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Lecture notes, Part 4

10. Cyclotomic fields

Let n ∈ N and ζn = exp(2πi/n) ∈ C. Then ζn is a primitive n-th root of unity,
i.e. ζn is a root of unity which has order n. The algebraic number fields Q(ζn) for
n ∈ N are called cyclotomic fields. If m | n then ζm = (ζn)n/m ∈ Q(ζn) and therefore
Q(ζm) ⊆ Q(ζn). Note that if n is odd, then ζ2n = −(ζn)(n+1)/2 ∈ Q(ζn) and hence
Q(ζ2n) = Q(ζn). We can therefore assume that n is either odd or divisible by 4, i.e.
that n 6≡ 2 (mod 4). To avoid the trivial case Q(ζ1) = Q we will also assume that
n 6= 1.

Theorem 10.1. Let n > 1 be an integer and assume that n 6≡ 2 (mod 4).

(1) [Q(ζn) : Q] = φ(n) where φ is Euler’s φ-function.
(2) The field Q(ζn) is totally complex, i.e. the image of every embedding σ :

Q(ζn) → C is not contained in R.
(3) The group of roots of unity in Q(ζn) is

µQ(ζn) =

{
{±ζi

n : 0 ≤ i ≤ n− 1} if n is odd,

{ζi
n : 0 ≤ i ≤ n− 1} if n is divisible by 4.

(4) 1, ζn, ζ2
n, . . . , ζ

φ(n)−1
n is an integral basis of the ring of integers of Q(ζn).

Proof. (1) See [1, Theorem 2.5].
(2) If σ : Q(ζn) → C is any embedding then σ(ζn) 6∈ R because σ(ζn) is an

element of order n in C× but the only elements of finite order in R× are
±1.

(3) Exercise.
(4) See [1, Theorem 2.6]. ¤

If α ∈ Q(ζn) ⊂ C then the complex conjugate α also lies in Q(ζn) because
ζn = ζ−1

n ∈ Q(ζn). Therefore complex conjugation induces an automorphism of
the field Q(ζn). We define Q(ζn)+ to be the fixed field of Q(ζn) under complex
conjugation, i.e.

Q(ζn)+ = {α ∈ Q(ζn) : α = α}.
The field Q(ζn)+ is called the maximal real subfield of Q(ζn).

Theorem 10.2. Let n > 1 be an integer and assume that n 6≡ 2 (mod 4).

(1) [Q(ζn) : Q(ζn)+] = 2 and [Q(ζn)+ : Q] = φ(n)/2.
(2) The field Q(ζn)+ is totally real, i.e. the image of every embedding σ :

Q(ζn)+ → C is contained in R.
(3) The group of roots of unity of Q(ζn)+ is µQ(ζn)+ = {±1}.
(4) 1, ζn + ζ−1

n , (ζn + ζ−1
n )2, . . . , (ζn + ζ−1

n )φ(n)/2−1 is an integral basis of the
rings of integers of Q(ζn)+.

Proof. (1) Complex conjugation generates a subgroup of order 2 of the Galois
group Gal(Q(ζn)/Q), therefore [Q(ζn) : Q(ζn)+] = 2 by Galois theory. From
this [Q(ζn)+ : Q] = φ(n)/2 follows because

[Q(ζn) : Q(ζn)+] · [Q(ζn)+ : Q] = [Q(ζn) : Q] = φ(n).
1
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(2) Let σ : Q(ζn)+ → C be an embedding. Then σ can be extended to an
embedding σ′ : Q(ζn) → C. Since σ′(ζn) is a primitive n-th root of unity
in C, it follows that σ′(ζn) = ζa

n for some integer a with (a, n) = 1. Hence
σ′(ζn) = ζa

n = ζ−a
n = σ′

(
ζ−1
n

)
= σ′

(
ζn

)
. This implies that σ′(α) = σ′(α) for

all α ∈ Q(ζn) because ζn generates Q(ζn). Therefore σ(α) = σ(α) for all
α ∈ Q(ζn)+. This shows that σ(Q(ζn)+) ⊆ R, so σ is a real embedding.

