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Components of Variance

In many studies there are several nested levels of variation, e.g.
schools and pupils.

It is natural to consider each of these as contributing a variance
component, e.g. for group i , unit j , we have

Yij = x′ijβ + δi + εij ,

where δi ∼ N(0, σ21), εij ∼ N(0, σ2) and all r.v.s are independent.

This can be rewritten as the linear mixed model

Y ∼ Nn(Xβ,V),

where



V =


U 0 · · · 0
0 U
...

. . .

0 U


and

U =


σ21 + σ2 σ21 · · · σ21
σ21 σ21 + σ2

...
. . .

σ21 σ21 + σ2

 .

This generalizes in an obvious way to:

I unequal numbers of units in each group;

I any number of variance components;

I different unit variances in different groups;

I negative variance components.



If σ21/σ
2 were known, β could be estimated by generalized least

squares.

In practice, we usually estimate the variance components and plug
the estimates in to a generalized least squares fit - empirical
generalized least squares.

This underestimates the standard errors of β̂, but various
corrections are available (Satterthwaite, Kenward-Roger).

The variance components can be estimated by maximum likelihood
or, more commonly, residual maximum likelihood (REML) (or we
can do a Bayesian analysis).



REML Estimation

REML uses an orthogonal transformation of Y of dimension n − p
and maximises this residual likelihood.

We use the transformation

Y∗ = (I−H)Y,

where H = X(X′X)−1X′.

Then
Y∗ ∼ Nn(0, (I−H)V(I−H))

and we maximise the likelihood obtained from this, using a
generalised inverse of Var(Y∗), to obtain the REML estimates of
σ2 and σ21.

In the general linear model, REML gives S2 as the estimator of σ2.



Relaxing the Normality Assumption

We can obtain expressions for minimum norm quadratic unbiased
estimators (MINQUEs) of variance components.

Except in simple cases, these depend on the unknown values of the
variance components.

If we iterate (I-MINQUE), the estimates converge to the REML
estimates.

Hence, REML estimators do not really depend on distributional
assumptions.



A Warning
In complex structured data sets, REML (and other) estimates of
variance components can turn out to be zero (or very close to
zero). This can be because:

I true value is (very close to) zero; or

I the data do not provide enough information to estimate this
variance component.

It is usually impossible to tell which of these is true.

The E-GLS estimator of fixed effects simply plugs in these
estimates in order to estimate the fixed effects.

Standard errors of fixed effect estimators are calculated from
(X′V̂−1X)−1.

This acts as if the variance components are known to be zero.

There is no good solution to this (except fully Bayesian methods).



Generalized Linear Models

Linear models are useful for response variables taking values on R.

Generalized linear models (GLMs) are used for other responses.

GLMs require an assumption that the responses are from a
particular distribution from the exponential family, with location
parameter µ depending on x through a link function g(·):

g(µi ) = x′iβ

and constant dispersion parameter.

These are most commonly used with discrete data, the assumed
distribution being Poisson or binomial, but occasionally the gamma
distribution is used for continuous data on R+. This is an
alternative to transforming Y .



GLMs have a number of properties which make them simple to
work with:

I Maximum likelihood estimates can be obtained using
iteratively reweighted least squares, which ensures
convergence.

I Canonical link functions (e.g. log λ for Poisson,
log{π/(1− π)} for binomial) can be used, for which X′Y is a
sufficient statistic.



Quasi-likelihood models retain the same mean-variance relationship
as the distributions used in GLMs, but drop the distributional
assumption and allow for an extra dispersion parameter.

For example, instead of assuming Y ∼ Poisson(λ), which implies
E (Y ) = λ and V (Y ) = λ, we assume E (Y ) = λ and
V (Y ) = σ2λ, with the same link function, but without assuming a
specific distribution.

This is a kind of semi-parametric model.



Mixed Models for Non-Normal Responses

Additional random effects can be built in to GLMs in two ways.
Both require distributional assumptions on the random effects,
except at the bottom level, where we can use a quasi-likelihood
model.

Generalised linear mixed models (GLMMs) use normally distributed
random effects in the linear predictor, e.g.

g(µij |δi ) = xijβ + δi ,

where µij is the expected response from the jth unit in group i and
δ ∼ Nn(0, σ2bI).

