Algebraic number theory LTCC 2008

Lecture notes, Part 3

7. THE RIEMANN ZETA FUNCTION

We write Re(z) for the real part of a complex number z € C. If a is a positive
real number and z € C then o is defined by a* = exp(z - log(a)). Note that

Z‘ = = aRe(Z).

lexp(z - log(a))| = exp (Re(z - log(a)))

Definition 7.1. The Riemann zeta function {(z) is the function defined by
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for z € C with Re(z) > 1.

The absolute convergence of the series in the definition of {(z) follows easily by
comparison to an integral, more precisely
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The following theorem summarises some well-known facts about the Riemann
zeta function.
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Theorem 7.2. (1) The series Y .-, n~* converges uniformly on sets of the
form {z € C: Re(z) > 1+ 6} with 6 > 0. Therefore the function ((z) is
holomorphic on the set {z € C: Re(z) > 1}.

(2) (Euler product) For all z € C with Re(z) > 1 we have
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where the product runs over all prime numbers p.

(3) (Analytic continuation) The function {(z) can be extended to a meromorphic
function on the whole complex plane.

(4) (Functional equation) Let

Z(2) = n=*/°D(2/2)¢(2)

where T' is the Gamma function. Then the function Z(z) satisfies the func-
tional equation Z(z) = Z(1 — z).

(5) (Singularities) The only singularity of (z) is a simple pole at z = 1 with
residue 1.

Proof. See for example [2, VII, §1]. O

Recall that there is a bijection between positive integers and non-zero ideals of
Z which sends n € N to the principal ideal (n). Conversely, given a non-zero ideal
A of Z we can find the unique positive integer n generating A as n = |Z/A|. Hence
the definition of the Riemann zeta function can also be written as

1
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A#{0}
where the sum runs over all non-zero ideals A of Z. In this form the definition can
be generalised to arbitrary number fields.
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8. THE NORM OF AN IDEAL

In this section K is an algebraic number field and Rg the ring of integers of
K. If Ais an ideal of Rk, then R /A denotes the quotient ring, i.e. Rx/A is
the set of cosets  + A with operations (o + A) + (8 4+ A) = (o + ) + A and
(a+A4) - (6+A4)=(af) + A

Lemma 8.1. Let A be a non-zero ideal of Rx. Then ANZ # {0}, i.e. A contains
a non-zero rational integer.

Proof. Let o € A\{0}. Then « is integral over Z and therefore satisfies an equation
of the form

(1) Oéd+Cd_1()éd_1 +---+ca+c =0
with cg,c1,...,¢cq-1 € Z. We can assume that ¢y # 0 because otherwise we could
divide equation (1) by a. Now o € A, —a%™' —¢cqg_ 10?2 —... —¢; € Rg and A is
an ideal. Hence it follows that

co=a (—at—cy_ 1087 — ... —¢)) € A,
S0 ¢g is a non-zero element in AN Z. O

Lemma 8.2. Let c € Z\ {0} and let (¢) denote the principal ideal of R generated
by c. Then |Ri/(c)| = |c| Y.

Proof. Theorem 3.7 shows that there exists an isomorphism of abelian groups Ry =
Z" for some n € N. In fact one has n = [K : Q] because it follows easily from
Lemma 3.4 that any Z-basis of Ry is also a Q-basis of K. Under the isomorphism
Ry = 77 the ideal (c¢) corresponds to the subgroup (¢Z)™ of Z™, therefore R /(c) =
7"/ (cZ)™ = (Z/cZ)™ which is a finite group of order |c|™. O

Lemma 8.3. Let A be a non-zero ideal of Ri. Then the ring Ry /A is finite.

Proof. By Lemma 8.1 the ideal A contains a non-zero integer ¢ € Z. Then (¢) C A
where (c) denotes the ideal of R generated by c. It follows that |Rx /(c)| > |Rk /A
Now |Rk /(c)| is finite by Lemma 8.2, hence |Rx /A| is finite. O

Definition 8.4. Let A be a non-zero ideal of Rx. Then we define the norm of the
ideal A to be the number of elements of Rx/A. We write N(A) for the norm of A.

Lemma 8.5. The norm of ideals is multiplicative, i.e. if A and B are non-zero
ideals of Ri then N(AB) = N(A)N(B).

Proof. Since B can be written as a product of non-zero prime ideals it suffices to
show N(AP) = N(A)N(P) where P is a non-zero prime ideal. Note that AP C
A C Rk, hence

|Ri/AP| = |Rk /A| - |A/AP|.

Now N(AP) = |Ri/AP|, N(A) = |Rx/A| and N(P) = |Rg/P|, so to complete
the proof we only need to show that |Rx/P| = |A/AP].