(3) This is obvious since Q(ζn)+ is a subfield of R and {±1} are the only roots
of unity in R.

(4) See [1, Proposition 2.16]. ¤

As before let n > 1 be an integer with n 6≡ 2 (mod 4). To simplify the notation
we now write K = Q(ζn) and K+ = Q(ζn)+. We want to study the relation between
the unit groups of RK+ and of RK . It is clear that R×K+ is a subgroup of R×K because
RK+ ⊂ RK The field K has no real embeddings and φ(n) complex embeddings, so
by Dirichlet’s unit theorem we have

R×K ∼= µK × Zφ(n)/2−1.

The field K+ has φ(n)/2 real embeddings and no complex embeddings, so by Dirich-
let’s unit theorem we have

R×K+
∼= {±1} × Zφ(n)/2−1.

Hence the groups R×K+ and R×K have the same rank. This implies that R×K+ has
finite index in R×K . More precisely we have the following result.

Theorem 10.3. Let K = Q(ζn) and K+ = Q(ζn)+ where n > 1 and n 6≡ 2
(mod 4). Then

[R×K : µKR×K+ ] =

{
1 if n is a prime power,
2 otherwise.

Proof. See [1, Theorem 4.12 and Corollary 4.13]. ¤

Next we consider the relation between the ideal class groups and class numbers of
K+ and K. There exists a canonical map I(K+) → I(K) which sends a fractional
ideal A ∈ I(K+) to the fractional ideal A · RK ∈ I(K), i.e. to the fractional
ideal of K generated by A. A principal fractional ideal of K+ is mapped to a
principal fractional ideal of K, hence we obtain an induced map of ideal class
groups Cl(K+) → Cl(K).

Theorem 10.4. Let K = Q(ζn) and K+ = Q(ζn)+ where n > 1 and n 6≡ 2
(mod 4). Then the canonical map Cl(K+) → Cl(K) is injective. In particular the
class number of K+ divides the class number of K.

Proof. See [1, Theorem 4.14]. ¤

11. Cyclotomic units

Let n > 1 be an integer which satisfies n 6≡ 2 (mod 4). Let ζ = ζn = exp(2πi/n).
For an integer a which is prime to n we define

ga =
ζa − 1
ζ − 1

∈ Q(ζ).

Lemma 11.1. For every a ∈ Z with (a, n) = 1, the element ga is a unit in the ring
of integers RQ(ζ).

Proof. Let a′ is any positive integer such that a ≡ a′ (mod n). Then

ga = ga′ =
ζa′ − 1
ζ − 1

= ζa′−1 + ζa′−2 + · · ·+ ζ + 1.
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This shows that ga ∈ RQ(ζ). Since (a, n) = 1 there exists b ∈ N such that ab ≡ 1
(mod n). Hence ζ = (ζa)b and so

g−1
a =

ζ − 1
ζa − 1

=
(ζa)b − 1
ζa − 1

= (ζa)b−1 + (ζa)b−2 + · · ·+ ζa + 1.

This shows that g−1
a ∈ RQ(ζ). ¤

Next we construct units of the ring of integers of the maximal real subfield Q(ζ)+.
For a ∈ Z with (a, n) = 1 we define

ξa = ζ(1−a)/2 ζa − 1
ζ − 1

.

