LTCC 2008

Lecture notes, Part 1

1. INTRODUCTION

We write

$$\mathbb{N} = \{1, 2, 3, \dots\}$$

for the set of natural numbers and

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

for the set of integers. Then \mathbb{Z} is a commutative ring. We recall the definition.

Definition 1.1. A commutative ring R is a set R with two binary operations + and \cdot such that

- (R, +) is an abelian group (the additive identity will be denoted by 0 and the additive inverse of $\alpha \in R$ by $-\alpha$)
- · is associative and commutative, and there is a multiplicative identity (denoted by 1)
- the distributivity law $\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$ holds.

In this course by a ring we will always mean a commutative ring. We will usually omit \cdot and parentheses when it does not cause any confusion. The ring \mathbb{Z} is contained in the field of rational numbers

$$\mathbb{Q} = \{ \alpha/\beta : \alpha, \beta \in \mathbb{Z}, \beta \neq 0 \}.$$

(Recall that a ring R is called a *field* if $|R| \ge 2$ and every $\alpha \in R \setminus \{0\}$ has a multiplicative inverse, i.e. there exists $\alpha^{-1} \in R$ such that $\alpha \alpha^{-1} = 1$.)

In algebraic number theory one considers certain field extensions K of \mathbb{Q} and defines a ring $R_K \subset K$ which is a generalisation of the ring $\mathbb{Z} \subset \mathbb{Q}$.

$$\begin{array}{rrrr} R_K & \subset & K \\ | & & | \\ \mathbb{Z} & \subset & \mathbb{Q} \end{array}$$

2. Algebraic extensions

A field extension K of \mathbb{Q} (often denoted by K/\mathbb{Q}) is a field K which contains \mathbb{Q} . For example the field of complex numbers \mathbb{C} is a field extension of \mathbb{Q} . In this course one can usually assume that field extensions K of \mathbb{Q} are contained in \mathbb{C} (for the fields we are interested in this is not a serious restriction). If K is a field extension of \mathbb{Q} then in particular we can consider K as a vector space over \mathbb{Q} . The *degree* of the extension K/\mathbb{Q} (denoted by $[K : \mathbb{Q}]$) is defined to be the dimension of the \mathbb{Q} -vector space K.

Definition 2.1. Let K/\mathbb{Q} be a field extension. An element $\alpha \in K$ is called *algebraic* over \mathbb{Q} if α satisfies a polynomial equation

$$X^{n} + c_{n-1}X^{n-1} + \dots + c_{1}X + c_{0} = 0$$

where $c_0, c_1, \ldots, c_{n-1} \in \mathbb{Q}$.

Definition 2.2. A field extension K/\mathbb{Q} is called *algebraic* if every element $\alpha \in K$ is algebraic over \mathbb{Q} .

Theorem 2.3. Let K/\mathbb{Q} be a field extension and $\alpha, \beta \in K$. If α and β are algebraic over \mathbb{Q} then so are $\alpha + \beta$ and $\alpha\beta$. If $\alpha \neq 0$ is algebraic over \mathbb{Q} then so is α^{-1} . Hence the set of elements of K that are algebraic over \mathbb{Q} form a field.

Proof. This follows immediately from [2, V, Prop. 1.6]. Alternatively, to show that $\alpha + \beta$ and $\alpha\beta$ are algebraic over \mathbb{Q} one can use the proof of Theorem 3.2 in the next section with \mathbb{Z} replaced by \mathbb{Q} , and it is an easy exercise to show that α^{-1} is algebraic over \mathbb{Q} . We omit the details.

Definition 2.4. An algebraic number field is a field K which is finite over \mathbb{Q} , i.e. a field extension K of \mathbb{Q} such that $[K : \mathbb{Q}] < \infty$.

Lemma 2.5. Let K be an algebraic number field. Then the field extension K/\mathbb{Q} is algebraic.

