Consider the following bivariate density:

\[f(x, y) = c \exp\left\{ -\frac{1}{2}Q(x, y) \right\}, \]

where \(c \) is a constant, \(Q \) a positive definite quadratic form in \(x \) and \(y \). Specifically:

\[
c = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}},
\]

\[
Q = \frac{1}{1-\rho^2}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right)\left(\frac{y-\mu_2}{\sigma_2}\right) + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right].
\]

Here \(\sigma_i > 0, \mu_i \) are real, \(-1 < \rho < 1\). Since \(f \) is clearly non-negative, to show that \(f \) is a (probability density) function (in two dimensions), it suffices to show that \(f \) integrates to 1:

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1, \quad \text{or} \quad \int \int f = 1.
\]

Write

\[
f_1(x) := \int_{-\infty}^{\infty} f(x, y) \, dy, \quad f_2(y) := \int_{-\infty}^{\infty} f(x, y) \, dx.
\]

Then to show \(\int \int f = 1 \), we need to show \(\int_{-\infty}^{\infty} f_1(x) \, dx = 1 \) (or \(\int_{-\infty}^{\infty} f_2(y) \, dy = 1 \)). Then \(f_1, f_2 \) are densities, in one dimension. If \(f(x, y) = f_{X,Y}(x, y) \) is the joint density of two random variables \(X, Y \), then \(f_1(x) \) is the density \(f_X(x) \) of \(X \), \(f_2(y) \) the density \(f_Y(y) \) of \(Y \) (\(f_1, f_2 \), or \(f_X, f_Y \), are called the marginal densities of the joint density \(f \), or \(f_{X,Y} \)).

To perform the integrations, we have to complete the square. We have the algebraic identity

\[
(1-\rho^2)Q = \left[\left(\frac{y-\mu_2}{\sigma_2}\right) - \rho\left(\frac{x-\mu_1}{\sigma_1}\right)\right]^2 + (1-\rho^2)\left(\frac{x-\mu_1}{\sigma_1}\right)^2
\]

(reducing the number of occurrences of \(y \) to 1, as we intend to integrate out \(y \) first). Then (taking the terms free of \(y \) out through the \(y \)-integral)

\[
f_1(x) = \frac{\exp\left(-\frac{1}{2}(x-\mu_1)^2/\sigma_1^2\right)}{\sigma_1\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sigma_2\sqrt{2\pi\sqrt{1-\rho^2}}} \exp\left(-\frac{1}{2}(y-c_x)^2/\sigma_2^2(1-\rho^2)\right) \, dy,
\]

\((*) \)
where

\[c_x := \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1). \]

The integral is 1 (‘normal density’). So

\[f_1(x) = \exp \left(-\frac{1}{2} (x - \mu_1)^2 / \sigma_1^2 \right) \]

which integrates to 1 (‘normal density’), proving
Fact 1. \(f(x, y) \) is a joint density function (two-dimensional), with marginal density functions \(f_1(x) \), \(f_2(y) \) (one-dimensional). So we can write

\[f(x, y) = f_{X,Y}(x, y), \quad f_1(x) = f_X(x), \quad f_2(y) = f_Y(y). \]

Fact 2. \(X, Y \) are normal: \(X \) is \(N(\mu_1, \sigma_1^2) \), \(Y \) is \(N(\mu_2, \sigma_2^2) \). For, we showed \(f_1 = f_X \) to be the \(N(\mu_1, \sigma_1^2) \) density above, and similarly for \(Y \) by symmetry.

Fact 3. \(EX = \mu_1, EY = \mu_2, varX = \sigma_1^2, varY = \sigma_2^2 \).