Note that ζ(1−a)/2 lies in the field Q(ζ) because if n is odd then ζ1/2 ∈ Q(ζ) and if n
is divisible by 4 then the assumption (a, n) = 1 implies that the exponent (1− a)/2
is even. Now ζ(1−a)/2 ∈ µQ(ζ) ⊆ R×Q(ζ) and ζa−1

ζ−1 ∈ R×Q(ζ) by Lemma 11.1, thus ξa is
a unit of RQ(ζ). Since

ξa = ζ−(1−a)/2 ζ−a − 1
ζ−1 − 1

= ζ−(1−a)/2 ζ−a · (1− ζa)
ζ−1 · (1− ζ)

= ξa

it follows that ξa lies in the maximal real subfield Q(ζ)+, hence ξa ∈ R×Q(ζ)+ .
To simplify the presentation we now restrict to the case where n = p is an odd

prime number. We define the group of cyclotomic units of Q(ζp) to be the subgroup
of R×Q(ζp) generated by the roots of unity µQ(ζp) and by the units ga for all a ∈ Z
with (a, p) = 1. We denote this group by C. We define the group of cyclotomic
units of Q(ζp)+ to be the subgroup of R×Q(ζp)+ generated by −1 and by the units ξa

for all a ∈ Z with (a, p) = 1. We denote this group by C+.

Lemma 11.2. Let p be an odd prime number. Then

R×Q(ζp)+

C+
∼=

R×Q(ζp)

C
.

For the proof of Lemma 11.2 we will need the following result.

Lemma 11.3. The ideal (1− ζp) is a prime ideal of RQ(ζp) and (1− ζp)p−1 = (p).

Proof of Lemma 11.3. The polynomial Xp−1 has the roots ζa
p for a = 0, 1, . . . , p−1,

hence Xp − 1 =
∏p−1

a=0(X − ζa
p ). Dividing this equation by X − ζ0

p gives

Xp−1 + Xp−2 + · · ·+ X + 1 =
p−1∏
a=1

(X − ζa
p ).

Letting X = 1 shows that p =
∏p−1

a=1(1− ζa
p ). Now for every a = 1, 2, . . . , p− 1 we

know from Lemma 11.1 that 1− ζa
p = unit · (1− ζp), therefore p = unit · (1− ζp)p−1.

From this we obtain the equation of principal ideals (p) = (1− ζp)p−1 which proves
the second statement of the lemma. Taking the norm of these ideals gives pp−1 =
N

(
(p)

)
= N

(
(1− ζp)p−1

)
= N

(
(1− ζp)

)p−1. Hence N
(
(1− ζp)

)
= p which implies

that (1− ζp) is a prime ideal. ¤

Proof of Lemma 11.2. Let f : R×Q(ζp)+ → R×Q(ζp)/C be the canonical homomor-
phism. We will show that f is surjective and has kernel C+.

First we show that ker(f) = C+. It is clear that C+ ⊆ ker(f). Conversely let
α ∈ R×Q(ζp)+ be in the kernel of f . Then α ∈ C, i.e. α = ε · g±1

a1
g±1

a2
· · · g±1

ar
for
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some ε ∈ µQ(ζp) and integers a1, a2, . . . , ar which are prime to p. It follows that
α = ε′ · ξ±1

a1
ξ±1
a2
· · · ξ±1

ar
for some ε′ ∈ µQ(ζp). Now α ∈ R×Q(ζp)+ and ξ±1

a1
ξ±1
a2
· · · ξ±1

ar
∈

R×Q(ζp)+ implies that ε′ ∈ R×Q(ζp)+ , hence ε′ ∈ {±1}. This shows that α ∈ C+ as
claimed.

Next we prove the surjectivity of f . Let α ∈ R×Q(ζp). Define ε ∈ R×Q(ζp) by ε =
α/α. Then for every embedding σ : Q(ζp) → C we have |σ(ε)| = |σ(α)|/|σ(α)| = 1
because σ(α) = σ(α) (compare the proof of Theorem 10.2.(2)). Now the same
argument as in the proof of Lemma 6.8 shows that ε must have finite order, i.e.
ε ∈ µQ(ζp). Hence ε = ±ζa

p for some a ∈ Z.
Suppose that α/α = ε = −ζa

p . Since 1, ζp, . . . , ζ
p−2
p is an integral basis of RQ(ζp),

we can write α = a0 + a1ζp + · · · + ap−2ζ
p−2
p . Modulo the ideal (1 − ζp) we have

ζi
p ≡ ζp for all i ∈ Z, hence

α = a0 + a1ζp + · · ·+ ap−2ζ
(p−2)
p

≡ a0 + a1 + · · ·+ ap−2

≡ a0 + a1ζ
−1
p + · · ·+ ap−2ζ

−(p−2)
p

= α

= −ζ−a
p α

≡ −α.

