
Algebraic number theory LTCC 2008

Lecture notes, Part 1

1. Introduction

We write
N = {1, 2, 3, . . . }

for the set of natural numbers and

Z = {. . . ,−2,−1, 0, 1, 2, . . . }
for the set of integers. Then Z is a commutative ring. We recall the definition.

Definition 1.1. A commutative ring R is a set R with two binary operations +
and · such that

• (R, +) is an abelian group (the additive identity will be denoted by 0 and
the additive inverse of α ∈ R by −α)

• · is associative and commutative, and there is a multiplicative identity (de-
noted by 1)

• the distributivity law α · (β + γ) = (α · β) + (α · γ) holds.

In this course by a ring we will always mean a commutative ring. We will usually
omit · and parentheses when it does not cause any confusion. The ring Z is contained
in the field of rational numbers

Q = {α/β : α, β ∈ Z, β 6= 0}.
(Recall that a ring R is called a field if |R| ≥ 2 and every α ∈ R \ {0} has a
multiplicative inverse, i.e. there exists α−1 ∈ R such that αα−1 = 1.)

In algebraic number theory one considers certain field extensions K of Q and
defines a ring RK ⊂ K which is a generalisation of the ring Z ⊂ Q.

RK ⊂ K
| |
Z ⊂ Q

2. Algebraic extensions

A field extension K of Q (often denoted by K/Q) is a field K which contains Q.
For example the field of complex numbers C is a field extension of Q. In this course
one can usually assume that field extensions K of Q are contained in C (for the
fields we are interested in this is not a serious restriction). If K is a field extension
of Q then in particular we can consider K as a vector space over Q. The degree
of the extension K/Q (denoted by [K : Q]) is defined to be the dimension of the
Q-vector space K.

Definition 2.1. Let K/Q be a field extension. An element α ∈ K is called algebraic
over Q if α satisfies a polynomial equation

Xn + cn−1X
n−1 + · · ·+ c1X + c0 = 0

where c0, c1, . . . , cn−1 ∈ Q.

Definition 2.2. A field extension K/Q is called algebraic if every element α ∈ K
is algebraic over Q.

Theorem 2.3. Let K/Q be a field extension and α, β ∈ K. If α and β are algebraic
over Q then so are α + β and αβ. If α 6= 0 is algebraic over Q then so is α−1.
Hence the set of elements of K that are algebraic over Q form a field.
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Proof. This follows immediately from [2, V, Prop. 1.6]. Alternatively, to show that
α + β and αβ are algebraic over Q one can use the proof of Theorem 3.2 in the
next section with Z replaced by Q, and it is an easy exercise to show that α−1 is
algebraic over Q. We omit the details. ¤

Definition 2.4. An algebraic number field is a field K which is finite over Q, i.e.
a field extension K of Q such that [K : Q] < ∞.

Lemma 2.5. Let K be an algebraic number field. Then the field extension K/Q is
algebraic.

Proof. Let α ∈ K. Since K is a finite dimensional Q-vector space there exists an
n ∈ N such that 1, α, α2, . . . , αn are linearly dependent. Choose the minimal such
n. Then there exist c0, c1, c2, . . . , cn ∈ Q with cn 6= 0 such that c0 + c1α + c2α

2 +
· · · + cnαn = 0. Hence α is a root of the polynomial Xn + cn−1/cnXn−1 + · · · +
c1/cnX + c0/cn ∈ Q[X] and therefore algebraic over Q. ¤

For α1, α2, . . . , αn ∈ C we let Q(α1, α2, . . . , αn) denote the smallest field exten-
sion of Q which contains α1, α2, . . . , αn. One can show that if α1, α2, . . . , αn are
algebraic over Q then the field Q(α1, α2, . . . , αn) is algebraic over Q.

An important class of examples is given by quadratic fields.

Definition 2.6. An algebraic number field K with [K : Q] = 2 is called a quadratic
field.

An integer m ∈ Z is called square-free if m is not divisible by the square of a
prime number.

Lemma 2.7. Let m 6= 1 be a square-free integer. Then Q(
√

m) is a quadratic field
and one has Q(

√
m) = Q+Q

√
m.

