Algebraic number theory LTCC 2008

Lecture notes, Part 1

1. INTRODUCTION

We write
N=1{1,23,...}
for the set of natural numbers and
Z=A{..,-2,-1,0,1,2,...}
for the set of integers. Then Z is a commutative ring. We recall the definition.

Definition 1.1. A commutative ring R is a set R with two binary operations +
and - such that

e (R,+) is an abelian group (the additive identity will be denoted by 0 and
the additive inverse of & € R by —a)

e - is associative and commutative, and there is a multiplicative identity (de-
noted by 1)

e the distributivity law a- (84 ) = (a - 8) + (« - 7y) holds.

In this course by a ring we will always mean a commutative ring. We will usually
omit - and parentheses when it does not cause any confusion. The ring Z is contained
in the field of rational numbers

Q={a/B:0,B€Z,B#0}.
(Recall that a ring R is called a field if |R| > 2 and every o« € R\ {0} has a
multiplicative inverse, i.e. there exists a~! € R such that ca™! = 1.)
In algebraic number theory one considers certain field extensions K of Q and
defines a ring Ry C K which is a generalisation of the ring Z C Q.
RK c K

| |
7Z C Q

2. ALGEBRAIC EXTENSIONS

A field extension K of Q (often denoted by K/Q) is a field K which contains Q.
For example the field of complex numbers C is a field extension of Q. In this course
one can usually assume that field extensions K of Q are contained in C (for the
fields we are interested in this is not a serious restriction). If K is a field extension
of Q then in particular we can consider K as a vector space over Q. The degree
of the extension K/Q (denoted by [K : Q]) is defined to be the dimension of the
Q-vector space K.

Definition 2.1. Let K/Q be a field extension. An element o € K is called algebraic
over Q if « satisfies a polynomial equation

X"+ X" 44X+ =0
where cg,c1,...,ch—1 € Q.

Definition 2.2. A field extension K/Q is called algebraic if every element o € K
is algebraic over Q.

Theorem 2.3. Let K/Q be a field extension and o, 8 € K. If o and 3 are algebraic
over Q then so are o + 3 and af. If a # 0 is algebraic over Q then so is a™!.

Hence the set of elements of K that are algebraic over Q form a field.
1
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Proof. This follows immediately from [2, V, Prop. 1.6]. Alternatively, to show that
«a + [ and af are algebraic over Q one can use the proof of Theorem 3.2 in the
next section with Z replaced by Q, and it is an easy exercise to show that a~! is
algebraic over Q. We omit the details. O

Definition 2.4. An algebraic number field is a field K which is finite over Q, i.e.
a field extension K of Q such that [K : Q] < occ.

Lemma 2.5. Let K be an algebraic number field. Then the field extension K/Q is
algebraic.

Proof. Let a € K. Since K is a finite dimensional Q-vector space there exists an
n € N such that 1,a,a2,...,a" are linearly dependent. Choose the minimal such
n. Then there exist cg,c1,c,...,cn € Q with ¢, # 0 such that co + cro + coa® +
o+ +cpa™ = 0. Hence « is a root of the polynomial X" + ¢, _1/c, X"t 4 -+ +
c1/cnX + co/c, € Q[X] and therefore algebraic over Q. O

For ay,ag,...,a, € C we let Q(a,as,...,a,) denote the smallest field exten-
sion of Q which contains aq,as,...,®,. One can show that if aq,as,...,a, are
algebraic over Q then the field Q(aq, o, ..., ay) is algebraic over Q.

An important class of examples is given by quadratic fields.

Definition 2.6. An algebraic number field K with [K : Q] = 2 is called a quadratic
field.

An integer m € Z is called square-free if m is not divisible by the square of a
prime number.

Lemma 2.7. Let m # 1 be a square-free integer. Then Q(v/m) is a quadratic field
and one has Q(v/m) = Q + Qy/m.