So 2α ≡ 0 modulo (1 − ζp), i.e. 2α ∈ (1 − ζp). Since (1 − ζp) is a prime ideal and
2 6∈ (1− ζp) (because otherwise 2p−1 ∈ (1− ζp)p−1 = (p) and thus p | 2p−1 which is
impossible since p is odd) this implies α ∈ (1− ζp). This is a contradiction because
α is a unit and therefore cannot be contained in the prime ideal (1− ζp).

Hence α/α = ε = +ζa
p . Let b ∈ Z be such that 2b ≡ a (mod p). Let β = ζ−b

p α.
Then β = ζb

pα = β, i.e. β ∈ R×Q(ζp)+ , and since ζ−b
p ∈ C we have f(β) = α · C ∈

R×Q(ζp)/C. This completes the proof of the surjectivity of f . ¤

Theorem 11.4. Let p be an odd prime number. The cyclotomic units C+ of Q(ζp)+

have finite index in the full group of units R×Q(ζp)+ , and

[R×Q(ζp)+ : C+] = hQ(ζp)+

where hQ(ζp)+ is the class number of Q(ζp)+.

Remark 11.5. One can define a group of cyclotomic units for any cyclotomic field
Q(ζn) and its maximal real subfield Q(ζn)+, and suitable versions of Theorem 11.4
hold for all cyclotomic fields. See [1, §8.1].

Sketch of proof of Theorem 11.4. To simplify the notation we write ζ = ζp. Recall
that [Q(ζ)+ : Q] = (p− 1)/2 and R×Q(ζ)+

∼= {±1} × Z(p−3)/2.
In §6 we defined a homomorphism λ : R×Q(ζ)+ → R(p−1)/2 by

λ(x) =
(
log|σ1(x)|, . . . , log|σ(p−1)/2(x)|),

where σ1, . . . , σ(p−1)/2 : Q(ζ)+ → R are the embeddings of Q(ζ)+. The kernel of λ
is µQ(ζ)+ = {±1} and the image is a free abelian group of rank (p− 3)/2.

It is not difficult to see that λ induces an isomorphism

(1)
R×Q(ζ)+

C+
∼=

λ(R×Q(ζ)+)

λ(C+)
.

Since C+ is generated by ±1 and ξ2, ξ3, . . . , ξ(p−1)/2, it follows that λ(C+) is gen-
erated by λ(ξ2), λ(ξ3), . . . , λ(ξ(p−1)/2).
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We define the regulator Reg({ξa}) of the units ξ2, ξ3, . . . , ξ(p−1)/2 to be the abso-
lute value of the determinant of any (p− 3)/2× (p− 3)/2-minor of the matrix with
columns λ(ξ2), . . . , λ(ξ(p−1)/2). We will show that

(2) Reg({ξa}) = hQ(ζ)+RegQ(ζ)+ .

Equation (2) implies that Reg({ξa}) 6= 0 and therefore that λ(C+) has rank (p −
3)/2. This implies that λ(C+) has finite index in λ(R×Q(ζ)+). From the definitions of
RegQ(ζ)+ and Reg({ξa}) it is not difficult to see that the index [λ(R×Q(ζ)+) : λ(C+)]
can then be computed as a quotient of regulators

[λ(R×Q(ζ)+) : λ(C+)] = Reg({ξa})/RegQ(ζ)+ .