This identifies four out of the five parameters: two means \(\mu_i \), two variances \(\sigma_i^2 \). Next, recall the definition of conditional probability:

\[P(A|B) := P(A \cap B)/P(B). \]

In the discrete case, if \(X, Y \) take possible values \(x_i, y_j \) with probabilities \(f_X(x_i), f_Y(y_j) \), \((X, Y) \) takes possible values \((x_i, y_j) \) with probabilities \(f_{X,Y}(x_i, y_j) \):

\[f_X(x_i) = P(X = x_i) = \sum_j P(X = x_i, Y = y_j) = \sum_j f_{X,Y}(x_i, y_j). \]

Then the conditional distribution of \(Y \) given \(X = x_i \) is

\[f_{Y|X}(y_j|x_i) = P(Y = y_j \& X = x_i)/P(X = x_i) = f_{X,Y}(x_i, y_j)/\sum_j f_{X,Y}(x_i, y_j), \]

and similarly with \(X, Y \) interchanged.

In the density case, we have to replace sums by integrals. Thus the conditional density of \(Y \) given \(X = x \) is (see e.g. Haigh (2002), Def. 4.19, p. 80)

\[f_{Y|X}(y|x) := f_{X,Y}(x, y)/f_X(x) = f_{X,Y}(x, y)/\int_{-\infty}^{\infty} f_{X,Y}(x, y)dy. \]

Returning to the bivariate normal:

Fact 4. The conditional distribution of \(y \) given \(X = x \) is \(N(\mu_2 + \rho \sigma_2 \sigma_1^{-1} (x - \mu_1), \sigma_2^2 (1 - \rho^2)) \).
Proof. Go back to completing the square (or, return to (*) with \(f \) and \(dy \) deleted):

\[
f(x, y) = \frac{\exp(-\frac{1}{2}(x - \mu_1)^2/\sigma_1^2)}{\sigma_1 \sqrt{2\pi}} \cdot \frac{\exp(-\frac{1}{2}(y - c_x)^2/(\sigma_2^2(1 - \rho^2)))}{\sigma_2 \sqrt{2\pi \sqrt{1 - \rho^2}}}.\]

The first factor is \(f_1(x) \), by Fact 1. So, \(f_{Y|X}(y|x) = f(x, y)/f_1(x) \) is the second factor:

\[
f_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi} \sigma_2 \sqrt{1 - \rho^2}} \exp\left(\frac{- (y - c_x)^2}{2 \sigma_2^2(1 - \rho^2)}\right),
\]

where \(c_x \) is the linear function of \(x \) given below (*). //

This not only completes the proof of Fact 4 but gives

Fact 5. The conditional mean \(E(Y|X = x) \) is linear in \(x \):

\[
E(Y|X = x) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1).
\]

Note. This simplifies when \(X \) and \(Y \) are equally variable, \(\sigma_1 = \sigma_2 \):

\[
E(Y|X = x) = \mu_2 + \rho (x - \mu_1)
\]

(recall \(EX = \mu_1, EY = \mu_2 \)). Recall that in Galton’s height example, this says: for every inch of mid-parental height above/below the average, \(x - \mu_1 \), the parents pass on to their child, on average, \(\rho \) inches, and continuing in this way: on average, after \(n \) generations, each inch above/below average becomes on average \(\rho^n \) inches, and \(\rho^n \to 0 \) as \(n \to \infty \), giving regression towards the mean.

This line is the population regression line (PRL), the population version of the sample regression line (SRL).

The relationship in Fact 5 can be generalized: a population regression function – more briefly, a regression – is a **conditional mean**.

This also gives

Fact 6. The conditional variance of \(Y \) given \(X = x \) is

\[
\text{var}(Y|X = x) = \sigma_2^2(1 - \rho^2).
\]

Recall (Fact 3) that the variability (= variance) of \(Y \) is \(\text{var}Y = \sigma_2^2 \). By Fact 5, the variability remaining in \(Y \) when \(X \) is given (i.e., not accounted
for by knowledge of X is $\sigma_Y^2(1 - \rho^2)$. Subtracting: the variability of Y which is accounted for by knowledge of X is $\sigma_Y^2\rho^2$. That is: ρ^2 is the proportion of the variability of Y accounted for by knowledge of X. So ρ is a measure of the strength of association between Y and X.