GLMMs are usually fitted by maximum likelihood, using
Gauss-Hermite quadrature.



Other Models for Random Effects

Hierarchical generalised linear models (HGLMs) relax the normality
assumption for the ransom effects. Their distribution is completely
general, but things simplify if a canonical distribution is used, e.g.

Yij |λij ∼ Poisson(λij),

with
λi j ∼ Gamma(µij , θ)

and µij = xijβ.

These can be fitted using the h-likelihood, though this is
controversial.

Bayesian methods are completely flexible, but computationally
intensive to fit.



Proportional Hazards Models

For time-to-event data T, it is often appropriate to assume the
model

Ti ∼Weibull(αi , η),

where logαi = x′iβ.

This is not a GLM, since the Weibull distribution is not a member
of the exponential family.

The hazard function for this distribution is

h(t) =
f (t)

1− F (t)
= ηα−ηi tη−1

= ηe−ηx
′
iβtη−1

= h0(t)ex
′
iβ,

where h0(t) is the baseline hazard for an observation with x = 0.



The Weibull regression model has the property of proportional
hazards.

Very often, we use Cox’s semi-parametric proportional hazards
model, which assumes

h(t) = h0(t)ex
′
iβ,

but does not make any distributional assumption.

As usual, proportional hazards is just an assumption and can be
relaxed. We can also include random effects (frailty) in these
models.



Semi-Parametric Models

Semi-parametric regression models assume that Y ∼ N(f (x), σ2),
but avoid assume a specific functional form for f (x).

Instead, data-driven smoothers are used to approximate the
unknown function. Typical examples are smoothed local
polynomials (splines), which try to follow the data, while penalising
“roughness”.

These can be extended to other distributions using generalized
additive models.

Opinion: These models are most useful for nuisance effects, as
they do not allow mechanistic understanding to be developed.

Again there is no problem in including random effects of any
required complexity, though fitting the models can be a
computational challenge.



Nonlinear Models

The term “nonlinear models” is completely general, but is most
often associated with models of the form E (Yi ) = f (xi ;θ) and
V (Y) = σ2I.

The parameters are usually estimated by nonlinear least squares
(NLLS), i.e. we choose θ to minimise

n∑
i=1

{Yi − f (xi ;θ)}2.

Inference is usually carried out by assuming normality, in which
case the NLLS estimates are equivalent to the MLEs, and invoking
the asymptotic properties of MLEs.



Nonlinear least squares is a fundamentally difficult numerical
problem: Convergence to the global optimum is not guaranteed
and often fails in practice.

Partial linear algorithms can help when there are separable linear
parameters, i.e. the model can be written

E (Y ) =

q∑
j=1

βj fj(x;θ).

This reduces the numerical search by q dimensions.

Also, asymptotic inferences can be very poor approximations.

Bayesian methods avoid these computational problems, but might
create others.

We can also use nonlinear mixed models.



Empirical Nonlinear Models

Models based on (artificial) neural networks are often very
successful in practice.

They can be viewed as very complex, but purely empirical,
nonlinear regression (or classification) models, with
E (Yi |zi ) = fz(zi ;θz), E (Zi |ai ) = fa(ai ;θa), · · · ,
E (Wi |xi ) = fx(xi ;θx).

The functional form and number of dimensions used in each
“layer” are arbitrary and usually chosen purely empirically.

Implicitly, we usually assume V (Y) = σ2I.

Conceptually, there is no difficulty in including random effects of
the appropriate structure; the only restriction is computational.



Statistical Modelling and Machine Learning

Machine learning methods are regression modelling methods,
typically with the following features:

I the fixed effects model is complex, purely empirical and often
implicit;

I the random effects model is implicitly iid N(0, σ2);

I there is an emphasis on prediction;

I the model is used as a black box;

I there is an emphasis on big data sets and/or real-time
predictions.



Statistical Modelling versus Machine Learning?

It is easy to see that we can do better prediction by more
realistically modelling the random effects structure, we can gain
more understanding of the system and be better able to assess the
quality of predictions by doing inference,

if we have the
computational power to do this in the time available before a
prediction is required.

If there is insufficient computational power, can we do better by
making the fixed effects structure simpler and the random effects
structure more complex? I believe this is an open question in most
cases.
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