Proof. It is easy to see that
√

m 6∈ Q so that Q+Q
√

m is 2-dimensional as a vector
space over Q. Clearly one has Q+Q

√
m ⊆ Q(

√
m). To show equality it suffices to

show that Q+Q
√

m is a field, but this is straightforward to verify. ¤

Lemma 2.8. Let K be a quadratic field. Then there exists a unique square-free
integer m 6= 1 such that K = Q(

√
m).

Proof. If α ∈ K \ Q then clearly K = Q(α). Furthermore 1, α, α2 are linearly
dependent overQ, so there exist c0, c1, c2 ∈ Q with c2 6= 0 such that c0+c1α+c2α

2 =
0. Dividing by c2 gives α2+aα+b = 0 for some a, b ∈ Q, hence (α+a/2)2 = a2/4−b.
Since Q(α) = Q(α + a/2) we find that K = Q(

√
a2/4− b). Now there exists

a non-zero c ∈ Q such that m = c2(a2/4 − b) is a square-free integer, and as
Q(

√
a2/4− b) = Q(c

√
a2/4− b) it follows that K = Q(

√
m) as required.

Uniqueness of m is left as an exercise. ¤

A quadratic field K = Q(
√

m) is called real quadratic if m > 0 and complex
quadratic if m < 0.

Lemma 2.9. Let m 6= 1 be a square-free integer and K = Q(
√

m) = Q + Q
√

m.
Then the map τ : K → K, τ(a + b

√
m) = a − b

√
m (where a, b ∈ Q) is an

automorphism of the field K, i.e. τ is bijective and preserves the operations + and
· of K. Furthermore τ fixes Q, i.e. τ(α) = α if α ∈ Q ⊂ K.

Proof. Bijectivity is obvious, and a simple computation shows that τ preserves +
and ·, e.g. τ((a+ b

√
m) · (c+d

√
m)) = τ((ac+mbd)+(ad+ bc)

√
m) = (ac+mbd)−

(ad + bc)
√

m = (a− b
√

m) · (c− d
√

m) = τ(a + b
√

m) · τ(c + d
√

m). ¤
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3. Algebraic integers

Definition 3.1. Let K/Q be a field extension. An element α ∈ K is called integral
over Z (or an algebraic integer) if α satisfies a polynomial equation

Xn + cn−1X
n−1 + · · ·+ c1X + c0 = 0

where c0, c1, . . . , cn−1 ∈ Z.

Theorem 3.2. Let K/Q be a field extension and α, β ∈ K. If α and β are integral
over Z then so are α + β and αβ.

Proof. Since α is integral over Z it is a root of Xd + cd−1X
d−1 + · · ·+ c1X + c0 = 0

with c0, c1, . . . , cd−1 ∈ Z. Similarly since β is integral over Z it is a root of a monic
polynomial of degree e ≥ 1 with integer coefficients. Consider the Z-module M ⊂ K
spanned by αiβj for 0 ≤ i ≤ d− 1, 0 ≤ j ≤ e− 1, that is

M =
{ ∑

i,j

ci,jα
iβj : ci,j ∈ Z, 0 ≤ i ≤ d− 1, 0 ≤ j ≤ e− 1

}
.

We first show that (α + β)M ⊆ M . This is equivalent to showing that (α +
β)αiβj = αi+1βj + αiβj+1 ∈ M for 0 ≤ i ≤ d− 1, 0 ≤ j ≤ e− 1. If i 6= d− 1 then
clearly αi+1βj ∈ M . If i = d−1 then αi+1βj = (−cd−1α

d−1−· · ·−c1α−c0)βj ∈ M .
So in all cases αi+1βj ∈ M and a similar argument shows that αiβj+1 ∈ M . Thus
(α + β)αiβj ∈ M as claimed.

We have shown that there exists a finitely generated Z-module M ⊂ K such that
(α + β)M ⊆ M . Let m1,m2, . . . ,mn ∈ M be any finite set of generators of M (for
example we can take m1,m2, . . . ,mn to be the elements αiβj for 0 ≤ i ≤ d − 1,
0 ≤ j ≤ e − 1). Then for each index k we have (α + β)mk ∈ M , so (α + β)mk =∑n

l=1 cklml for some ckl ∈ Z. This can also be written as

(1) (α + β)




m1

...
mn


 =




c11 . . . c1n

...
. . .

...
cn1 . . . cnn







m1

...
mn


 .

