
7 Other multi-deck interactive flows.
We continue to work with non-dimensional Navier-Stokes equations for an incom-
pressible fluid which, in two dimensions, have the form,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+Re−1

(
∂2u

∂x2 + ∂2u

∂y2

)
, (7.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+Re−1

(
∂2v

∂x2 + ∂2v

∂y2

)
, (7.2)

∂u

∂x
+ ∂v

∂y
= 0. (7.3)

7.1 Near-wall viscous jets. Double-deck.
If fluid is injected along a solid boundary into a quiescent environment, a near-wall
jet is formed, of thickness O(Re−1/2) in non-dimensional variables with a typical
jet profile as shown in Figure 1. We are not concerned with the jet formation and
evolution but consider instead a double-deck interactive flow initiated by a local wall
roughness. The main new feature, compared with the standard triple-deck flow, is
the pressure variation across the main part of the jet.

Figure 1: Wall jet near a local obstacle.

Let x = 1 +Re−3/7X, t = Re−2/7T.
In the main part of the jet, y = Re−1/2Y,

u = U0(Y ) +Re−1/7u1(X, Y, T ) + ..., (7.4)
v = Re−2/7v1(X, Y, T ) + ..., (7.5)

p = Re−2/7p1(X, Y, T ) + ..., (7.6)
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For the streamwise momentum and continuity, we have the equations,

U0
∂u1

∂X
+ v1

dU0

dY
= 0, ∂u1

∂X
+ ∂v1

∂Y
= 0, (7.7)

with a solution containing the displacement function, A(X,T ), of the form,

u1 = A(X,T )dU0(Y )
dy

, v1 = −∂A(X,T )
∂X

U0(Y ). (7.8)

For the normal momentum,

U0
∂v1

∂X
= −∂p1

∂Y
, (7.9)

the solution is
p1 = −∂

2A(X,T )
∂X2

ˆ ∞
Y

U2
0 (s)ds+ C(X,T ). (7.10)

From the decay condition at the outer edge of the boundary layer, C(X,T ) = 0,
then as Y → 0,

p1 → −κ
∂2A(X,T )

∂X2 where κ =
ˆ ∞

0
U2

0 (s)ds. (7.11)

Also U0 = λ0Y + ..., therefore

u1 = λ0A(X,T ) + ... as Y → 0. (7.12)

In the viscous sublayer, y = Re−1/2−1/7y2 = Re−9/14y2, y2 = O(1).

u = Re−1/7u2(X, y2, T ) + ..., (7.13)

v = Re−5/14v2(X, y2, T ) + ..., (7.14)
p = Re−2/7p2(X, y2, T ) + ..., (7.15)

From Navier-Stokes, p2 = p2(X,T ), and

∂u2

∂T
+ u2

∂u2

∂X
+ v2

∂u2

∂y2
= −∂p2

∂X
+ ∂2u2

∂y2
2
,

∂u2

∂X
+ ∂v2

∂y2
= 0. (7.16)

Matching with the flow in the main part of the jet and including the conditions
in the incoming stream, we have

u2 = λ0y2 + λ0A(X,T ) + ... as y2 →∞, (7.17)

p2 = −κ∂
2A(X,T )
∂X2 , (7.18)

u2 → λ0y2 as X → −∞. (7.19)
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We also need to include no-slip conditions at the wall (for example if the wall has
an irregularity). These we can written as,

u2 = v2 = 0 at y2 = f(X), (7.20)

assuming, for simplicity, that the flow boundary is stationary.