Proof. Let $\alpha \in K$. Since K is a finite dimensional \mathbb{Q} -vector space there exists an $n \in \mathbb{N}$ such that $1, \alpha, \alpha^2, \ldots, \alpha^n$ are linearly dependent. Choose the minimal such n. Then there exist $c_0, c_1, c_2, \ldots, c_n \in \mathbb{Q}$ with $c_n \neq 0$ such that $c_0 + c_1\alpha + c_2\alpha^2 + \cdots + c_n\alpha^n = 0$. Hence α is a root of the polynomial $X^n + c_{n-1}/c_n X^{n-1} + \cdots + c_1/c_n X + c_0/c_n \in \mathbb{Q}[X]$ and therefore algebraic over \mathbb{Q} .

For $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{C}$ we let $\mathbb{Q}(\alpha_1, \alpha_2, \ldots, \alpha_n)$ denote the smallest field extension of \mathbb{Q} which contains $\alpha_1, \alpha_2, \ldots, \alpha_n$. One can show that if $\alpha_1, \alpha_2, \ldots, \alpha_n$ are algebraic over \mathbb{Q} then the field $\mathbb{Q}(\alpha_1, \alpha_2, \ldots, \alpha_n)$ is algebraic over \mathbb{Q} .

An important class of examples is given by quadratic fields.

Definition 2.6. An algebraic number field K with $[K : \mathbb{Q}] = 2$ is called a *quadratic* field.

An integer $m \in \mathbb{Z}$ is called *square-free* if m is not divisible by the square of a prime number.

Lemma 2.7. Let $m \neq 1$ be a square-free integer. Then $\mathbb{Q}(\sqrt{m})$ is a quadratic field and one has $\mathbb{Q}(\sqrt{m}) = \mathbb{Q} + \mathbb{Q}\sqrt{m}$.

Proof. It is easy to see that $\sqrt{m} \notin \mathbb{Q}$ so that $\mathbb{Q} + \mathbb{Q}\sqrt{m}$ is 2-dimensional as a vector space over \mathbb{Q} . Clearly one has $\mathbb{Q} + \mathbb{Q}\sqrt{m} \subseteq \mathbb{Q}(\sqrt{m})$. To show equality it suffices to show that $\mathbb{Q} + \mathbb{Q}\sqrt{m}$ is a field, but this is straightforward to verify. \Box

Lemma 2.8. Let K be a quadratic field. Then there exists a unique square-free integer $m \neq 1$ such that $K = \mathbb{Q}(\sqrt{m})$.

Proof. If $\alpha \in K \setminus \mathbb{Q}$ then clearly $K = \mathbb{Q}(\alpha)$. Furthermore $1, \alpha, \alpha^2$ are linearly dependent over \mathbb{Q} , so there exist $c_0, c_1, c_2 \in \mathbb{Q}$ with $c_2 \neq 0$ such that $c_0+c_1\alpha+c_2\alpha^2 = 0$. Dividing by c_2 gives $\alpha^2 + a\alpha + b = 0$ for some $a, b \in \mathbb{Q}$, hence $(\alpha + a/2)^2 = a^2/4 - b$. Since $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha + a/2)$ we find that $K = \mathbb{Q}(\sqrt{a^2/4 - b})$. Now there exists a non-zero $c \in \mathbb{Q}$ such that $m = c^2(a^2/4 - b)$ is a square-free integer, and as $\mathbb{Q}(\sqrt{a^2/4 - b}) = \mathbb{Q}(c\sqrt{a^2/4 - b})$ it follows that $K = \mathbb{Q}(\sqrt{m})$ as required.

Uniqueness of m is left as an exercise.

A quadratic field $K = \mathbb{Q}(\sqrt{m})$ is called *real quadratic* if m > 0 and *complex quadratic* if m < 0.

