Chapter IV. STOCHASTIC PROCESSES IN CONTINUOUS TIME.

BROWNIAN MOTION.

1. MARKOV PROCESSES. \(X \) is Markov if for each \(t \), each \(A \in \sigma(X_s : s > t) \) (the ‘future’) and \(B \in \sigma(X_s : s < t) \) (the ‘past’),

\[
P(A|X_t, B) = P(A|X_t).
\]

That is, if you know where you are (at time \(t \)), how you got there doesn’t matter so far as predicting the future is concerned – equivalently, past and future are conditionally independent given the present.

The same definition applied to Markov processes in discrete time.

If both time and state are discrete, the term Markov chain is usually used. We may then label the states as 1, 2, \ldots (there may be a finite number of states 1, \ldots, \(N \), or an infinite number; one then speaks of a finite Markov chain or an infinite one. The process \(X = (X_n) \) may then be specified by its transition probability matrix \(P = (p_{ij}) \), where

\[
p_{ij} := P(X_{n+1} = j|X_n = i)
\]

(we restrict attention to stationary Markov chains, where this matrix does not depend on time \(n \)).

Markov processes (and chains) have been much studied. They have an extensive and interesting theory, and in addition they provide models for many of the standard situations studied in Applied Probability. See e.g. Norris [N].

A situation is Markov if knowing the present is all that is needed to study the future. Roughly speaking, non-Markovian situations, in which one needs to know not only the present but also how one got there, are much harder, and are usually intractable. Again roughly speaking, there are only two broad classes of dependence where one can get useful results – martingales and Markov processes.

\(X \) is said to be strong Markov if the Markov property holds with the fixed time \(t \) replaced by a stopping time \(T \) (a random variable). This is a real restriction of the Markov property in the continuous-time case (though not in discrete time).

Example. If we take \(T \) an exponentially distributed random variable, and define a stochastic process \(X \) by

\[
X(t) = 0 \quad (t \leq T), \quad t - T \quad (t \geq T),
\]

then the Markov property holds at any fixed time, but not at the random time \(T \).

Another standard example of a process which is Markov but not strong Markov is
provided by the left-continuous Poisson process (the Poisson process is right-continuous, but we can re-define it at its jump points to make it left-continuous).

1a. DIFFUSIONS. A diffusion is a path-continuous strong-Markov process such that for each time \(t \) and state \(x \) the following limits exist:

\[
\mu(t, x) := \lim_{h \to 0} \frac{1}{h} E[(X_{t+h} - X_t)|X_t = x], \quad \sigma^2(t, x) := \lim_{h \to 0} \frac{1}{h} E[(X_{t+h} - X_t)^2|X_t = x].
\]

Then \(\mu(t, x) \) is called the drift, \(\sigma^2(t, x) \) the diffusion coefficient.

Diffusions are closely linked to Brownian motion \(B = (B_t) \) (below), and to martingales. In Week 5, we introduce the Itô integral, which allows one to integrate a suitable random integrand \(Y = (Y_t) \) with respect to Brownian motion, thus defining a stochastic integral \(\int_0^t Y(u)dB(u) \), or \(\int_0^t YdB \). One may then study stochastic differential equations (SDEs), such as

\[
dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t.
\]

Under suitable conditions, such an SDE has a solution \(X = (X_t) \), which is a diffusion with drift \(\mu \) and diffusion coefficient \(\sigma \). All this extends to the multidimensional case. In \(d \) dimensions, \(X_t \) and \(\mu \) are \(d \)-vectors, while \(\sigma \) is a \(d \times d \) matrix.

Note. As with ODEs and PDEs, one needs to have existence theorems and uniqueness theorems – and one has more than one sense in which 'solution' can be taken. With SDEs, one needs to discriminate between weak and strong solutions. For background, we must refer to the references – e.g. Øksendal [O].

 Generators. Write \(D = d/dx \) for the differentiation operator in one dimension, \(D_i = \partial/\partial x_i \) in \(d \) dimensions; thus \(D^2 = d^2/dx^2 \), \(D_{ij} = \partial^2/\partial x_i \partial x_j \). Write

\[
L_t := \frac{1}{2} \sigma(t, .)D^2 + \mu(t, .)D, \quad \text{or} \quad \frac{1}{2} \sum_{i,j=1}^d \sigma_{ij}(t, .)D_{ij} + \sum_{i=1}^d \mu_i(t, .)D_i;
\]

then \(L \) is an elliptic differential operator (linear, second-order, partial if \(d > 1 \)). Under suitable conditions, the parabolic PDE

\[
L_t f + \partial f/\partial t = 0 \quad \text{(PPDE)}
\]

has as solutions the transition probability density function for the diffusion \(X \).