Unique factorisation into prime ideals implies that A # AP, so there exists an
a € A\ AP. Define a map f: Rx — A/AP by f(z) = za+ AP. It is not difficult
to check that f is a homomorphism of Rx-modules. Using the fact that the ideal
P is maximal, it then easily follows that f is surjective and has kernel P. Therefore
Ry /P = A/AP and thus |Rx/P| = |A/AP). O

Theorem 8.6. (1) Let P be a non-zero prime ideal of Rx. Then P contains
precisely one prime number p. We have N(P) = pf where 1 < f < [K : Q].
(2) Every prime number p is contained in at most [K : Q] prime ideals of Ry .
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Proof. Let P be a non-zero prime ideal of Rg. It is easy to check that P NZ is
a prime ideal of Z. Furthermore P NZ # {0} by Lemma 8.1. Hence Lemma 4.5
shows that P N Z is a principal ideal of Z generated by a prime number p, so in
particular p € P. Now suppose that p and ¢ are distinct prime numbers contained
in P. Since p and q are coprime, there exist z,y € Z such that px +qy = 1. But
p,q € P implies that 1 = px + qy € P, hence P = Rk contradicting the definition
of a prime ideal. This completes the proof that a non-zero prime ideal P contains
precisely one prime number p.

Now let p be a prime number and consider the principal ideal (p) of Rx. By
Theorem 4.7 we can write

(2) (p) = P{" Py - P

where Py, Ps, ..., P, are distinct prime ideals of Ry and ey, es,...,e, € N. Clearly
p€ P fori=1,...,r. Conversely assume that p € P for some prime ideal P of R.
Then P Pg? .-+ P C P and since P is a prime ideal this implies P; C P for some
i=1,...,r. It follows that P, = P since P; is maximal. This shows that a prime
ideal P contains the prime number p if and only if P = P; for some ¢ =1,...,r. So
the prime number p is contained in precisely r prime ideals of Ry .

Taking the norm of (2) and using Lemma 8.5 gives

3) N((p)) = N(P1)* N(Pp)% - - N(P)“".

By Lemma 8.2 we have N((p)) = |Rx/(p)| = p*U. Tt therefore follows from
(3) that N(P;) = pfi for some f; € N, and that plE@ = (pfyer...(pfryer =
perfitterss hence

[K:Ql=eifi+-+erfr
This equation implies f; < [K : Q] which completes the proof of part (1). Further-

more this equation also implies that r < [K : Q] which proves part (2). O

Remark 8.7. Let P be a non-zero prime ideal of Ry and let p be the unique prime
number contained in P. Since P is a maximal ideal of Ry, the quotient ring Ry /P
is a field. The ring homomorphism Z — Ry /P has kernel P NZ = (p) where now
(p) denotes the principal ideal of Z generated by p, hence there exists an injective
ring homomorphism Z/(p) — Ry /P. This shows that Rx /P can be considered as
a field extension of the field Z/(p).

We claim that [Ry /P : Z/(p)] = f where f is given by N(P) = pf. Indeed,
since Rk /P is a vector space of dimension [Rx /P : Z/(p)] over the field Z/(p),
it follows that |Ry/P| = |Z/(p)|F#x/FZ/®)] From this the claim follows because
|Ric/P| = N(P) and [Z/(p)| = p.

The number f = [Rx/P : Z/(p)] is called the residue class degree of the prime
ideal P.

9. DEDEKIND ZETA FUNCTIONS

Definition 9.1. The Dedekind zeta function (x(z) of the algebraic number field
K is the function defined by

1
(k(2) = Z N(A)=
ACRy
A#{0}
for z € C with Re(z) > 1. Here the sum runs over all non-zero ideals A of Rg.

We note that the Dedekind zeta function (p(z) of the field Q is precisely the
Riemann zeta function ((z).
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Theorem 9.2. The series defining (x(z) converges absolutely and uniformly on
sets of the form {z € C: Re(z) > 1+ 8§} with 6 > 1. Therefore the function (x(z)
is holomorphic on the set {z € C: Re(z) > 1}. Moreover for z € C with Re(z) > 1
we have the Euler product

1
(z)= 1 T-N(P)

PCRk
P#£{0}

where the product runs over all non-zero prime ideals P of R .