Proof. Tt is easy to see that v/m ¢ Q so that Q + Q+/m is 2-dimensional as a vector
space over Q. Clearly one has Q + Qy/m C Q(v/m). To show equality it suffices to
show that Q 4+ Q+/m is a field, but this is straightforward to verify. O

Lemma 2.8. Let K be a quadratic field. Then there exists a unique square-free
integer m # 1 such that K = Q(y/m).

Proof. If @ € K \ Q then clearly K = Q(«). Furthermore 1,a,a? are linearly
dependent over Q, so there exist g, c1, co € Q with co # 0 such that co+cia+coa® =
0. Dividing by ¢ gives a?+aa+b = 0 for some a,b € Q, hence (a+a/2)? = a?/4—b.
Since Q(a) = Q(a + a/2) we find that K = Q(1/a?/4 —b). Now there exists
a non-zero ¢ € Q such that m = c%(a®/4 — b) is a square-free integer, and as
Q(y/a?/4 —b) = Q(c/a?/4 — b) it follows that K = Q(y/m) as required.

Uniqueness of m is left as an exercise. O

A quadratic field K = Q(y/m) is called real quadratic if m > 0 and complex
quadratic if m < 0.

Lemma 2.9. Let m # 1 be a square-free integer and K = Q(v/m) = Q + Qy/m.
Then the map 7 : K — K, 7(a + by/m) = a — by/m (where a,b € Q) is an
automorphism of the field K, i.e. T is bijective and preserves the operations + and

- of K. Furthermore 7 fizes Q, i.e. T(a) =a ifa € Q C K.

Proof. Bijectivity is obvious, and a simple computation shows that 7 preserves +
and -, e.g. 7((a+by/m) - (c+dy/m)) = 7((ac+ mbd) + (ad + bc)/m) = (ac+mbd) —
(ad + bc)y/m = (a — by/m) - (¢ — dy/m) = 7(a + by/m) - 7(c + dy/m). O
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3. ALGEBRAIC INTEGERS

Definition 3.1. Let K/Q be a field extension. An element o € K is called integral
over Z (or an algebraic integer) if « satisfies a polynomial equation

Xn—‘y-Cn,an_l-i--'--i-ClX-i-Co =0
where cg,c1,...,cp_1 € Z.

Theorem 3.2. Let K/Q be a field extension and o, § € K. If a and 3 are integral
over Z then so are a4+ 3 and af.

Proof. Since o is integral over Z it is a root of X%+ ¢4 1 X4 1+ 41X +¢co =0
with cg,c1,...,cq—1 € Z. Similarly since (3 is integral over Z it is a root of a monic
polynomial of degree e > 1 with integer coefficients. Consider the Z-module M C K
spanned by '3’ for 0 <i<d—1,0<j <e—1, that is

M = {Zci,joﬂﬂj Dcij eZ,Ogigd—l,Ogjge—l}.
i,j

We first show that (a« + )M C M. This is equivalent to showing that (a +
Bt =o'l + i@t e Mfor0<i<d—1,0<j<e—1. Ifi#d—1then
clearly ot137 € M. If i = d—1 then o't/ = (—cq_1a% 1 —---—cia—cy) 3 € M.
So in all cases o't13/ € M and a similar argument shows that '8! € M. Thus
(a+ B)aiB? € M as claimed.

We have shown that there exists a finitely generated Z-module M C K such that
(o +B)M C M. Let my, ma,...,my, € M be any finite set of generators of M (for
example we can take mq,ma,..., my to be the elements o3 for 0 < i < d — 1,
0 < j <e—1). Then for each index k we have (o + f)my € M, so (o + B)my, =
Z?:l ciymy for some ¢y € Z. This can also be written as

my €11 --- Cin my
(1) (atB) | : |[=

M Cnl --- Cnn M
Now M is non-trivial and my, . .., m, generate M, therefore we have (my, ..., my) #

(0,...,0). Hence (1) implies that o + § is an eigenvalue of the matrix C' =

ckl) 1<ki<n’ Therefore a+/3 is a root of the characteristic polynomial det(X-1,,—C)
where 1,, denotes the n x n unit matrix. But it is easy to see that det(X - 1,, — C)
is a monic polynomial with integer coefficients and that therefore o + (3 is integral
over Z.