Example: Brownian motion. The prototype here is Brownian motion (below), where \(\mu = 0 \), \(\sigma = 1 \) (or \(I \) in higher dimensions), \(L = \frac{1}{2}D^2 \) (or \(\frac{1}{2} \Delta \) in higher dimensions, with \(\Delta \) the...
Laplacian) and \((PPDE)\) is the heat equation.

In one dimension, the usual treatment of diffusions uses the scale function and speed measure; see e.g. Breiman [Bre], Ch. 16, Rogers & Williams [R-W2], V.46, 47. Here one uses the total ordering of the real line (so this is specific to one dimension). In higher dimensions, one uses the Stroock-Varadhan approach via martingale problems; see [SV].

2. GAUSSIAN PROCESSES. Recall the multivariate normal distribution \(N(\mu, \Sigma)\) in \(n\) dimensions. If \(\mu \in \mathbb{R}^n\), \(\Sigma\) is a non-negative definite \(n \times n\) matrix, \(X\) has distribution \(N(\mu, \Sigma)\) if it has characteristic function

\[
\phi_X(t) := E \exp\{it^T X\} = \exp\{it^T \mu - \frac{1}{2} t^T \Sigma t\} \quad (t \in \mathbb{R}^n).
\]

If further \(\Sigma\) is positive definite (so non-singular), \(X\) has density

\[
f_X(x) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\{-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\}
\]

(Edgeworth’s Theorem, 1893).

A process \(X = (X_t)_{t \geq 0}\) is Gaussian if all its finite-dimensional distributions are Gaussian. Such a process can be specified by:

(i) a measurable function \(\mu = \mu(t)\) with \(EX_t = \mu(t)\),

(ii) a non-negative definite function \(\sigma(s, t)\) with \(\sigma(s, t) = \text{cov}(X_s, X_t)\).

Gaussian processes have many interesting properties. Among these, we quote Bel- layev’s dichotomy (1961): with probability one, the paths of a Gaussian process are either continuous, or extremely pathological: for example, unbounded above and below on any time-interval, however short. Naturally, we shall confine attention in this course to continuous Gaussian processes.

3. BROWNIAN MOTION.

The Scottish botanist Robert Brown observed pollen particles in suspension under a microscope in 1828 and 1829 (though Leeuwenhoek had observed the phenomenon before him – indeed, so had Lucretius in antiquity, in De rerum naturae), and observed that they were in constant irregular motion.

In 1900 L. Bachelier considered Brownian motion a possible model for stock-market prices (for a recent translation with commentary, see [Bach]) - the first time Brownian motion had been used to model financial or economic phenomena, and before a mathematical
theory had been developed.

In 1905 Albert Einstein considered Brownian motion as a model of particles in suspension, and used it to estimate Avogadro’s number \(N \sim 6 \times 10^{23} \), based on the diffusion coefficient \(D \) in the Einstein relation

\[
\text{var} X_t = Dt \quad (t > 0).
\]

Definition. Brownian motion (BM) on \(\mathbb{R} \) is the process \(B = (B_t : t \geq 0) \) such that:

(i) \(B_0 = 0 \);

(ii) \(B \) has stationary independent increments (so \(B \) is a Lévy process);

(iii) \(B \) has Gaussian increments: for \(s, t \geq 0 \), \(B_{t+s} - B_s \sim N(0, t) \);

(iv) \(B \) has continuous paths: \(t \mapsto B_t \) is continuous (\(t \mapsto B(t, \omega) \) is continuous for all \(\omega \in \Omega \)).

[The path-continuity in (iv) can be relaxed by assuming it only a.s.; we can then get continuity by excluding a suitable null-set from our probability space.]

The fact that Brownian motion so defined *exists* is quite deep, and was first proved by Norbert Wiener (1894-1964) in 1923. In honour of this, Brownian motion is also known as the Wiener process, and the probability measure generating it - the measure \(W \) on \(C[0, 1] \) (one can extend to \(C[0, \infty) \) by

\[
W(A) = P(B, \in A) = P(\{t \mapsto B_t(\omega)\} \in A)
\]

for all Borel sets \(A \in C[0, 1] \) is called Wiener measure.