Recall that the covariance is defined by

$$\text{cov}(X,Y) := E[(X - EX)(Y - EY)] = E[(X - \mu_1)(Y - \mu_2)],$$

and the correlation coefficient ρ, or $\rho(X,Y)$, defined by

$$\rho = \rho(X,Y) := \text{cov}(X,Y)/\sqrt{\text{var}X \text{var}Y} = E[(X - \mu_1)(Y - \mu_2)]/\sigma_1\sigma_2$$

is the usual measure of the strength of association between X and Y ($-1 \leq \rho \leq 1$; $\rho = \pm 1$ iff one of X, Y is a function of the other).

Fact 7. The correlation coefficient of X, Y is ρ.

Proof.

$$\rho(X,Y) := E\left[\left(\frac{X - \mu_1}{\sigma_1}\right)\left(\frac{Y - \mu_2}{\sigma_2}\right)\right] = \int \int \left(\frac{x - \mu_1}{\sigma_1}\right)\left(\frac{y - \mu_2}{\sigma_2}\right)f(x,y)dxdy.$$

Substitute for $f(x,y) = c \exp(-\frac{1}{2}Q)$, and make the change of variables $u := (x - \mu_1)/\sigma_1$, $v := (y - \mu_2)/\sigma_2$:

$$\rho(X,Y) = \frac{1}{2\pi \sqrt{1 - \rho^2}} \int \int uv \exp\left(-\frac{u^2 - 2\rho uv + v^2}{2(1 - \rho^2)}\right)dudv.$$

Completing the square as before, $[u^2 - 2\rho uv + v^2] = (v - \rho u)^2 + (1 - \rho^2)u^2$. So

$$\rho(X,Y) = \frac{1}{\sqrt{2\pi}} \int u \exp\left(-\frac{u^2}{2}\right)du \cdot \frac{1}{\sqrt{2\pi \sqrt{1 - \rho^2}}} \int v \exp\left(-\frac{(v - \rho u)^2}{2(1 - \rho^2)}\right)dv.$$

Replace v in the inner integral by $(v - \rho u) + \rho u$, and calculate the two resulting integrals separately. The first is zero (‘normal mean’, or symmetry), the second is ρu (‘normal density’). So

$$\rho(X,Y) = \frac{1}{\sqrt{2\pi}} \rho \int u^2 \exp\left(-\frac{u^2}{2}\right)du = \rho$$

(‘normal variance’), as required. //

This completes the identification of all five parameters in the bivariate
normal distribution: two means μ_i, two variances σ_i^2, one correlation ρ.

Note. The above holds for $-1 < \rho < 1$; always, $-1 \leq \rho \leq 1$. In the limiting cases $\rho = \pm 1$, one of X, Y is a linear function of the other: $Y = aX + b$, say, as in the temperature example (Fahrenheit and Centigrade). The situation is not really two-dimensional: we can (and should) use only one of X and Y, reducing to a one-dimensional problem.

The slope of the regression line $y = c_x$ is $\rho \sigma_2 / \sigma_1 = (\rho \sigma_1 \sigma_2) / (\sigma_1^2)$, which can be written as $\text{cov}(X, Y) / \text{var} X = \sigma_{12} / \sigma_{11}$, or σ_{12} / σ_1^2: the line is

$$y - EY = \frac{\sigma_{12}}{\sigma_{11}} (x - EX).$$

This is the population version (what else?!) of the sample regression line

$$y - \bar{Y} = \frac{S_{XY}}{S_{XX}} (x - \bar{X}),$$

familiar from linear regression.

The case $\rho = \pm 1$ – apparently two-dimensional, but really one-dimensional – is singular; the case $-1 < \rho < 1$ - genuinely two-dimensional - is non-singular; or (see below) full rank.

