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Lecture notes, Part 2

5. THE IDEAL CLASS GROUP

Let K be an algebraic number field and Rk the ring of integers of K. It is useful
to generalise the notion of an ideal of Rk as follows.

Definition 5.1. A subset A C K is called a fractional ideal of R if there exists
v € Rk \ {0} such that the set YA = {ya : @ € A} is an ideal of Ry (so in particular
vA C Rk).

The product of two fractional ideals is defined in the same way as the product
of two ideals. The product of two fractional ideals is again a fractional ideal. The
following theorem generalises Theorem 4.7.

Theorem 5.2. Let I(K) be the set of non-zero fractional ideals of Ry. Then
I(K) is an abelian group with respect to multiplication of fractional ideals. Every
fractional ideal A € I(K) can be expressed in the form A = P{*Ps*--- Pén where
the P; are distinct prime ideals of Rx and e; € Z, and this representation is unique
(more precisely it’s unique up to the order of the factors and including factors with
exponent zero).

Proof. See for example [1, Theorems 2 and 3]. O

If @« € K then the set () := {Aa : A € Rk} is a fractional ideal of Rg. It is
called the principal fractional ideal generated by «. Let P(K) denote the set of
non-zero principal fractional ideals of Rg. We note that (1) = Rk, (a)™! = (a™1)
and («) - (8) = (af), hence P(K) is a subgroup of I(K).

Definition 5.3. The ideal class group CI(K) of an algebraic number field K is
defined to be CI(K) = I(K)/P(K).

Example 5.4. We want to compute Cl(Q). Let A € I(Q), i.e. A is a non-zero
fractional ideal of Ry = Z. Then there exists v € Q \ {0} such that vA is a non-
zero ideal of Z. By Lemma 4.5 there exists a € Z such that yA = («). Hence
A = ~y"(a) = (y'a) is a principal fractional ideal, i.e. A € P(Q). Therefore
I1(Q) = P(Q) which shows that the ideal class group C1(Q) = I(Q)/P(Q) is trivial.

Example 5.5. We now give an example of a non-principal ideal. Let K = Q(y/—6).
By Lemma 3.6 we have Rx = Z+Z+/—6. We will show that the ideal A = (2, /—6)
of the ring Rk is not principal and that therefore the ideal class group Cl(K) is
non-trivial.

First we define the norm N« of an element o € K by Na = ar(«) where 7 is the
automorphism of K defined in Lemma 2.9. The norm satisfies N(a) = Na - N§
for all a,8 € K because we have (using that 7 is an automorphism) N(af) =
apr(afB) = ar(a) - p7(8) = Na- NB. If a = a + b\/—6 with a,b € Q then
(1) Na = a® 4 6b°.

From this we see that Nao € N if @ € R \ {0}.

Now suppose for a contradiction that A is principal, so A = («) for some a € R.
Since 2 € A we have 2 = Ao for some A € Ry, and taking norms gives N(2) =
NX- Na, hence Na | N(2) = 4. Similarly v/—6 € A implies Na | N(v/—6) = 6.
It follows that Na = 1 or Na = 2. Equation (1) shows that the case Na = 2
is impossible. In the case Na = 1 equation (1) shows that a = 1 and therefore
1 € (o) = A= (2,v/—6). But then there exist a,b,c,d € Z such that 1 = (a +
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bv/—6) -2+ (c+dv/—6)-v/—6 = (2a — 6d) + (2b+ ¢)/—6 which implies 1 = 2a — 6d.
As this is impossible, it follows that the case Na = 1 is also impossible. Hence the
ideal A is not principal.

Theorem 5.6. Let K be an algebraic number field. Then the ideal class group
CUK) is finite.

Proof. See for example [1, Theorem 31, p. 155]. |

Definition 5.7. Let K be an algebraic number field. The class number hx of K
is defined to be the order of the ideal class group of K, i.e. hx = |[Cl(K)].

6. UNITS
We first recall the definition of a unit of a commutative ring.

Definition 6.1. Let R be a commutative ring. An element a € R is called a unit
if there exists a § € R such that a3 = 1. The set of units of R is denoted by R*.

Lemma 6.2. Let R be a commutative ring. Then R* is an abelian group (with
respect to multiplication).

Proof. Clear. O

Now let K be an algebraic number field. We want to determine the structure
of the group Rj. First we consider the torsion subgroup of Ry, i.e. the subgroup
consisting of all elements of finite order. A root of unity in K is an element ( € K
such that (¢ =1 for some e € N. We let ux denote the set of roots of unity in K,

prx ={¢ € K :¢° =1 for some e € N}.
It is easy to see that pg is a group with respect to multiplication.

Lemma 6.3. Let K be an algebraic number field. The torsion subgroup of Ry is
equal to the group pr of roots of unity in K. Furthermore pg is a finite cyclic

group.

Proof. If a is a torsion element in Ry, then a® = 1 for some e € N, so « is a root of
unity in K. Conversely if o € ug, then o € Ri (because « satisfies a polynomial
equation of the form X¢ — 1 = 0 for some e € N), and a® = 1 implies that « is a
unit (with inverse a®~!) and has finite order.