Covariance. Before addressing existence, we first find the covariance function. For \(s \leq t \), \(B_t = B_s + (B_t - B_s) \), so as \(E B_t = 0 \),

\[
cov(B_s, B_t) = E(B_s B_t) = E(B_s^2) + E[B_s(B_t - B_s)].
\]

The last term is \(E(B_s)E(B_t - B_s) \) by independent increments, and this is zero, so

\[
cov(B_s, B_t) = E(B_s^2) = s \quad (s \leq t) : \quad cov(B_s, B_t) = \min(s, t).
\]

A Gaussian process (one whose finite-dimensional distributions are Gaussian) is specified by its mean function and its covariance function, so among centred (zero-mean) Gaussian processes, the covariance function \(\min(s, t) \) serves as the signature of Brownian motion.

Finite-Dimensional Distributions.

For \(0 \leq t_1 < \ldots < t_n \), the joint law of \(X(t_1), X(t_2), \ldots, X(t_n) \) can be obtained from that of \(X(t_1), X(t_2) - X(t_1), \ldots, X(t_n) - X(t_{n-1}) \). These are jointly Gaussian, hence
so are \(X(t_1), \ldots, X(t_n)\): the finite-dimensional distributions are multivariate normal. Recall that the multivariate normal law in \(n\) dimensions, \(N_n(\mu, \Sigma)\) is specified by the mean vector \(\mu\) and the covariance matrix \(\Sigma\) (non-negative definite) by its CF:

\[
E \exp\{iu^T X\} = \exp\{iu^T X - \frac{1}{2} u^T \Sigma u\},
\]

and when \(\Sigma\) is positive definite (so non-singular), the joint density is given by Edgeworth’s theorem. So to check the finite-dimensional distributions of \(BM\) - stationary independent increments with \(B_t \sim N(0, t)\) - it suffices to show that they are multivariate normal with mean zero and covariance \(\text{cov}(B_s, B_t) = \min(s, t)\) as above.

Construction of BM.

It suffices to construct \(BM\) for \(t \in [0, 1]\). This gives \(t \in [0, n]\) by dilation, and \(t \in [0, \infty)\) by letting \(n \to \infty\).

First, take \(L^2[0, 1]\), and any complete orthonormal system (cons) \((\phi_n)\) on it. Now \(L^2\) is a Hilbert space, under the inner product

\[
\langle f, g \rangle = \int_0^1 f(x)g(x)dx \quad \text{(or } \int fg),
\]

so norm \(\|f\| := (\int f^2)^{1/2}\). By Parseval’s identity,

\[
\int_0^1 fg = \sum_{n=0}^{\infty} \langle f, \phi_n \rangle \langle g, \phi_n \rangle
\]

(where convergence of the series on the right is in \(L^2\), or in mean square: \(\|f - \sum_{k=0}^{n}(f, \phi_k)\phi_k\| \to 0\) as \(n \to \infty\)). Now take, for \(s, t \in [0, 1]\),

\[
f(x) = I_{[0, s]}(x), \quad g(x) = I_{[0, t]}(x).
\]

Parseval’s identity becomes

\[
\min(s, t) = \sum_{n=0}^{\infty} \int_0^s \phi_n dx \int_0^t \phi_n(x) dx.
\]

Now take \((Z_n)\) independent and identically distributed \(N(0, 1)\), and write

\[
B_t = \sum_{n=0}^{\infty} Z_n \int_0^t \phi_n(x) dx.
\]

This is a sum of independent random variables. Kolmogorov’s theorem on random series (‘three-series theorem’ – see e.g. [Brei] §3.4, [G-S], 7.11.35) says that it converges a.s. if
the sum of the variances converges. This is \(\sum_{n=0}^{\infty} (\int_0^t \phi_n(x)dx)^2 \), \(s = t \) by above. So the series above converges a.s., and by excluding the exceptional null set from our probability space (as we may), everywhere.