We note in passing

Fact 8. The bivariate normal law has elliptical contours.

For, the contours are $Q(x, y) = \text{const}$, which are ellipses (as Galton found).

Moment Generating Function (MGF). Recall (see e.g. Haigh (2002), 102-6) $M(t)$, or $M_X(t) := E(e^{tX})$. For X normal $N(\mu, \sigma^2)$,

$$M(t) = \frac{1}{\sigma \sqrt{2\pi}} \int e^{tx} \exp\left(-\frac{1}{2} (x - \mu)^2 / \sigma^2\right) dx.$$

Change variable to $u := (x - \mu) / \sigma$:

$$M(t) = \frac{1}{\sqrt{2\pi}} \int \exp(\mu t + \sigma u - \frac{1}{2} u^2) du.$$

Completing the square,

$$M(t) = e^{\mu t} \frac{1}{\sqrt{2\pi}} \int \exp\left(-\frac{1}{2} (u - \sigma t)^2\right) du e^{\frac{1}{2} \sigma^2 t^2},$$

5
or $M_X(t) = \exp(\mu t + \frac{1}{2}\sigma^2 t^2)$ (recognising that the central term on the right is $1 - \text{‘normal density’}$). So $M_{X-\mu}(t) = \exp(\frac{1}{2}\sigma^2 t^2)$. Then (check) $\mu = EX = M'_X(0), \text{var}X = E[(X - \mu)^2] = M''_{X-\mu}(0)$.

Similarly in the bivariate case: the MGF is

$$M_{X,Y}(t_1, t_2) := E \exp(t_1 X + t_2 Y).$$

In the bivariate normal case:

$$M(t_1, t_2) = E(\exp(t_1 X + t_2 Y)) = \int \int \exp(t_1 x + t_2 y) f(x, y) dxdy = \int \exp(t_1 x) f_1(x) dx \int \exp(t_2 y) f(y|x) dy.$$

The inner integral is the MGF of $Y|X = x$, which is $N(c_x, \sigma_2^2, (1 - \rho^2))$, so is $\exp(c_x t_2 + \frac{1}{2} \sigma_2^2 (1 - \rho^2) t_2^2)$. By Fact 5 $c_x t_2 = [\mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1)] t_2$, so

$$M(t_1, t_2) = \exp(t_2 \mu_2 - t_2 \sigma_2 \frac{\mu_1}{\sigma_1} + \frac{1}{2} \sigma_2^2 (1 - \rho^2) t_2^2) \int \exp([t_1 + t_2 \rho \frac{\sigma_2}{\sigma_1}] x) f_1(x) dx.$$

Since $f_1(x)$ is $N(\mu_1, \sigma_1^2)$, the inner integral is a normal MGF, which is thus $\exp(\mu_1 [t_1 + t_2 \rho \frac{\sigma_2}{\sigma_1}] + \frac{1}{2} \sigma_1^2 [\ldots]^2)$. Combining the two terms and simplifying, we obtain

Fact 9. The joint MGF is

$$M_{X,Y}(t_1, t_2) = M(t_1, t_2) = \exp(\mu_1 t_1 + \mu_2 t_2 + \frac{1}{2} [\sigma_1^2 t_1^2 + 2 \rho \sigma_1 \sigma_2 t_1 t_2 + \sigma_2^2 t_2^2]).$$

Fact 10. X, Y are independent if and only if $\rho = 0$.

Proof. For densities: X, Y are independent iff the joint density $f_{X,Y}(x, y)$ factorises as the product of the marginal densities $f_X(x), f_Y(y)$ (see e.g. Haigh (2002), Cor. 4.17).

For MGFs: X, Y are independent iff the joint MGF $M_{X,Y}(t_1, t_2)$ factorises as the product of the marginal MGFs $M_X(t_1).M_Y(t_2)$. From Fact 9, this occurs iff $\rho = 0$. Similarly with CFs, if we prefer to work with them. //

NHB