Lemma 2.9. Let $m \neq 1$ be a square-free integer and $K = \mathbb{Q}(\sqrt{m}) = \mathbb{Q} + \mathbb{Q}\sqrt{m}$. Then the map $\tau : K \to K$, $\tau(a + b\sqrt{m}) = a - b\sqrt{m}$ (where $a, b \in \mathbb{Q}$) is an automorphism of the field K, i.e. τ is bijective and preserves the operations + and \cdot of K. Furthermore τ fixes \mathbb{Q} , i.e. $\tau(\alpha) = \alpha$ if $\alpha \in \mathbb{Q} \subset K$.

Proof. Bijectivity is obvious, and a simple computation shows that τ preserves + and \cdot , e.g. $\tau((a+b\sqrt{m})\cdot(c+d\sqrt{m})) = \tau((ac+mbd)+(ad+bc)\sqrt{m}) = (ac+mbd) - (ad+bc)\sqrt{m} = (a-b\sqrt{m})\cdot(c-d\sqrt{m}) = \tau(a+b\sqrt{m})\cdot\tau(c+d\sqrt{m})$.

3. Algebraic integers

Definition 3.1. Let K/\mathbb{Q} be a field extension. An element $\alpha \in K$ is called *integral* over \mathbb{Z} (or an *algebraic integer*) if α satisfies a polynomial equation

$$X^{n} + c_{n-1}X^{n-1} + \dots + c_{1}X + c_{0} = 0$$

where $c_0, c_1, \ldots, c_{n-1} \in \mathbb{Z}$.

Theorem 3.2. Let K/\mathbb{Q} be a field extension and $\alpha, \beta \in K$. If α and β are integral over \mathbb{Z} then so are $\alpha + \beta$ and $\alpha\beta$.

Proof. Since α is integral over \mathbb{Z} it is a root of $X^d + c_{d-1}X^{d-1} + \cdots + c_1X + c_0 = 0$ with $c_0, c_1, \ldots, c_{d-1} \in \mathbb{Z}$. Similarly since β is integral over \mathbb{Z} it is a root of a monic polynomial of degree $e \ge 1$ with integer coefficients. Consider the \mathbb{Z} -module $M \subset K$ spanned by $\alpha^i \beta^j$ for $0 \le i \le d-1, 0 \le j \le e-1$, that is

$$M = \left\{ \sum_{i,j} c_{i,j} \alpha^i \beta^j : c_{i,j} \in \mathbb{Z}, 0 \le i \le d-1, 0 \le j \le e-1 \right\}.$$

We first show that $(\alpha + \beta)M \subseteq M$. This is equivalent to showing that $(\alpha + \beta)\alpha^i\beta^j = \alpha^{i+1}\beta^j + \alpha^i\beta^{j+1} \in M$ for $0 \le i \le d-1$, $0 \le j \le e-1$. If $i \ne d-1$ then clearly $\alpha^{i+1}\beta^j \in M$. If i = d-1 then $\alpha^{i+1}\beta^j = (-c_{d-1}\alpha^{d-1} - \cdots - c_1\alpha - c_0)\beta^j \in M$. So in all cases $\alpha^{i+1}\beta^j \in M$ and a similar argument shows that $\alpha^i\beta^{j+1} \in M$. Thus $(\alpha + \beta)\alpha^i\beta^j \in M$ as claimed.

We have shown that there exists a finitely generated \mathbb{Z} -module $M \subset K$ such that $(\alpha + \beta)M \subseteq M$. Let $m_1, m_2, \ldots, m_n \in M$ be any finite set of generators of M (for example we can take m_1, m_2, \ldots, m_n to be the elements $\alpha^i \beta^j$ for $0 \leq i \leq d-1$, $0 \leq j \leq e-1$). Then for each index k we have $(\alpha + \beta)m_k \in M$, so $(\alpha + \beta)m_k = \sum_{l=1}^n c_{kl}m_l$ for some $c_{kl} \in \mathbb{Z}$. This can also be written as

(1)
$$(\alpha + \beta) \begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix} = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \dots & c_{nn} \end{pmatrix} \begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix}.$$