The Haar System. Define

\[
H(t) = 1 \quad \text{on } [0, \frac{1}{2}), \quad -1 \quad \text{on } \left[\frac{1}{2}, 1 \right], \quad 0 \quad \text{else}
\]

Write \(H_0(t) \equiv 1 \), and for \(n \geq 1 \), express \(n \) in dyadic form as \(n = 2^j + k \) for a unique \(j = 0, 1, \ldots \) and \(k = 0, 1, \ldots, 2^j - 1 \). Using this notation for \(n, j, k \) throughout, write

\[
H_n(t) := 2^{j/2} H(2^j t - k)
\]

(so \(H_n \) has support \([k/2^j, (k+1)/2^j]\)). So if \(m, n \) have the same \(j \), \(H_m H_n \equiv 0 \), while if \(m, n \) have different \(j \)s, one can check that \(H_m H_n \) is \(2^{(j_1 + j_2)/2} \) on half its support, \(-2^{(j_1 + j_2)/2} \) on the other half, so \(\int H_m H_n = 0 \). Also \(H_n^2 \) is \(2^j \) on \([k/2^j, (k+1)/2^j]\), so \(\int H_n^2 = 1 \). Combining:

\[
\int H_m H_n = \delta_{mn},
\]

and \((H_n)\) form an orthonormal system, called the Haar system. For completeness: the indicator of any dyadic interval \([k/2^j, (k+1)/2^j]\) is in the linear span of the \(H_n \) (difference two consecutive \(H_n \)s and scale). Linear combinations of such indicators are dense in \(L^2[0,1] \). Combining: the Haar system \((H_n)\) is a cons in \(L^2[0,1] \).

The Schauder System.

We obtain the Schauder system by integrating the Haar system. Consider the triangular function (or ‘tent function’)

\[
\Delta(t) := 2t \quad (0 \leq t \leq \frac{1}{2}), \quad 2(1 - t) \quad \left(\frac{1}{2} \leq t \leq 1 \right), \quad 0 \quad \text{else}
\]

Write \(\Delta_0(t) := t, \Delta_1(t) := \Delta(t) \), and define the \(n \)th Schauder function \(\Delta_n \) by

\[
\Delta_n(t) := \Delta(2^j t - k) \quad (n = 2^j + k \geq 1).
\]

Note that \(\Delta_n \) has support \([k/2^j, (k+1)/2^j]\) (so is ‘localized’ on this dyadic interval, which is small for \(n, j \) large). We see that

\[
\int_0^t H(u)du = \frac{1}{2} \Delta(t),
\]

and similarly

\[
\int_0^t H_n(u)du = l_n \Delta_n(t),
\]

where \(l_0 = 1 \) and for \(n \geq 1 \),

\[
l_n = \frac{1}{2} \cdot 2^{-j/2} \quad (n = 2^j + k \geq 1).
\]

The Schauder system \((\Delta_n)\) is again a cons on \(L^2[0,1] \).
THEOREM (Paley-Wiener-Zygmund, 1933). For \((Z_n)_{0}^{\infty}\) independent \(N(0, 1)\) random variables, \(l_n, \Delta_n\) as above,

\[B_t := \sum_{n=0}^{\infty} l_nZ_n\Delta_n(t) \]

converges uniformly on \([0, 1]\), a.s. The process \(B = (B_t : t \in [0, 1])\) is Brownian motion.

Lemma. For \(Z_n\) independent \(N(0, 1)\),

\[|Z_n| \leq C\sqrt{\log n} \quad \forall n \geq 2, \]

for some random variable \(C < \infty\) a.s.

Proof. For \(x > 1\),

\[P(|Z_n| \geq x) = \frac{2}{\sqrt{2\pi}} \int_x^{\infty} e^{-\frac{1}{2}u^2} du \leq \frac{\sqrt{2/\pi}}{x} \int_x^{\infty} ue^{-\frac{1}{2}u^2} du = \sqrt{2/\pi}e^{-\frac{1}{2}x^2}. \]

So for any \(a > 1\),

\[P(|Z_n| > \sqrt{2a\log n}) \leq \sqrt{2/\pi} \exp(-a\log n) = \sqrt{2/\pi}n^{-a}. \]

Since \(\sum n^{-a} < \infty\) for \(a > 1\), the Borel-Cantelli lemma (see e.g. [Brei] §3.3, or [G-S] §7.3 Th. 10) gives

\[P(|Z_n| > \sqrt{2a\log n} \text{ for infinitely many } n) = 0 : \quad C := \sup_{n \geq 2} \frac{|Z_n|}{\sqrt{\log n}} < \infty \quad \text{a.s.} \]

Proof of the Theorem.