The isomorphism (1) and equation (2) imply that

[R×Q(ζp)+ : C+] = [λ(R×Q(ζ)+) : λ(C+)] = hQ(ζ)+

which completes the proof of Theorem 11.4.
Let G be the group (Z/pZ)×/{±1}. We write Ĝ for the group of characters of

G, i.e. the group of homomorphisms G → C×. If χ ∈ Ĝ and n ∈ N is prime to p
then (the coset of) n is an element of (Z/pZ)×/{±1} = G, thus χ(n) is defined. If
n ∈ N is divisible by p then we define χ(n) = 0. In this way we can consider χ as a
function χ : N→ C.

Lemma 11.6. We have

Reg({ξa}) = ±
∏

χ∈Ĝ
χ6=1

1
2

p−1∑
a=1

χ(a) log|1− ζa|.

Proof. This follows from a tricky computation of the determinant defining Reg({ξa}).
See [1, Proof of Theorem 8.2]. ¤

Let χ ∈ Ĝ. We define the Dirichlet L-function L(s, χ) by

L(z, χ) =

{∑∞
n=1

χ(n)
nz if χ 6= 1,

ζ(z) if χ = 1,

where z ∈ C with Re(z) > 1. Here ζ(z) is the Riemann zeta function. We define
the Gauss sum τ(χ) by

τ(χ) =

{∑p
a=1 χ(a) exp(2πia/p) if χ 6= 1,

1 if χ = 1.

The following theorem summarises the relevant properties of the Dirichlet L-functions
and Gauss sums.

Theorem 11.7. (1) Let ζQ(ζ)+(z) be the Dedekind zeta function of Q(ζ)+.
Then

ζQ(ζ)+(z) =
∏

χ∈Ĝ

L(z, χ).

(2) If χ ∈ Ĝ \ {1} then the series L(z, χ) converges at z = 1 and

L(1, χ) = −τ(χ)
p

p−1∑
a=1

χ(a) log|1− ζa|.

(3) We have ∏

χ∈Ĝ

τ(χ) =
√
|dQ(ζ)+ |

where dQ(ζ)+ is the discriminant of Q(ζ)+.
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(4) If χ ∈ Ĝ \ {1} then τ(χ)τ(χ) = p.

Proof. (1) See [1, Theorem 4.3].
(2) See [1, Theorem 4.9].
(3) See [1, Corollary 4.6].
(4) This follows from [1, Lemmas 4.7 and 4.8]. ¤

From Theorem 11.7.(1), the analytic class number formula (Theorem 9.4.(3))
and the fact that at z = 1 the Riemann zeta function has a simple pole with residue
1, we deduce that

(3)
2(p−1)/2hQ(ζ)+RegQ(ζ)+

2
√
|dQ(ζ)+ |

=
∏

χ∈Ĝ
χ6=1

L(1, χ).

If χ ∈ Ĝ \ {1} then by parts (2) and (4) of Theorem 11.7 we have

(4)
p−1∑
a=1

χ(a) log|1− ζa| = − p

τ(χ)
L(1, χ) = −τ(χ)L(1, χ).

Hence

Reg({ξa}) = ±
∏

χ∈Ĝ
χ6=1

1
2

p−1∑
a=1

χ(a) log|1− ζa| by Lemma 11.6

= ±
∏

χ∈Ĝ
χ6=1

−1
2

τ(χ)L(1, χ) by (4)

= ±2−(p−3)/2
∏

χ∈Ĝ
χ6=1

τ(χ)
∏

χ∈Ĝ
χ 6=1

L(1, χ)

= ±2−(p−3)/2
√
|dQ(ζ)+ |

2(p−1)/2hQ(ζ)+RegQ(ζ)+

2
√
|dQ(ζ)+ |

by (3) & Th. 11.7.(3)

= ±hQ(ζ)+RegQ(ζ)+ .

Since Reg({ξa}) and hQ(ζ)+RegQ(ζ)+ are positive, it follows that

Reg({ξa}) = hQ(ζ)+RegQ(ζ)+

as required. ¤
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