Exercise.
Find an affine transformation, x2 = a1x

∗, y2 = a2y
∗, f = a2f

∗, u2 = a3u
∗, v2 =

a4v
∗, A = a5A

∗, p2 = a6p
∗, T = a7T

∗ with constants a1−7 such that the parameters
λ0 and κ are scaled out, that is the interaction problem takes the form,

∂u∗

∂T ∗
+ u∗

∂u∗

∂X∗
+ v∗

∂u∗

∂y∗
= − ∂p∗

∂X∗
+ ∂2u∗

∂y∗2
,

∂u∗

∂X∗
+ ∂v∗

∂y∗
= 0. (7.21)

u∗ = y∗ + A∗(X∗, T ∗) + ... as y∗ →∞, (7.22)

p∗ = −∂
2A∗(X∗, T ∗)
∂X∗2

, (7.23)

u∗ → y∗ as X∗ → −∞. (7.24)

u∗ = v∗ = 0 at y∗ = f ∗. (7.25)
Solution. From (7.17), a5 = a2 and a3 = λ0a2. In the continuity equation, require

a4 = λ0a
2
2/a1. Then for the time-derivative term in (7.16) require a7 = a1/(λ0a2) and

the balance between advection and pressure gradient terms gives a6 = (λ0a2)2 and
the balance with the viscous term leads to a1 = λ0a

3
2. The relation unused so far is

(7.18), where we find λ2
0a

2
1a2 = κ. Solving the last two equations for a1, a2we find

a1 = κ3/7λ
−5/7
0 , a2 = κ1/7λ

−4/7
0 , (7.26)

and the rest of the constants now follow.

Upstream influence.
Suppose that the wall roughness is shallow, f ∗ = δfl, with δ � 1. We drop the

asterisks, omit time dependence, write the solution as a small perturbation to the
base near-wall flow,

{u, v, p, A} = {y, 0, 0, 0}+ δ{ul(X, y), vl(X, y), pl(X), Al(X)}+O(δ2), (7.27)

and linearize the formulation (7.21)-(7.25) to get

y
∂ul

∂X
+ vl = −p′l(X) + ∂2ul

∂y2 ,
∂ul

∂X
+ ∂vl

∂y
= 0, (7.28)

ul → Al(X) as y →∞, (7.29)
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pl = −A′′l (X), (7.30)

ul → 0 as X → −∞, (7.31)

ul = −fl(X), vl = 0 at y = 0. (7.32)

The problem (7.28)-(7.32) is solved using Fourier transform in X, as in the pre-
vious section. We have,

ikyūl + v̄l = −ikp̄l + ūlyy, ikūl + v̄ly = 0, (7.33)

hence
ikyūly = ūlyyy and therefore ūly = C(k)Ai(y(ik)1/3). (7.34)

From the momentum equation,

−C(k)(ik)1/3|Ai′(0)| = ikp̄l, (7.35)

using the fact that Ai′(0) is a negative real number. Next, applying wall conditions
(7.32),

ūl = −f̄l(k) + C(k)
ˆ y

0
Ai(s(ik)1/3)ds. (7.36)

Now letting y →∞ and using (7.29) together with the known formula,
´∞

0 Ai(s)ds =
1/3, we obtain a relation between transformed pressure and displacement functions,

Āl = −f̄l −
(ik)1/3

3|Ai′(0)| p̄l. (7.37)

The last formula is useful int hat it applies to any viscous sublayer flow irrespective
of the pressure-displacement law.

Now using the interaction formula (7.30), we have, for the pressure,

p̄l = − 3|Ai′(0)|(ik)2

(ik)7/3 − 3|Ai′(0)| f̄l(k). (7.38)

Localized obstacle and upstream influence.
We shall take the obstacle shape as a delta-function,

fl(X) = δ(X), then f̄l = 1. (7.39)

Taking the inverse Fourier transform,

pl(X) = − a

2π

ˆ ∞
−∞

(ik)2eikX

(ik)7/3 − a
dk. (7.40)

where a = 3|Ai′(0)|. We aim to evaluate the response of the flow upstream of the
obstacle, X < 0, which is done by closing the contour of integration in (7.40) in the
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lower half plane and using the residue theorem, with the pole at k = −ia3/7.The
result is

pl(X) = 3
7a

9/7ea3/7X for X < 0. (7.41)

We conclude that the flow ’feels’ the presence of an obstruction at distances propor-
tional to the length scale of the interaction region.

Discussion. Self-induced separation. Numerical solutions by Smith & Duck,
1977. Note that the wall shear ahead of interaction region is 1/2 in their paper.

 

Figure 2: Self-induced separation in a wall jet.

