
6 Linearized viscous sublayer. Flow past a shallow
obstacle.

On eliminating λ0 by means of an affine transformation, and simplifying notation,
the triple-deck equations derived in the previous section can be written as,

ut + uux + vuy = −px + uyy, py = 0, (6.1)

ux + vy = 0, (6.2)

p = − 1
π

 ∞
−∞

∂A(s, t)
∂s

ds

s− x
, (6.3)

x→ −∞ : u→ y, v → 0, p→ 0, (6.4)
y →∞ : u = y + A(x, t) + ..., (6.5)

y = f(x, t) : u = 0, v = ft. (6.6)

6.1 Prandtl transposition.
It is convenient to shift the y coordinate so that the lower boundary of the solution
domain becomes in effect ’flat’, i.e. to make the following change of the independent
variables known as the Prandtl transposition:

ỹ = y − f(x, t), x̃ = x, t̃ = t, (6.7)

and introduce the new flow functions,

ũ = u, ṽ = v − ft − ufx, p̃ = p, Ã = A. (6.8)

The change in the y-component of the velocity has the effect of placing the ob-
server into a frame of reference moving with the wall vertically (the term ft) and also
rotated locally by an angle arctan(fx) to align the flow field with the wall roughness.

Formally, by the chain rule,

∂

∂t
= ∂

∂t̃
− ft

∂

∂ỹ
,
∂

∂x
= ∂

∂x̃
− fx

∂

∂ỹ
,
∂

∂y
= ∂

∂ỹ
, (6.9)

and the sublayer formulation becomes

ũt̃ + ũũx̃ + ṽũỹ = −p̃x̃ + ũỹỹ, p̃ỹ = 0, (6.10)
ũx̃ + ṽỹ = 0, (6.11)

p̃ = − 1
π

 ∞
−∞

∂Ã(s, t̃)
∂s

ds

s− x̃
, (6.12)
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x̃→ −∞ : ũ→ ỹ, ṽ → 0, p̃→ 0, (6.13)

ỹ →∞ : ũ = ỹ + Ã(x̃, t̃) + f(x̃, t̃) + ..., (6.14)

ỹ = 0 : ũ = 0, ṽ = 0. (6.15)
As we can see, the governing equations are invariant under the Prandtl shift but the
boundary conditions become simpler.

6.2 Linearization.
In what follows we drop the tilde and work with the formulation,

ut + uux + vuy = −px + uyy, py = 0, (6.16)
ux + vy = 0, (6.17)

p = − 1
π

 ∞
−∞

∂A(s, t)
∂s

ds

s− x
, (6.18)

x→ −∞ : u→ y, v → 0, p→ 0, (6.19)
y →∞ : u = y + A(x, t) + f(x, t) + ..., (6.20)

y = 0 : u = 0, v = 0. (6.21)
If the wall roughness is absent, f(x, t) = 0, then we can take u = y, v = p =

A = 0, which represents the unperturbed flow in the near-wall part of the boundary
layer. Suppose we have a shallow roughness,

f(x, t) = δf1(x, t), (6.22)

where the amplitude factor, δ, is small. Then we expect the flow functions to be
perturbed by an amount of order δ so that

u = y + δu1(x, y, t) + ..., v = δv1(x, y, t) + ..., p = δp1(x, t) + ..., A = δA1(x, t) + ...,
(6.23)

and, ignoring terms of order δ2, the formulation becomes,

u1t + yu1x + v1 = −p1x + u1yy, u1x + v1y = 0, (6.24)

p1 = − 1
π

 ∞
−∞

∂A1(s, t)
∂s

ds

s− x
, (6.25)

x→ −∞ : u1 → 0, v1 → 0, p1 → 0, (6.26)
y →∞ : u1 = A1(x, t) + f1(x, t) + ..., (6.27)

y = 0 : u1 = 0, v1 = 0. (6.28)
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6.3 Time-periodic perturbations.
Suppose the wall roughness performs periodic oscillations with frequency ω and x-
dependent amplitude, fa(x), so that

f1(x, t) = 2 cos(ωt)fa(x), (6.29)
which we can write as

f1(x, t) = e−iωtfa + c.c., (6.30)
where c.c. denotes the complex conjugate (the minus sign in the exponent is not
essential but proves a little more convenient). A time periodic response in the flow
is described by

u1 = e−iωtua(x, y)+c.c., v1 = e−iωtva(x, y)+c.c., p1 = e−iωtpa(x)+c.c., A1 = e−iωtAa(x)+c.c.
(6.31)