Proof. We first show that

(@) S tox (1—rqpraes ) < U@L+

where the sum runs over all non-zero prime ideals of Rx. For this we recall that
1 =
log| — | = —.
& (1 - 9:) Z n
n=1

Now if P is a non-zero prime ideal containing the prime number p then N(P) > p
by Theorem 8.6.(1). But by Theorem 8.6.(2) there exist at most [K : Q] prime
ideals containing p, hence

ijlog (1_<1+5> Z Z PN (D))
-y Yy NP n<1+5

D pGPn 1

zz
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S[Ki@]((lﬂ?),

where the last inequality comes from

1 1
ZZ 1+6: Z WSZW:§(1+5).

p n= 1 m is a meN
prime power

This proves (4).
Next we show that for every positive real number B we have

1 1
5) 11 1-N(P)~* 2 N(A)*

N(P)<B AeM(B)

where the product extends over all non-zero prime ideals P with norm at most B
and M(B) denotes the set of all non-zero ideals A whose prime ideal factorisation
contains only prime ideals with norm at most B. Indeed, if P, ..., P, is the list of
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prime ideals with norm at most B then

T

1 1
11 I-N(P)= 11 1-N(P)=

N(P)<B i=1

r

11 <1+ N(;i)z + N(]ii)% +>

=1

oo

1
- 2 NN

V1., Vp=0

1
= Z N(A)z’

AeM(B)

where for the last equality we used that every ideal A € M(B) can be expressed
uniquely as A = P{* --- P¥" with vq,...,1,. € NU{0}.
We can now show that the series > , win= converges absolutely and uniformly

N(A)*
for z € C with Re(z) > 14 ¢. Since

1 1
= <
N(A)Re(z) = N(A)+

1
N(4)?
the absolute and uniform convergence of ) , ﬁ will follow if we show that
> W converges. The convergence of the series > , W follows from the

fact that D n(a)<p W is monotonically increasing as B — oo and bounded
above because

1 1
2 NS 2 N

N(A)<B AeM(B)
B 1
o H 1— N(p)f(lﬂi)
N(P)<B
= exp Z og 1—N(P)*(1+5)
N(P)<B

< exp (; log <1—1\T(11'W)>

<exp ([K:Q]-¢(1+9)).
The final step is to show the identity

1 1
6 S R -
©) I —x@=- 2 ~ar
PCRy ACRg
P#{0} A#{0}
The idea is to first use (4) to prove the convergence of the product and then to show
(6) by letting B tend to oo in (5). For more details see for example [2, VII, §8]. O

Before we can state further properties of the Dedekind zeta function we must
define the discriminant dg of an algebraic number field K. Recall that if K has
degree n over Q, then R is a free Z-module of rank n (because Theorem 3.7 shows
that Rk is a free Z-module and Lemma 3.4 implies that the rank of Rx over Z is
equal to the dimension of K over Q) and there exist precisely n distinct embeddings
of K into C (Theorem 6.6).

Definition 9.3. Let K be an algebraic number field and n = [K : Q]. Let 51,..., 0,
be a Z-basis of Ry, and let o1, ...,0, be the distinct embeddings of K into C. Let
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W be the n x n-matrix W = (0;(8;))
defined to be dx = det(W)2.
It is not difficult to check that the discriminant dg is well-defined. Since o;(8;)

is integral over Z for all ¢ and j, it follows that dy is integral over Z. Using Galois
theory it is easy to see that dx lies in Q, hence dx € Z.

L<ij<n’ Then the discriminant dg of K is

Theorem 9.4. Let K be an algebraic number field and (x(z) the Dedekind zeta
function of K.
(1) (Analytic continuation) The function (x(z) can be extended to a meromor-

phic function on the whole complex plane.
(2) (Functional equation) Let

Zr(z) = (n7*0(2/2))" - (2(27) *T(2))” - C (2)
where 1 is the number of real embeddings of K, 2s is the number of complex
embeddings of K, and T is the Gamma function. Then the function Z (z)
satisfies the functional equation

Zi(2) = |dg|V* 7% - Zkc (1 = 2)

where dg is the discriminant of K.
(3) (Singularities) The only singularity of Cx(z) is a simple pole at z = 1 with

residue
2" (27T)ShKRegK

x|/ ldx|
where 1 is the number of real embeddings of K, 2s is the number of complex
embeddings of K, hy is the class number of K, Regy is the regulator of K,
|uxc| is the number of roots of unity in K, and dy is the discriminant of K.

Proof. See for example [2, VII, §5]. O

The formula for the residue of (x(z) at z = 1 is often called the analytic class
number formula. It is not too difficult to prove this formula in the form

. 2" (2m)*hxRegy
lim (2 — 1)Cie(z) = ) MEOCBK
2ol IRVALSS

where z — 14 means that the limit z — 1 is taken over real numbers z > 1 (see [1,
VIII, §2]). In certain cases (e.g. for quadratic fields or cyclotomic fields) one can
write the Dedekind zeta function (x(z) as a product of L-functions and evaluate
these L-functions at z = 1, which then leads to more explicit class number formulas
(see for example [1, VIII, §5 and §6], [3, Chapter 4]).
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