_{i}=\emptyset$
which implies by a previous lemma that
$\lim _{i \rightarrow \infty} \mu\left(B_{i}\right)=0$.
Because simple functions have finite values, f has a maximum finite value and it follows from $\lim _{i \rightarrow \infty} \mu\left(B_{i}\right)=0$ that
$\lim _{i \rightarrow \infty} \int g_{i} d \mu \geq-\epsilon+\int f d \mu$.

The rest follows by $g_{i} \leq f_{i}$ for every i and the arbitrary choice of ϵ.

Let f be a measurable function $f: X \rightarrow$ $[0, \infty]$.

The integral $\int f d \mu$ is defined to be $\sup _{g \in \mathcal{S}_{+}, g \leq f} \int g d \mu$.

Lemma: Let $f: X \rightarrow[0, \infty]$ be a measurable function
and let $f_{1} \leq f_{2} \leq \ldots$ be a sequence of simple functions in \mathcal{S}_{+} such that for each x

$$
f(x)=\lim _{i \rightarrow \infty} f_{i}(x)
$$

Then $\int f d \mu=\lim _{i \rightarrow \infty} \int f_{i} d \mu$.

Proof: Assume first that $\int f d \mu<\infty$. For any given $\epsilon>0$ let g be a simple function such that $g \leq f$ and
$\int g d \mu \geq-\epsilon+\int f d \mu$,
(by definition of the integral exists).
As the $\tilde{f}_{i}=f_{i} \wedge g$ are also simple functions with $\lim _{i \rightarrow \infty} \tilde{f}_{i}(x)=g(x)$ for all x,
it follows that
$\lim _{i \rightarrow \infty} \int \tilde{f}_{i} d \mu=\int g d \mu \geq-\epsilon+\int f d \mu$.
The rest follows from $\tilde{f}_{i} \leq f_{i} \Rightarrow$
$\lim _{i \rightarrow \infty} \int \tilde{f}_{i} d \mu \leq \lim _{\rightarrow \infty} \int f_{i} d \mu$.
And if $\int f d \mu=\infty$ do the same with any $M>0$ and $0 \leq g \leq f$ with $\int g d \mu \geq M$.

Monotone Convergence Theorem:

Let $f: X \rightarrow[0, \infty]$ and $f_{i}: X \rightarrow[0, \infty]$ be measurable functions
such that $f_{1} \leq f_{2} \leq \ldots$
such that for each x
$f(x)=\lim _{i \rightarrow \infty} f_{i}(x)$.
Then $\int f d \mu=\lim _{i \rightarrow \infty} \int f_{i} d \mu$.

Proof: By previous lemma, there is a sequence ($g_{l} \mid l=1,2, \ldots$) of simple functions with $g_{l} \leq f$ for every l and $\lim _{l \rightarrow \infty} g_{l}(x)=f(x)$ for every x.

By the last lemma $\lim _{l \rightarrow \infty} \int g_{l} d \mu=\int f d \mu$.
For every $i=1,2, \ldots$ there are simple function $h_{j}^{i} \in \mathcal{S}_{+}$
with $h_{1}^{i} \leq h_{2}^{i}, \ldots$ and $\lim _{j \rightarrow \infty} h_{j}^{i}(x)=f_{i}(x)$ and $\lim _{j \rightarrow \infty} \int h_{j}^{i} d \mu=\int f_{i} d \mu$.

For every $l=1,2, \ldots$ define $f_{k}^{l}=\vee_{i, j \leq k}\left(h_{j}^{i} \wedge g_{l}\right)$.

We have $f_{1}^{l} \leq f_{2}^{l} \leq \ldots$ and $\forall i \quad f_{i}^{l} \leq f_{i}$.

Choosing any x and $\epsilon>0$ there is an i such that $f_{i}(x) \geq f(x)-\frac{\epsilon}{2}$ and then there is a j such that $h_{j}^{i}(x) \geq f_{i}(x)-\frac{\epsilon}{2}$.

This means that $\lim _{j \rightarrow \infty} f_{j}^{l}(x)=g_{l}(x)$ and so $\lim _{j \rightarrow \infty} \int f_{j}^{l} d \mu=\int g_{l} d \mu$.

And with $f_{j}^{l} \leq f_{j}$ for all j it follows that $\lim _{j \rightarrow \infty} \int f_{j} d \mu \geq \int g_{l} d \mu$.

But with $\lim _{j \rightarrow \infty} \int f_{j} d \mu \leq \int f d \mu$ and $\lim _{l \rightarrow \infty} \int g_{l} d \mu=\int f d \mu$,
$\Rightarrow \lim _{j \rightarrow \infty} \int f_{j} d \mu=\int f d \mu$.

Note: The same concluson holds for the more liberal condition $\lim _{i \rightarrow \infty} f_{i}(x)=f(x)$ for almost all x,
since one can restict all arguments to the set where the equality holds and the complement of this set contributes nothing to the integrals.

Any measurable $f: X \rightarrow[-\infty,+\infty]$ is called integrable if
both $\int f^{+} d \mu$ and $\int f^{-} d \mu$ are finite.
If either $\int f^{+} d \mu$ or $\int f^{-} d \mu$ is finite, then $\int f d \mu$ is defined to be
$\int f^{+} d \mu-\int f^{+} d \mu$
If A is a measurable set and f a measurable function
then $\int_{A} f d \mu=\int \chi_{A} f d \mu$, given that it is well defined.

Fatou's Lemma:

Let f_{1}, f_{2}, \ldots be a sequence of non-negative valued measurable functions.

Then $\int \liminf \inf _{n} f_{n} d \mu \leq \liminf _{n} \int f_{n} d \mu$.

Proof: Let $g_{n}=\inf _{k=n}^{\infty} f_{k}$.

We have $g_{1} \leq g_{2} \leq \cdots \leq g_{n} \leq f_{n}$ and $\lim _{n \rightarrow \infty} g_{n}(x)=\liminf _{n} f_{n}(x)$ for all x.

By the monotone convergence theorem,
$\int \liminf f_{n} d \mu=\int \lim _{n} g_{n} d \mu=\lim _{n} \int g_{n} d \mu=$ $\liminf _{n} \int g_{n} d \mu \leq \liminf _{n} \int f_{n} d \mu$.

Dominated Convergence Theorem

Let $g: X \rightarrow[0, \infty)$ be an integrable function and
let f and f_{1}, f_{2}, \ldots be $[-\infty,+\infty]$ valued measurable functions
such that $f(x)=\lim _{n} f_{n}(x)$ almost everywhere
and $\left|f_{n}(x)\right| \leq g(x)$.
Then $\int f d \mu=\lim _{n} \int f_{n} d \mu$.

Proof:

By Fatou's Lemma
$\int \liminf \left(g+f_{i}\right) d \mu \leq \liminf _{i} \int\left(g+f_{i}\right) d \mu$,
$\int \liminf i_{i}\left(g-f_{i}\right) d \mu \leq \liminf _{i} \int\left(g-f_{i}\right) d \mu$.
Therefore $\int \liminf _{i} f_{i} d \mu \leq \liminf _{i} \int f_{i} d \mu$ and $\int \limsup \sup _{i} f_{i} d \mu \geq \limsup { }_{i} \int f_{i} d \mu$.

As $\limsup \mathrm{si}_{i}=\liminf _{i} f_{i}$ all four values must be equal.