Next we show that the group p is finite. Assume for a contradiction that pg is
infinite. Then px must contain elements of arbitrary large order because for every
e € N the equation X = 1 has at most e solutions in the field K. Now if ( € ug
then Q(¢) C K and therefore [K : Q] > [Q(¢) : Q]. However one can show that
if ¢ is a root of unity of order e then [Q({) : Q] = p(e) where ¢ denotes Euler’s
e-function (see for example [2, VI, Theorem 3.1]). But p(e) — oo as e — oo,
therefore [K : Q] = oo which contradicts the definition of an algebraic number field.

Finally the cyclicity of the group px follows from the general fact that any finite
subgroup of K* is cyclic (this is true for any field K and not only for algebraic
number fields, see for example [2, IV, Theorem 1.9]). O

Example 6.4. If m > 1 is square-free and K = Q(y/m) (so K is a real quadratic
field) then pyx = {1,—1}. Here the inclusion pux 2 {1,—1} is obvious. Conversely
if ¢ € pug then we can consider ¢ as an element of R* because K C R (where R
denotes the field of real numbers). But the only elements of finite order in R* are
1 and —1, hence ¢ € {1, —1} as claimed.

Example 6.5. If K = Q(v/—1) then px = {1,—-1,v/—1,—+/—1}. Here the inclu-
sion pr 2 {1,—1,v/—1,—v/—1} is clear; the inclusion pux C {1,—-1,v/—1,—v/—1}

is left as an exercise.
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The next aim is to determine the structure of the torsion free group Rj;/pk.
For this we must consider embeddings ¢ of K into C, i.e. injective homomorphisms
oc: K — C.

Lemma 6.6. Let K be an algebraic number field of degree n over Q. Then there
exist precisely n distinct embeddings of K into C.

Sketch of proof. There exists an element o € K such that K = Q(«). This element
« satisfies an irreducible polynomial f(z) € Q[z] of degree n. In the field C the
polynomial f(z) has n distinct roots r1,...,7, € C. Then for each i = 1,...,n
there exists a unique homomorphism K — C which sends « to r;. O

Let 0 : K — C be an embedding. If o(K) C R we call o a real embedding,
otherwise we call o a complex embedding. We let r be the number of real embeddings
of K and 071, ..., 0, the list of real embeddings. Complex embeddings come in pairs,
because if 0 : K — C is a complex embedding then the map & which is defined
by () = o(a) (i.e. the complex conjugate of o(a)) is again a complex embedding
different from o. So in particular the number of complex embeddings is even. We
let 2s be the number of complex embeddings of K and o,41,...,0045,0p4s4+1 =
Grils---,0r12s = Op15 the list of complex embeddings. By Lemma 6.6 the total
number of embeddings is equal to the degree of K over Q, so

r+2s=[K:Q).

Lemma 6.7. Let K be an algebraic number field of degree n over Q, and let
01,...,0p be the list of embeddings of K into C. Then for every positive real number
B the set

{a € Rk : |oi(a)| < B foralli=1,...n}

is finite.

Sketch of proof. Let o € Ri be such that |o;(a)| < B for all i = 1,...n. We define
a polynomial f(X) € C[X] by f(X) =[], (X — gi(a)). Then the coefficients of
f(X) are symmetric functions in oy (@), . .., o (). This implies that the coefficients
are rational numbers (this follows easily from Galois theory) and integral over Z
(because @ € Rk implies that all o;(«) are integral over Z), hence by Lemma 3.3
they are integers. Furthermore since all |o; ()| are bounded by B it follows that all
coefficients of f(X) are bounded by a constant depending on B (but independent
of a). It is also easy to see that « is a root of f(X).

We have shown that « is a root of a polynomial of degree n with bounded
integer coefficients. As there are only finitely many such polynomials and each such
polynomial has only finitely many roots, it follows that there are only finitely many
o in the set. ]

Define a map A : R — R"** by
Mz) = (logloi(z)], ..., loglor ()|, 210g|ori1 ()], . . ., 2loglors(2)]).
Since loglo;(zy)| = log|o;(z)| + log|o;(y)| for all z,y € Rj; and alli =1,...,r +s,

the map A is a homomorphism from the multiplicative group Rj; to the additive
group R™ 5.

Lemma 6.8. ker(\) = ux

Proof. It ¢ € pug then ¢¢ =1 for some e € N. It follows that e - A(¢) = A(¢®) =
A(1) = (0,...,0), hence A\(¢) = (0,...,0), i.e. ¢ € ker(A).