Now M is non-trivial and m_1, \ldots, m_n generate M, therefore we have $(m_1, \ldots, m_n) \neq (0, \ldots, 0)$. Hence (1) implies that $\alpha + \beta$ is an eigenvalue of the matrix $C = (c_{kl})_{1 \leq k, l \leq n}$. Therefore $\alpha + \beta$ is a root of the characteristic polynomial det $(X \cdot \mathbf{1}_n - C)$ where $\mathbf{1}_n$ denotes the $n \times n$ unit matrix. But it is easy to see that det $(X \cdot \mathbf{1}_n - C)$ is a monic polynomial with integer coefficients and that therefore $\alpha + \beta$ is integral over \mathbb{Z} .

The proof that $\alpha\beta$ is integral over \mathbb{Z} is similar using that $\alpha\beta M \subseteq M$.

If K is an algebraic number field then the set of all elements of K that are integral over \mathbb{Z} is denoted by R_K . (Remark: Often the notation \mathcal{O}_K is used instead of R_K .) By Theorem 3.2 the set R_K is a ring. It is called the *ring of integers* of K.

Lemma 3.3. A number $\alpha \in \mathbb{Q}$ is integral over \mathbb{Z} if and only if $\alpha \in \mathbb{Z}$, i.e. $R_{\mathbb{Q}} = \mathbb{Z}$.

Proof. If $\alpha \in \mathbb{Z}$ then α is integral over \mathbb{Z} because it is a root of $X - \alpha = 0$.

Conversely assume that $\alpha \in \mathbb{Q}$ is integral over \mathbb{Z} , so α satisfies a polynomial equation

(2) $\alpha^{n} + c_{n-1}\alpha^{n-1} + \dots + c_{1}\alpha + c_{0} = 0$

with $c_0, c_1, \ldots, c_{n-1} \in \mathbb{Z}$. Write $\alpha = r/s$ with $r \in \mathbb{Z}$, $s \in \mathbb{N}$ and gcd(r, s) = 1. Multiplying (2) by s^n gives

$$r^{n} + c_{n-1}r^{n-1}s + \dots + c_{1}rs^{n-1} + c_{0}s^{n} = 0,$$

hence $s \mid r^n$. If $s \neq 1$ then s has a prime factor p. But $p \mid r^n$ implies $p \mid r$, contradicting gcd(r, s) = 1. Hence s = 1 and $\alpha = r \in \mathbb{Z}$ as required. \Box

Lemma 3.4. Let K be an algebraic number field and $\alpha \in K$. Then there exists $n \in \mathbb{N}$ such that $n\alpha \in R_K$.

Proof. Exercise.

Corollary 3.5. Let K be an algebraic number field. Then K is the field of fractions of R_K , i.e. $K = \{\alpha/\beta : \alpha, \beta \in R_K, \beta \neq 0\}.$

Proof. This is immediate from Lemma 3.4.

 \square

Lemma 3.6. Let $m \neq 1$ be a square-free integer and let $K = \mathbb{Q}(\sqrt{m}) = \{a + b\sqrt{m} : a, b \in \mathbb{Q}\}$. Then

$$R_K = \begin{cases} \mathbb{Z} + \mathbb{Z}\sqrt{m} & \text{if } m \not\equiv 1 \pmod{4}, \\ \mathbb{Z} + \mathbb{Z}\frac{1+\sqrt{m}}{2} & \text{if } m \equiv 1 \pmod{4}. \end{cases}$$

Proof. We consider the case $m \not\equiv 1 \pmod{4}$, the other case is left as exercise.

If $\alpha \in \mathbb{Z} + \mathbb{Z}\sqrt{m}$ then $\alpha = a + b\sqrt{m}$ with $a, b \in \mathbb{Z}$. Then α is a root of the monic polynomial $X^2 - 2aX + (a^2 - mb^2) \in \mathbb{Z}[X]$ and therefore $\alpha \in R_K$.

