PROBLEMS 1

Q1. Find the areas of (i) triangles, (ii) polygons, (iii) circles, (iv) ellipses.

Q2. Describe how you would go about finding the area of a general region of the plane.

Q3. Would you expect a general region of the plane to have an area? If so, how would you go about finding it? If not, why not?

Q4. With \(\mathbb{Q} \) the set of rationals, does \(I_{\mathbb{Q}}(x)dx \) exist:
 (i) as a Riemann integral?
 (ii) as a Lebesgue integral?
 Give the value of the integral when it exists. Comment on any difference between your answers to (i) and (ii).

Q5 (Generalised Pythagoras theorem). A right-angled triangle has sides 1 (the hypotenuse), 2 and 3. A semicircle (or any other plane shape) of area \(A_1 \) is drawn with base side 1; similar copies of this are drawn with bases sides 2 and 3, with areas \(A_2, A_3 \). Show that

\[A_1 = A_2 + A_3. \]

Deduce Pythagoras’ theorem on taking these shapes to be squares.

Recommended Reading.

Not all sets on the line have a length – that is, non-measurable subsets of the line exist. The standard construction of a non-measurable set, due to Vitali, uses the Axiom of Choice (and so is non-constructive!). Refer to a book on Measure Theory, and look up ‘non-measurable set’ in the index – e.g., Lecture 4 of my Stochastic Processes course (MSc in Mathematical Finance):

Imperial College, London > Mathematics Department > Staff > Staff List > Bingham > Home page > Stochastic Processes;

M. E. MUNROE, *Introduction to measure and integration*, Addison-Wesley, 1953, 142-3;

NHB