1. **Convergence.** Choose \(J\) and \(M \geq 2^J\); then

\[\sum_{n=M}^{\infty} l_n|Z_n|\Delta_n(t) \leq C\sum_{M}^{\infty} l_n\sqrt{\log n}\Delta_n(t). \]

The right is majorized by

\[C\sum_{J}^\infty \sum_{k=0}^{2^j-1} \frac{1}{2\cdot 2^{-j/2}} \sqrt{j + 1}\Delta_{2^j+k}(t) \]

(perhaps including some extra terms at the beginning, using \(n = 2^j + k < 2^{j+1}\), \(\log n \leq (j + 1)\log 2\), and \(\Delta_n(.) \geq 0\), so the series is absolutely convergent). In the inner sum, only
one term is non-zero \((t \text{ can belong to only one dyadic interval } [k/2^j, (k+1)/2^j]) \), and each
\(\Delta_n(t) \in [0, 1] \). So
\[
LHS \leq C \sum_{j=J}^{\infty} \frac{1}{2} \cdot 2^{-j/2} \sqrt{j+1} \quad \forall t \in [0, 1],
\]
and this tends to 0 as \(J \to \infty \), so as \(M \to \infty \). So the series \(\sum l_n Z_n \Delta_n(t) \) is absolutely and uniformly convergent, a.s. Since continuity is preserved under uniform convergence and each \(\Delta_n(t) \) (so each partial sum) is continuous, \(B_t \) is continuous in \(t \).

2. Covariance. By absolute convergence, we can interchange integral and expectation (Fubini’s theorem):
\[
EB_t = E \sum_0^{\infty} l_n Z_n \Delta_n(t) = \sum_0^{\infty} l_n \Delta_n(t). EZ_n = \sum_0 = 0 = 0.
\]
So the covariance is
\[
E(B_s B_t) = E[\sum_m Z_m \int_0^s \phi_m \cdot \sum_n Z_n \int_0^t \phi_n] = \sum_m \sum_n E[Z_m Z_n] \int_0^s \phi_m \int_0^t \phi_n,
\]
or as \(E[Z_m Z_n] = \delta_{mn} \),
\[
\sum_n \int_0^s \phi_m \int_0^t \phi_n = \min(s, t),
\]
by the Parseval calculation above.

3. Joint Distributions. Take \(t_1, \ldots, t_m \in [0, 1] \), we have to show that \((B(t_1), \ldots, B(t_m)) \) is multivariate normal, with mean vector 0 and covariance matrix \((\min(t_i, t_j)) \). The multivariate CF is
\[
E \exp\{i \sum_{j=1}^m u_j B(t_j)\} = E \exp\{i \sum_{j=1}^m u_j \sum_{n=0}^{\infty} l_n Z_n \Delta_n(t_j)\},
\]
which by independence of the \(Z_n \) is
\[
\prod_{n=0}^{\infty} E \exp\{il_n Z_n \sum_{j=1}^m u_j \Delta_n(t_j)\}.
\]
Since each \(Z_n \) is \(N(0, 1) \), the RHS is
\[
\prod_{n=0}^{\infty} \exp\{-\frac{1}{2} l_n^2 (\sum_{j=1}^m u_j \Delta_n(t_j))^2\} = \exp\{-\frac{1}{2} \sum_{n=0}^{\infty} l_n^2 (\sum_{j=1}^m u_j \Delta_n(t))^2\}.
\]
The sum in the exponent on the right is
\[
\sum_{n=0}^{\infty} l_n^2 \sum_{j=1}^m \sum_{k=1}^m u_j u_k \Delta_n(t_j) \Delta_n(t_k) = \sum_{j=1}^m \sum_{k=1}^m u_j u_k \sum_{n=0}^{\infty} \int_0^{t_j} H_n(u) du \int_0^{t_k} H_n(u) du,
\]
giving
\[\sum_{j=1}^{m} \sum_{k=1}^{m} u_j u_k \min(t_j, t_k), \]
by the Parseval calculation, as \((H_n)\) are cons. Combining,
\[E \exp \{ i \sum_{j=1}^{m} u_j B(t_j) \} = \exp \{- \frac{1}{2} \sum_{j=1}^{m} \sum_{k=1}^{m} u_j u_k \min(t_j, t_k) \}. \]
This says that \((B(t_1), \ldots, B(t_n))\) is multinormal with mean 0 and covariance function \(\min(t_j, t_k)\) as required. This completes the construction of BM.