Conversely assume that $\alpha \in R_K$. Write $\alpha = a + b\sqrt{m}$ with $a, b \in \mathbb{Q}$. We want to show that $a, b \in \mathbb{Z}$. Recall that in Lemma 2.9 we defined an automorphism τ of K by $\tau(a + b\sqrt{m}) = a - b\sqrt{m}$. Now $\alpha \in R_K$ implies that $\tau(\alpha) \in R_K$ because we have an equation $\alpha^n + c_{n-1}\alpha^{n-1} + \cdots + c_1\alpha + c_0 = 0$ with $c_0, c_1, \ldots, c_{n-1} \in \mathbb{Z}$ and applying τ to this equation gives $\tau(\alpha)^n + c_{n-1}\tau(\alpha)^{n-1} + \cdots + c_1\tau(\alpha) + c_0 = 0$. Since R_K is a ring it follows that $2a = \alpha + \tau(\alpha)$ is integral over \mathbb{Z} and lies in \mathbb{Q} , hence by Lemma 3.3 we have $2a \in \mathbb{Z}$. Similarly $a^2 - mb^2 = \alpha\tau(\alpha) \in \mathbb{Z}$. We now distinguish the cases $a \in \mathbb{Z}$ and $a \notin \mathbb{Z}$.

If $a \in \mathbb{Z}$ then $mb^2 \in \mathbb{Z}$ which implies $b \in \mathbb{Z}$ because *m* is square-free, so $\alpha \in \mathbb{Z} + \mathbb{Z}\sqrt{m}$ as required.

If $a \notin \mathbb{Z}$ then a = c/2 with $c \in \mathbb{Z}$ odd, so $c^2 \equiv 1 \pmod{4}$. From $(c/2)^2 - mb^2 \in \mathbb{Z}$ it follows that $c^2 - m(2b)^2 \in \mathbb{Z}$ and moreover $c^2 - m(2b)^2 \equiv 0 \pmod{4}$. Now $m(2b)^2 \in \mathbb{Z}$ implies $2b \in \mathbb{Z}$ because m is square-free, so $(2b)^2 \equiv 0$ or 1 (mod 4). Hence the assumption $m \not\equiv 1 \pmod{4}$ implies that $c^2 - m(2b)^2 \equiv 1, 2$ or 3 (mod 4), contradicting $c^2 - m(2b)^2 \equiv 0 \pmod{4}$. Therefore the case $a \notin \mathbb{Z}$ cannot arise. \Box

Theorem 3.7. Let K be an algebraic number field. Then the ring R_K has an integral basis, i.e. there exist elements $\beta_1, \beta_2, \ldots, \beta_n \in R_K$ such that every $\alpha \in R_K$ can be written uniquely in the form $\alpha = a_1\beta_1 + a_2\beta_2 + \cdots + a_n\beta_n$ where $a_1, a_2, \ldots, a_n \in \mathbb{Z}$.

Proof. See for example [1, §II.1, p. 51].

4. Ideals

We first recall some definitions from commutative algebra.

Definition 4.1. Let R be a commutative ring.

- (1) A subset $A \subseteq R$ is called an *ideal* of R if A is a subgroup with respect to addition (i.e. $0 \in A$ and if $\alpha, \beta \in A$ then $\alpha \beta \in A$) and if $\alpha \in R, \beta \in A$ then $\alpha\beta \in A$.
- (2) An ideal $A \subseteq R$ is called *prime* if $A \neq R$ and if whenever $\alpha\beta \in A$ for some $\alpha, \beta \in R$ then $\alpha \in A$ or $\beta \in A$.
- (3) An ideal $A \subseteq R$ is called *maximal* if $A \neq R$ and if there is no ideal B which lies strictly between A and R (i.e. $A \subseteq B \subseteq R$ implies B = A or B = R).