Now M is non-trivial and m1, . . . , mn generate M , therefore we have (m1, . . . , mn) 6=
(0, . . . , 0). Hence (1) implies that α + β is an eigenvalue of the matrix C =(
ckl

)
1≤k,l≤n

. Therefore α+β is a root of the characteristic polynomial det(X ·1n−C)
where 1n denotes the n× n unit matrix. But it is easy to see that det(X · 1n −C)
is a monic polynomial with integer coefficients and that therefore α + β is integral
over Z.

The proof that αβ is integral over Z is similar using that αβM ⊆ M . ¤
If K is an algebraic number field then the set of all elements of K that are integral

over Z is denoted by RK . (Remark: Often the notation OK is used instead of RK .)
By Theorem 3.2 the set RK is a ring. It is called the ring of integers of K.

Lemma 3.3. A number α ∈ Q is integral over Z if and only if α ∈ Z, i.e. RQ = Z.

Proof. If α ∈ Z then α is integral over Z because it is a root of X − α = 0.
Conversely assume that α ∈ Q is integral over Z, so α satisfies a polynomial

equation

(2) αn + cn−1α
n−1 + · · ·+ c1α + c0 = 0

with c0, c1, . . . , cn−1 ∈ Z. Write α = r/s with r ∈ Z, s ∈ N and gcd(r, s) = 1.
Multiplying (2) by sn gives

rn + cn−1r
n−1s + · · ·+ c1rs

n−1 + c0s
n = 0,

hence s | rn. If s 6= 1 then s has a prime factor p. But p | rn implies p | r,
contradicting gcd(r, s) = 1. Hence s = 1 and α = r ∈ Z as required. ¤
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Lemma 3.4. Let K be an algebraic number field and α ∈ K. Then there exists
n ∈ N such that nα ∈ RK .

Proof. Exercise. ¤

Corollary 3.5. Let K be an algebraic number field. Then K is the field of fractions
of RK , i.e. K = {α/β : α, β ∈ RK , β 6= 0}.
Proof. This is immediate from Lemma 3.4. ¤

Lemma 3.6. Let m 6= 1 be a square-free integer and let K = Q(
√

m) = {a+ b
√

m :
a, b ∈ Q}. Then

RK =

{
Z+ Z

√
m if m 6≡ 1 (mod 4),

Z+ Z 1+
√

m
2 if m ≡ 1 (mod 4).

Proof. We consider the case m 6≡ 1 (mod 4), the other case is left as exercise.
If α ∈ Z+Z

√
m then α = a + b

√
m with a, b ∈ Z. Then α is a root of the monic

polynomial X2 − 2aX + (a2 −mb2) ∈ Z[X] and therefore α ∈ RK .
Conversely assume that α ∈ RK . Write α = a + b

√
m with a, b ∈ Q. We want

to show that a, b ∈ Z. Recall that in Lemma 2.9 we defined an automorphism τ
of K by τ(a + b

√
m) = a − b

√
m. Now α ∈ RK implies that τ(α) ∈ RK because

we have an equation αn + cn−1α
n−1 + · · ·+ c1α + c0 = 0 with c0, c1, . . . , cn−1 ∈ Z

and applying τ to this equation gives τ(α)n + cn−1τ(α)n−1 + · · ·+ c1τ(α) + c0 = 0.
Since RK is a ring it follows that 2a = α + τ(α) is integral over Z and lies in Q,
hence by Lemma 3.3 we have 2a ∈ Z. Similarly a2 −mb2 = ατ(α) ∈ Z. We now
distinguish the cases a ∈ Z and a 6∈ Z.

If a ∈ Z then mb2 ∈ Z which implies b ∈ Z because m is square-free, so α ∈
Z+ Z

√
m as required.

If a 6∈ Z then a = c/2 with c ∈ Z odd, so c2 ≡ 1 (mod 4). From (c/2)2−mb2 ∈ Z
it follows that c2 − m(2b)2 ∈ Z and moreover c2 − m(2b)2 ≡ 0 (mod 4). Now
m(2b)2 ∈ Z implies 2b ∈ Z because m is square-free, so (2b)2 ≡ 0 or 1 (mod 4).
Hence the assumption m 6≡ 1 (mod 4) implies that c2−m(2b)2 ≡ 1, 2 or 3 (mod 4),
contradicting c2 −m(2b)2 ≡ 0 (mod 4). Therefore the case a 6∈ Z cannot arise. ¤

Theorem 3.7. Let K be an algebraic number field. Then the ring RK has an inte-
gral basis, i.e. there exist elements β1, β2, . . . , βn ∈ RK such that every α ∈ RK can
be written uniquely in the form α = a1β1+a2β2+· · ·+anβn where a1, a2, . . . , an ∈ Z.