The formulation for the amplitude functions is

−iωua + yuax + va = −pax + uayy, uax + vay = 0, (6.32)

pa(x) = − 1
π

 ∞
−∞

∂Aa(s)
∂s

ds

s− x
, (6.33)

x→ −∞ : ua → 0, va → 0, pa → 0, (6.34)
y →∞ : ua = Aa(x) + fa(x) + ..., (6.35)

y = 0 : ua = 0, va = 0. (6.36)
This problem can be solved using Fourier transforms in x which we define, for a
function g(x) for example, by the relations,

ḡ(k) =
ˆ ∞
−∞

e−ikxg(x)dx, (6.37)

g(x) = 1
2π

ˆ ∞
−∞

eikxḡ(k)dk, (6.38)

for the transform and the inverse transform, respectively.
On applying Fourier transforms to (6.32)-(6.36), we have

(iky − iω)ūa + v̄a = −ikp̄a + d2ūa
dy2 , (6.39)

ikūa + dv̄a
dy

= 0, (6.40)

p̄a = |k|Āa, (6.41)

y →∞ : ūa = Āa(k) + f̄a(k) + ..., (6.42)
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y = 0 : ūa = 0, v̄a = 0. (6.43)

In these equations, the transformed velocity components are functions of y and k.
The transform of the Hilbert integral can be obtained using generalized functions
or, alternatively, by solving for the inviscid part of the triple-deck using Fourier
transforms.

Hence, the problem has been reduced to solving ordinary differential equations.
Applying the wall conditions (6.43)to the momentum equation (6.39), we have

d2ūa
dy2 |y=0= ikp̄a. (6.44)

Then, differentiating (6.39) with respect to y and using (6.40) we obtain the equation,

(iky − iω)τ = d2τ

dy2 , (6.45)

for the shear, τ = dūa/dy. Next, the substitution,

η = y(ik)1/3 − iω

(ik)2/3 , (6.46)

reduces (6.45) to the Airy equation,

ητ(η) = d2τ(η)
dη2 . (6.47)

The Airy equation has two standard linearly independent solutions, Ai(η) and
Bi(η). Let us specify the branch of the function (ik)α for some real α by making
a cut in the complex k-plane along the positive imaginary axis and taking zαto be
real and positive for real and positive values of the complex variable z. In essence
this means that (ik)1/3 = k1/3exp(iπ/6) for k > 0 and (ik)1/3 = |k|1/3exp(−iπ/6)
for k < 0, but specifying the branch cut in the complex k-plane also helps to extend
these last two relations into the entire k-plane. Then, from the general solution of
(6.47),

τ(η) = C1Ai(η) + C2Bi(η), (6.48)

with arbitrary constants C1, C2. The term with Bi(η) needs to be eliminated as
growing exponentially in magnitude as y → +∞. Hence, τ(η) = C1Ai(η), so that

dūa
dy

= τ = C1Ai
[
y(ik)1/3 − iω(ik)−2/3

]
. (6.49)

Applying next the boundary conditions, we find, from (6.44), that

(ik)1/3C1Ai
′
[
−iω(ik)−2/3

]
= ikp̄a, (6.50)
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and, from (6.42) combined with the condition of zero velocity at y = 0,

C1

ˆ ∞
0

Ai
[
y(ik)1/3 − iω(ik)−2/3

]
dy = Āa(k) + f̄a(k). (6.51)

We can now eliminate C1between (6.50) and (6.51) and use the pressure-displacement
relation (6.41) to find the Fourier transform of the pressure function,

p̄a = |k|Ai
′(−ζ)f̄a

D(ω, k) , (6.52)

where we denote
ζ = iω

(ik)2/3 , (6.53)

and for the denominator in (6.52) we have

D(ω, k) = (ik)1/3|k|
ˆ ∞

0
Ai(s− ζ)ds− Ai′(−ζ). (6.54)

Note that in deriving (6.54) we have changed the path of integration from the real
positive semi-axis to a ray in the complex k-plane which is justified on the basis of
the branch convention adopted earlier.

In principle, this completes calculations for the Fourier transforms of the solution
in terms of the given wall roughness. The displacement function can now be found
in transformed form from Āa = p̄a/|k|, and we can also determine the velocity
components, the wall shear and so on.