Conversely, if ¢ € ker(\) then log|o;(¢)] = 0 and thus |¢;(¢)| = 1 for all ¢ =
1,...,7 4+ s. This implies that |o;({)| =1 also for i =7+ s+ 1,...,r + 2s because
lorts+1(Q)] = |lor+1(Q)] = |or+1(¢)] = 1 etc. The same argument applies to all
powers (*. This shows that all ¢? for i € Z lie in the finite set of Lemma 6.7 (with
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B = 1). Hence there exist integers i < j such that ¢! = (7, i.e. (7% = 1. Thus
¢ € ug as claimed. 0

It follows from Lemma 6.8 that R} /ug is isomorphic to the image of X. The
next lemma will be used to show that the image of A lies in the hyperplane

H={(z1,...;03s) ER™ )+ + 2, =0}

Lemma 6.9. Let o € Rg. Then « is a unit if and only if the product
N(a) = o1(a)os(a) - orias(a)

is equal to 1 or —1.
Sketch of proof. Let a € Rj;. Since a € Rk the o;(a) are integral over Z for all i.
Hence the product N(a) = o1(a) - 0,19s() is integral over Z. But using Galois
theory it is easy to see that N () lies in Q, therefore N («) € Z. Similarly N(a™!) :=
o1(a ) o.195(a”t) € Z because a1 € Rg. But clearly N(a) - N(a™1!) =1,
hence N(a) = %1 as claimed.

Conversely, if o1() - 0,42s(@) = 1 then o7 ' (02(a) - 0y 425(a)) is an in-
verse of o in Rk, and thus « is a unit. ([l

Lemma 6.10. The image of A is a full lattice in H C R™%, i.e. N\(R)) is a discrete
subgroup of H with rank equal to the dimension of H.

Proof. Let a € Ry. Then
AMa) = (log|01 (a)l,...,loglo,(a)l],21log|ori1 ()], ..., 2 log|aT+S(a)|).

Now for 1 < i < s we have 2log|o,;(a)| = log|o,yi(a)| + log|o4s+i(@)], hence
logloi(@)| + - - - + loglo, (o) | 4+ 21log|oy 41 () |+ - - - + 21og|oyys(a)]
= log|o1 ()] + - - - + log|ory2s()|

= 1Og {0‘1(@) T 0T+28(a)’
= log|+1|
=0.

This shows that A\(Rj;) C H.

If W is any bounded region of H and o € Rj is such that A\(«) € W then
log|o;()| is bounded for i = 1,...,r + s. It follows that |o;(«)| is bounded for all
i =1,...,7 4+ 2s and Lemma 6.7 therefore implies that a must lie in a finite set.
This shows that A(Rj) N W is finite. Hence A(R}) is a discrete subgroup of H.

The most difficult step is to show that A(R ) has rank equal to dimg H = r+s—1.
This requires constructing 7 + s — 1 many units in Ry such that their images under
A are linearly independent over R. For details see for example [1, IV.(4.7)]. g

We have a short exact sequence of abelian groups
{1} — ker(\) — R} 25 A(RY) — 0.

By Lemma 6.10 we know that A\(Rj) is a full lattice in the (r + s — 1)-dimensional
vector space H. Therefore A\(Ry) = Z" 571, so in particular the short exact se-
quence splits (non-canonically), i.e. there exists an isomorphism

Ry = ker(\) x AM(Ry).
We also know that ker(\) = px by Lemma 6.8. Hence we obtain the following

theorem.

Theorem 6.11 (Dirichlet’s unit theorem). Let K be an algebraic number field. Let
r be the number of real embeddings K — R and let 2s be the number of complex
embeddings K — C. Then Ry = gy x Z" 571
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Units aq,...,0,45-1 € R with the property that A(ai),..., AMa,4s-1) are a
Z-basis of the lattice A(Ry) are called a system of fundamental units for Rj;. If ¢
is a generator of the cyclic group g and ag,...,q,4s—1 is a system of fundamental
units for R}, then every unit can be expressed uniquely in the form (*af* - - - affj_’f
where 0 < ¢ < |uk]| and ey, ..., erq45-1 € Z.

Definition 6.12. Let K be an algebraic number field and let o1, ..., o, be the real
embeddings of K and 0,41, ...,0.4s half of the complex embeddings of K as above.
Let a1,...,ar45-1 be a system of fundamental units of Ry. Then the regulator
Regy € R of K is defined to be the absolute value of any (r+s—1) x (r+s—1)-minor
of the matrix

10g|0’1(041)| 1Og|01(ar+571)|

10g|0r(a1)| log‘gr(ar—l-s—l”
2loglort1(ar)] ... 2loglorii(aris—1)]
2log|o,ys(ar)| ... 2logloyis(is—1)]

This definition does not depend on any of the choices.

Example 6.13. Let m > 1 be a square-free integer and K = Q(y/m). Then the field
K has two real embeddings (given by o1 (a+ by/m) = a+by/m and oz(a+by/m) =
a — by/m) and no complex embeddings, so r = 2, s = 0. Since pux = {1,—-1} (by
Example 6.4) it follows from Dirichlet’s unit theorem that Ry = {1,—1} x Z. If
a € Ry is a fundamental unit then the regulator of K is the absolute value of any

1 x 1-minor of the matrix
log|o ()]
logloa(a)| )’

hence Regy = |log|al(a)|’ = |log|a2(a)|’.

To give an explicit example, we consider K = Q(\/?) Then one can show
that o = 1 + /2 is a fundamental unit of K (it is clear that « is a unit because
a~!' = —14+/2 € Rk, but to see that « is in fact a fundamental unit requires some

additional arguments). Hence Regy = |logloy()|| = |log(1 + v/2)| = 0.88137....
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