Proof. See for example [1, §II.1, p. 51]. ¤

4. Ideals

We first recall some definitions from commutative algebra.

Definition 4.1. Let R be a commutative ring.
(1) A subset A ⊆ R is called an ideal of R if A is a subgroup with respect to

addition (i.e. 0 ∈ A and if α, β ∈ A then α − β ∈ A) and if α ∈ R, β ∈ A
then αβ ∈ A.

(2) An ideal A ⊆ R is called prime if A 6= R and if whenever αβ ∈ A for some
α, β ∈ R then α ∈ A or β ∈ A.

(3) An ideal A ⊆ R is called maximal if A 6= R and if there is no ideal B which
lies strictly between A and R (i.e. A ⊆ B ⊆ R implies B = A or B = R).

Definition 4.2. Let R be a commutative ring and let α1, α2, . . . , αn ∈ R. Then
the set

(α1, α2, . . . , αn) := {λ1α1 + λ2α2 + · · ·+ λnαn : λ1, λ2, . . . , λn ∈ R}
is an ideal of R. It is called the ideal generated by α1, α2, . . . , αn.
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An ideal A ⊆ R is called a principal ideal if there exists an α ∈ R such that
A = (α).

Definition 4.3. Let R be a commutative ring and let A and B be ideals of R. We
define the product AB to be the ideal

AB = {α1β1 + α2β2 + · · ·+ αnβn : n ∈ N, α1, α2, . . . , αn ∈ A, β1, β2, . . . , βn ∈ B}.
Lemma 4.4. Let R be a commutative ring.

(1) If A = (α1, . . . , αm) and B = (β1, . . . , βn) then

AB = (α1β1, α1β2, . . . , α1βn, α2β1, . . . , αmβn).

In particular if A = (α) and B = (β) are principal then AB = (αβ) is
principal.

(2) The product of ideals is associative and commutative. The ideal R is the
identity for the product of ideals.

Proof. Exercise. ¤

Next we describe the ideals, prime ideals and maximal ideals of the ring Z.

Lemma 4.5. (1) Every ideal A of Z is principal, more precisely there exists
an integer α ≥ 0 such that A = (α).

(2) An ideal A = (α) of Z (with α ≥ 0) is a prime ideal if and only if α = 0 or
α is a prime number.

(3) An ideal A = (α) of Z (with α ≥ 0) is a maximal ideal if and only if α is a
prime number.

Proof. Exercise. ¤

Recall that the fundamental theorem of arithmetic states that every positive
integer can be expressed as a product of prime numbers, and that this product
representation is unique up to the order of the factors. Since every non-zero ideal of
Z is generated by a unique positive integer, one can easily deduce a corresponding
statement for ideals of Z: if A is a non-zero ideal of Z then A can be written as a
product of prime ideals of Z, and this product representation is unique up to the
order of the factors.

Now let K be an algebraic number field. The ring RK is a generalisation of the
ring Z and we therefore want to study if RK has similar properties as Z. In general
some of the properties described above fail for RK : in general not every ideal of RK

is principal (an example for this will be given later), and non-zero elements of RK

can in general not be written uniquely as a product of prime elements. However
some properties of Z also hold for the rings RK .

Theorem 4.6. Let K be an algebraic number field and A an ideal of the ring RK .
Then A is a maximal ideal if and only A is a non-zero prime ideal.

Proof. It is not difficult to show that maximal ideals are prime (this is true for any
commutative ring), and since RK is not a field the maximal ideals are non-zero. For
the converse see for example [1, Corollary to Theorem 5, p. 48] which shows that
RK is a Dedekind domain, and one condition of a Dedekind domain is that all its
non-zero prime ideals are maximal (compare [1, Definition (II.1.1), p. 36]). ¤

Theorem 4.7. Let K be an algebraic number field. Then every non-zero ideal A of
RK can be written as a product A = P1 · · ·Pn of prime ideals Pi of RK . Moreover
this product representation is unique up to the order of the factors.

Proof. See for example [1, Theorem 2, p. 37]. ¤
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