Wavelets. The Haar system \((H_n)\), and the Schauder system \((\Delta_n)\) obtained by integration from it, are examples of wavelet systems. The original function, \(H\) or \(\Delta\), is a mother wavelet, and the ‘daughter wavelets’ are obtained from it by dilation and translation. The expansion of the Theorem is the wavelet expansion of BM with respect to the Schauder system \((\Delta_n)\). For any \(f \in C[0,1]\), we can form its wavelet expansion
\[f(t) = \sum_{n=0}^{\infty} c_n \Delta_n(t), \]
with wavelet coefficients \(c_n\). Here \(c_n\) are given by
\[c_n = f \left(\frac{k + \frac{1}{2}}{2^j} \right) - \frac{1}{2} \left[f \left(\frac{k}{2^j} \right) + f \left(\frac{k + 1}{2^j} \right) \right]. \]
This is the form that gives the \(\Delta_n(.)\) term its correct triangular influence, localized on the dyadic interval \([k/2^j, (k + 1)/2^j]\). Thus for \(fBM\), \(c_n = l_n Z_n\), with \(l_n, Z_n\) as above.
The wavelet construction of BM above is, in modern language, the classical ‘broken-line’ construction of BM due to Lévy in his book of 1948. The account above is from [Ste].

Note. 1. We shall see that Brownian motion is a fractal, and wavelets are a useful tool for the analysis of fractals more generally.
2. Wavelets have also proved extremely useful in data compression. This is because many signals with lots of ‘local discontinuities’ may be accurately summarized by a sparse wavelet expansion (i.e. one with only a few non-zero coefficients). For example, the FBI digitized its finger-print data bank using wavelets. For background on the extensive uses of wavelets in statistics, see e.g. Iain Johnstone’s forthcoming book [Joh].

Zeros. It can be shown that Brownian motion oscillates:
\[\limsup_{t \to \infty} X_t = +\infty, \quad \liminf_{t \to \infty} X_t = -\infty \quad a.s. \]
Hence, for every \(n \) there are zeros (times \(t \) with \(X_t = 0 \)) of \(X \) with \(t \geq n \) (indeed, infinitely many such zeros). So, denoting the zero-set of \(BM(\mathbb{R}) \) by

\[
Z := \{ t \geq 0 : X_t = 0 \}:
\]

1. \(Z \) is an infinite set.

Next, if \(t_n \) are zeros and \(t_n \to t \), then by path-continuity \(B(t_n) \to B(t) \); but \(B(t_n) = 0 \), so \(B(t) = 0 \).

2. \(Z \) is a closed set (\(Z \) contains its limit points).

Less obvious are the next two properties:

3. \(Z \) is a perfect set: every point \(t \in Z \) is a limit point of points in \(Z \). So there are infinitely many zeros in every neighbourhood of every zero (so the paths must oscillate amazingly fast!).

4. \(Z \) is a (Lebesgue) null set: \(Z \) has Lebesgue measure zero.

In particular, this shows that it is impossible to draw a realistic picture of a Brownian path.

Brownian Scaling. For each \(c \in (0, \infty) \), \(X(c^2 t) \) is \(N(0, c^2 t) \), so \(X_c(t) := c^{-1} X(c^2 t) \) is \(N(0, t) \). Thus \(X_c \) has all the defining properties of a Brownian motion (check). So, \(X_c \) IS a Brownian motion:

THEOREM. If \(X \) is \(BM(\mathbb{R}) \) and \(c > 0 \), \(X_c(t) := c^{-1} X(c^2 t) \), then \(X_c \) is again a \(BM(\mathbb{R}) \).

COROLLARY. \(X \) is self-similar (reproduces itself under scaling), so a Brownian path \(X(.) \) is a fractal. So too is the zero-set \(Z \).

Brownian motion owes part of its importance to belonging to all the important classes of stochastic processes: it is (strong) Markov, a (continuous) martingale, Gaussian, a diffusion, a Lévy process (process with stationary independent increments), etc.

Brownian motion is the dynamic counterpart of the standard normal distribution \(\Phi = N(0, 1) \), and this owes much of its importance to the Central Limit Theorem (CLT) (‘Law of Errors’). The dynamic counterpart of the CLT is Donsker’s Invariance Principle (see e.g. [Bil]), which we touch on briefly at the end of this course.