The proof that af is integral over Z is similar using that aGM C M. O

If K is an algebraic number field then the set of all elements of K that are integral
over Z is denoted by R. (Remark: Often the notation O is used instead of Ry .)
By Theorem 3.2 the set Rk is a ring. It is called the ring of integers of K.

Lemma 3.3. A number a € Q is integral over Z if and only if « € Z, i.e. Ry = Z.

Proof. If o € Z then « is integral over Z because it is a root of X — a = 0.
Conversely assume that o € Q is integral over Z, so « satisfies a polynomial
equation

(2) a"+cp 10" Tt ate=0
with ¢g,¢1,...,¢p—1 € Z. Write @« = r/s with r € Z, s € N and ged(r,s) = 1.
Multiplying (2) by s™ gives

Pt ey s 4+ ers” T 4 ps” = 0,

hence s | ™. If s # 1 then s has a prime factor p. But p | ™ implies p | r,
contradicting ged(r,s) = 1. Hence s = 1 and o = r € Z as required. (|
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Lemma 3.4. Let K be an algebraic number field and o« € K. Then there exists
n € N such that na € R .

Proof. Exercise. U

Corollary 3.5. Let K be an algebraic number field. Then K is the field of fractions
of R, i.e. K ={a/B:a,p € Rk, # 0}.

Proof. This is immediate from Lemma 3.4. (]

Lemma 3.6. Let m # 1 be a square-free integer and let K = Q(y/m) = {a+by/m :
a,b € Q}. Then

Z+Zym  ifm#1 (mod4),
Ri = m e
7+ 72— ifm=1 (mod 4).

Proof. We consider the case m # 1 (mod 4), the other case is left as exercise.

If « € Z+ Z+/m then o = a+ by/m with a,b € Z. Then « is a root of the monic
polynomial X2 —2aX + (a®> — mb?) € Z[X] and therefore o € R.

Conversely assume that « € Ri. Write o = a + by/m with a,b € Q. We want
to show that a,b € Z. Recall that in Lemma 2.9 we defined an automorphism 7
of K by 7(a+ by/m) = a — by/m. Now a € Rk implies that () € Rx because
we have an equation a” + cp,_10® '+ -+ cia+ ¢y = 0 with ¢y, ¢1,...,¢n1 €Z
and applying 7 to this equation gives 7(a)" + ¢,—17()" 1 + -+ ¢17(a) + ¢o = 0.
Since Rk is a ring it follows that 2a = a + 7(«) is integral over Z and lies in Q,
hence by Lemma 3.3 we have 2a € Z. Similarly a? — mb? = ar(a) € Z. We now
distinguish the cases a € Z and a ¢ Z.

If @ € Z then mb? € Z which implies b € Z because m is square-free, so o €
7 + Z+/m as required.

If a ¢ Z then a = ¢/2 with ¢ € Z odd, so ¢ = 1 (mod 4). From (c/2)? —mb? € Z
it follows that ¢* — m(2b)? € Z and moreover ¢ — m(2b)?> = 0 (mod 4). Now
m(2b)? € Z implies 2b € Z because m is square-free, so (2b)2 = 0 or 1 (mod 4).
Hence the assumption m # 1 (mod 4) implies that ¢ —m(2b)?> = 1,2 or 3 (mod 4),
contradicting ¢ —m(2b)? = 0 (mod 4). Therefore the case a ¢ Z cannot arise. [

Theorem 3.7. Let K be an algebraic number field. Then the ring Ry has an inte-

gral basis, i.e. there exist elements (1, B2, ..., 0n € Rk such that every a € Ry can

be written uniquely in the form o = a181+a202+- - -+a, B, whereay,as, ... ,a, € Z.