Definition 4.2. Let R be a commutative ring and let $\alpha_1, \alpha_2, \ldots, \alpha_n \in R$. Then the set

$$(\alpha_1, \alpha_2, \dots, \alpha_n) := \{\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \dots + \lambda_n \alpha_n : \lambda_1, \lambda_2, \dots, \lambda_n \in R\}$$

is an ideal of R. It is called the ideal generated by $\alpha_1, \alpha_2, \ldots, \alpha_n$.

4

An ideal $A \subseteq R$ is called a *principal ideal* if there exists an $\alpha \in R$ such that $A = (\alpha)$.

Definition 4.3. Let R be a commutative ring and let A and B be ideals of R. We define the *product* AB to be the ideal

 $AB = \{\alpha_1\beta_1 + \alpha_2\beta_2 + \dots + \alpha_n\beta_n : n \in \mathbb{N}, \alpha_1, \alpha_2, \dots, \alpha_n \in A, \beta_1, \beta_2, \dots, \beta_n \in B\}.$

Lemma 4.4. Let R be a commutative ring.

(1) If $A = (\alpha_1, \ldots, \alpha_m)$ and $B = (\beta_1, \ldots, \beta_n)$ then

 $AB = (\alpha_1\beta_1, \alpha_1\beta_2, \dots, \alpha_1\beta_n, \alpha_2\beta_1, \dots, \alpha_m\beta_n).$

In particular if $A = (\alpha)$ and $B = (\beta)$ are principal then $AB = (\alpha\beta)$ is principal.

(2) The product of ideals is associative and commutative. The ideal R is the identity for the product of ideals.

Proof. Exercise.

Next we describe the ideals, prime ideals and maximal ideals of the ring \mathbb{Z} .

- **Lemma 4.5.** (1) Every ideal A of \mathbb{Z} is principal, more precisely there exists an integer $\alpha \ge 0$ such that $A = (\alpha)$.
 - (2) An ideal $A = (\alpha)$ of \mathbb{Z} (with $\alpha \ge 0$) is a prime ideal if and only if $\alpha = 0$ or α is a prime number.
 - (3) An ideal $A = (\alpha)$ of \mathbb{Z} (with $\alpha \ge 0$) is a maximal ideal if and only if α is a prime number.

Proof. Exercise.

Recall that the fundamental theorem of arithmetic states that every positive integer can be expressed as a product of prime numbers, and that this product representation is unique up to the order of the factors. Since every non-zero ideal of \mathbb{Z} is generated by a unique positive integer, one can easily deduce a corresponding statement for ideals of \mathbb{Z} : if A is a non-zero ideal of \mathbb{Z} then A can be written as a product of prime ideals of \mathbb{Z} , and this product representation is unique up to the order of the factors.

Now let K be an algebraic number field. The ring R_K is a generalisation of the ring \mathbb{Z} and we therefore want to study if R_K has similar properties as \mathbb{Z} . In general some of the properties described above fail for R_K : in general not every ideal of R_K is principal (an example for this will be given later), and non-zero elements of R_K can in general not be written uniquely as a product of prime elements. However some properties of \mathbb{Z} also hold for the rings R_K .

Theorem 4.6. Let K be an algebraic number field and A an ideal of the ring R_K . Then A is a maximal ideal if and only A is a non-zero prime ideal.

Proof. It is not difficult to show that maximal ideals are prime (this is true for any commutative ring), and since R_K is not a field the maximal ideals are non-zero. For the converse see for example [1, Corollary to Theorem 5, p. 48] which shows that R_K is a Dedekind domain, and one condition of a Dedekind domain is that all its non-zero prime ideals are maximal (compare [1, Definition (II.1.1), p. 36]).

Theorem 4.7. Let K be an algebraic number field. Then every non-zero ideal A of R_K can be written as a product $A = P_1 \cdots P_n$ of prime ideals P_i of R_K . Moreover this product representation is unique up to the order of the factors.

Proof. See for example [1, Theorem 2, p. 37].

References

- A. Fröhlich, M.J. Taylor, Algebraic number theory, CUP, 1991.
 S. Lang, Algebra, 3rd edition, Springer, 2002.