7.2 Supersonic self-induced separation.
The type of interaction which leads to self-induced separation in a supersonic flow was
described by Stewartson & Williams and Neiland around 1970. In scaled variables it
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is governed by equations (7.21)-(7.25) only the pressure-displacement relation (7.23)
changes to

p∗ = −∂A
∗(X∗, T ∗)
∂X∗

. (7.42)

The technique of linearizing the sublayer equations can be used to prove the
existence of upstream influence in the flow (see the exercise at the end of this section)
and hence deduce the possibility of self-induced processes in the boundary layer. Self-
induced separation is illustrated in Figure 3 taken from the Stewartson & Williams
paper.

 

Figure 3: Supersonic separation.
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7.3 Condensed flow.
In several situations we observe an interactive flow characterized by the absence of
displacement effect in the viscous sublayer, that is the formula (7.23) is replaced by

A∗ = 0. (7.43)

The pressure in the boundary layer remains unknown therefore we have a non-
classical boundary layer behaviour.

We shall consider a three-dimensional version of the flow given by the boundary-
layer equations,

∂u∗

∂T ∗
+ u∗

∂u∗

∂X∗
+ v∗

∂u∗

∂y∗
+ w∗

∂u∗

∂Z∗
= − ∂p∗

∂X∗
+ ∂2u∗

∂y∗2
, (7.44)

∂w∗

∂T ∗
+ u∗

∂w∗

∂X∗
+ v∗

∂w∗

∂y∗
+ w∗

∂w∗

∂Z∗
= − ∂p

∗

∂Z∗
+ ∂2w∗

∂y∗2
, (7.45)

∂u∗

∂X∗
+ ∂v∗

∂y∗
+ ∂w∗

∂Z∗
= 0, (7.46)

u∗ = y∗ + A∗(X∗, T ∗) + ..., w∗ → 0 as y∗ →∞, (7.47)

u∗ → y∗ as X∗ → −∞. (7.48)

u∗ = v∗ = w∗ = 0 at y∗ = f ∗. (7.49)

with the interaction law (7.43). Dropping the asterisks, upon linearization (as is
done in (7.27)), and also omitting time dependence we have

y
∂ul

∂X
+ vl = − ∂pl

∂X
+ ∂2ul

∂y2 , (7.50)

y
∂wl

∂X
= −∂pl

∂Z
+ ∂2wl

∂y2 , (7.51)

∂ul

∂X
+ ∂vl

∂y
+ ∂wl

∂Z
= 0, (7.52)

ul → 0, wl → 0 as X → −∞and as y →∞, (7.53)

ul = fl(X,Z), vl = 0, wl = 0 at y = 0. (7.54)

The momentum and continuity equations can be reduced to a single equation for
the normal velocity,

y
∂2vl

∂X∂y
= ∇pl + ∂3vl

∂y3 , (7.55)
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with the Laplacian of the pressure, ∇pl = (∂2/∂X2 + ∂2/∂Z2)pl. It follows immedi-
ately that the pressure in the flow is governed by a Poisson equation,

∇pl = F (fl), (7.56)

where F is some functional of the wall roughness, fl. Hence, for a localized in space
wall roughness, condensed flow generates disturbances upstream as well as on the
sides of the roughness. It is easy to verify that the two-dimensional analogue of the
condensed flow problem does not support influence. Hence there is a significant dif-
ference between two- and three-dimensional condensed flow interactions. Verification
of these properties is left as an exercise.

Exercise. Derive a linearized solution for the supersonic flow with viscous-
inviscid interaction (7.42) past a shallow obstacle and hence show the existence of
upstream influence. Note that to prove the existence of upstream influence there is
no need to compute inverse Fourier transforms for the entire linearized solution.

Exercise. Consider interactive flows with the pressure-displacement relations
p = A and p = −A. Which of these two interactions supports upstream influence in
a 2-D case?

Exercise. Complete the solution of the linear problem (7.50)-(7.54) and verify
the properties of upstream propagation of disturbances stated in the text. Do we
need any boundary conditions in the downstream part of the flow, as X →∞?
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