Proof. See for example [1, §I1.1, p. 51]. |
4. IDEALS

We first recall some definitions from commutative algebra.

Definition 4.1. Let R be a commutative ring.

(1) A subset A C R is called an ideal of R if A is a subgroup with respect to
addition (i.e. 0 € Aand if o, € Athena— € A)andifa € R, f € A
then af € A.

(2) Anideal A C R is called prime if A # R and if whenever af € A for some
a,f € Rthen o € Aor € A.

(3) Anideal A C R is called mazimal if A # R and if there is no ideal B which
lies strictly between A and R (i.e. A C B C R implies B = A or B = R).

Definition 4.2. Let R be a commutative ring and let a1, as9,...,a, € R. Then
the set

(al,ag,...,an) = {A1a1+)\2a2+~-~+)\nan:)\17)\2,...7)\n ER}

is an ideal of R. It is called the ideal generated by oy, as, ..., ay,.
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An ideal A C R is called a principal ideal if there exists an a € R such that
A= ().

Definition 4.3. Let R be a commutative ring and let A and B be ideals of R. We
define the product AB to be the ideal

AB:{O[IBI +a262+"'+06n6n:nEN,al,OéQ,-..,Oén eAaﬁlaﬁ2)"'7ﬁn EB}

Lemma 4.4. Let R be a commutative ring.
(1) If A= (a1,..., ) and B = (01,...,0,) then

AB = (oqﬁl,oqﬂg, .. .,alﬂn,agﬂl, e ,Oémﬂn).

In particular if A = (a) and B = () are principal then AB = (af) is
principal.

(2) The product of ideals is associative and commutative. The ideal R is the
identity for the product of ideals.

Proof. Exercise. |
Next we describe the ideals, prime ideals and maximal ideals of the ring Z.

Lemma 4.5. (1) Every ideal A of Z is principal, more precisely there exists
an integer a > 0 such that A = («).
(2) An ideal A = () of Z (with o > 0) is a prime ideal if and only if . =0 or
« is a prime number.
(3) An ideal A = (&) of Z (with o > 0) is a mazimal ideal if and only if a is a
prime number.

Proof. Exercise. U

Recall that the fundamental theorem of arithmetic states that every positive
integer can be expressed as a product of prime numbers, and that this product
representation is unique up to the order of the factors. Since every non-zero ideal of
Z is generated by a unique positive integer, one can easily deduce a corresponding
statement for ideals of Z: if A is a non-zero ideal of Z then A can be written as a
product of prime ideals of Z, and this product representation is unique up to the
order of the factors.

Now let K be an algebraic number field. The ring Ry is a generalisation of the
ring Z and we therefore want to study if Rx has similar properties as Z. In general
some of the properties described above fail for Ry : in general not every ideal of Ry
is principal (an example for this will be given later), and non-zero elements of Ry
can in general not be written uniquely as a product of prime elements. However
some properties of Z also hold for the rings R .

Theorem 4.6. Let K be an algebraic number field and A an ideal of the ring R .
Then A is a mazimal ideal if and only A is a non-zero prime ideal.

Proof. Tt is not difficult to show that maximal ideals are prime (this is true for any
commutative ring), and since R is not a field the maximal ideals are non-zero. For
the converse see for example [1, Corollary to Theorem 5, p. 48] which shows that
Ry is a Dedekind domain, and one condition of a Dedekind domain is that all its
non-zero prime ideals are maximal (compare [1, Definition (II.1.1), p. 36]). O

Theorem 4.7. Let K be an algebraic number field. Then every non-zero ideal A of
Ry can be written as a product A = Py --- P, of prime ideals P; of Ryx. Moreover
this product representation is unique up to the order of the factors.

Proof. See for example [1, Theorem 2, p. 37]. g
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