Taking the inverse Fourier transform we can also write down the linearized pres-
sure function in physical variables,

p1(x, t) = e−iωt
ˆ ∞
−∞

ei(kx−ωt)
|k|Ai′(−ζ)f̄a
D(ω, k) dk + c.c. (6.55)

The last formula is interesting in two respects. First of all, the flow response to a
moving wall roughness appears as a superposition of harmonic travelling waves of
the form p1 v exp[i(kx−ωt)] with the amplitudes determined by the wall roughness
through the term f̄a(k). Second, as is typical of evolution problems, the integrand in
(6.55) contains a fraction with the denominator which is nothing else but the disper-
sion relation of the system. Recall that by the dispersion relation we understand a
functional relationship between the wavenumber k and frequency ω of free, unforced
waves which may exist in the flow even without an oscillating wall roughness. The
dispersion relation is usually written as

D(ω, k) = 0, (6.56)

for some function D(ω, k). In order to convince ourselves that the expression (6.54)
indeed gives us the dispersion relation for the flow (and to avoid solving the free

5



wave problem from the beginning) we can go back to (6.52) and write that formula
as

D(ω, k)p̄a = |k|Ai′(−ζ)f̄a. (6.57)
Now, if the wall is undisturbed, f̄a = 0, then a non-trivial solution for the pressure
exists if D(ω, k) = 0.

6.4 Properties of the dispersion relation.
For a free travelling wave, the dispersion relation D(ω, k) = 0 serves to determine
the frequency ω if the wavenumber k is given, or to find the wavenumber for a fixed
wave frequency. With D(ω, k) given by (6.54), it is known that a countable set of
free waves (wave modes) exists for any fixed k 6= 0, so that ω = ωn(k), n = 1, 2, 3, ...
. When k is real, the frequencies of free waves are complex valued. If we write
ω = ωr + iωi thus separating the real and imaginary parts then, from

ei(kx−ωt) = ei(kx−ωrt)eωit, (6.58)

it follows that waves with ωi < 0 decay whereas waves with ωi > 0 grow. It turns
out that in our case all wave modes except one are decaying. The diagram in Fig.1
(adapted from the original work by Terent’ev in 1981) shows the loci of the first three
roots in the complex plane ω for real k > 0. At small positive k the roots are clustered
around the origin. As k increases, the second, third (and all subsequent roots) move
into the lower half plane and stay there for all k, hence indicating decaying modes
with ωi < 0. However the first root crosses the real axis when k = K0 = 1.0005 and
c = ω/k = 2.2968 approximately, which gives a neutral wave with ω = Ω0 = 2.298.
The wave with precisely k = K0, ω = Ω0is neutral. Waves with k > 1.0005 grow
exponentially. We conclude that the triple deck theory describes instability in the
flow. Instability persists for higher k, in fact as k →∞ for the first mode the growth
rate ωi approaches a finite limit.

6.5 Oscillating wall.
Let us return to the problem of the oscillating wall roughness. Now ω is real and
the roots of the dispersion relation have complex valued wavenumbers k = kr + iki.
Waves with ki < 0 grow in space as x increases since exp[i(kx− ωt)] = exp[i(krx−
ωt)]exp(−kix) for a real ω.

It takes some analysis to prove that in the triple deck flow no waves can grow
upstream, as x → −∞. Also it turns out that wave modes again form a countable
set, k = kn(ω), n = 1, 2, 3, ..., for each real ω > 0. Modes with n > 1 always decay.
The first mode decays downstream if 0 < ω < Ω0, it becomes neutral at ω = Ω0and
grows downstream exponentially when ω > Ω0.

Discussion. Connection between triple-deck instability and Orr-Sommerfeld
instability at finite Reynolds numbers.
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Figure 1: First three roots of the dispersion relation in the complex ω plane for real
wavenumbers k.

Figure 2: Pressure past the oscillator for subcritical (ω < Ω0), neutral (ω = Ω0)
and supercritical (ω > Ω0) frequencies. The oscillating section of the wall has a
triangular shape located in 0 ≤ x ≤ 2.
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Discussion. How did Terent’ev manage to get a solution exponentially growing
downstream at (ω > Ω0) using Fourier transforms? Answer - the contour of integra-
tion needs to dip below the real axis to walk around the pole in the lower half plane
k.

Exercise. Derive the formula (6.41) for the Fourier transform of the pressure-
displacement relation by solving for the flow in the upper deck of the triple-deck,
equations (5.7)-(5.9), using Fourier transforms and appropriate boundary conditions.

Exercise. Find the dispersion relation for the flow by solving linearized equations
of motion in the viscous sublayer without wall roughness.

Reference. E.D. Terent’ev. The linear problem of a vibrator performing har-
monic oscillations at supercritical frequencies in a subsonic boundary layer. PMM
USSR, vol 48, No 2, pp 184-191, 1984.
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