Algebraic number theory LTCC 2008

Lecture notes, Part 4

10. CYCLOTOMIC FIELDS

Let n € N and ¢, = exp(2wi/n) € C. Then (, is a primitive n-th root of unity,
i.e. ¢, is a root of unity which has order n. The algebraic number fields Q(¢,,) for
n € Nare called cyclotomic fields. If m | n then ¢, = (¢,)™™ € Q(¢,) and therefore
Q(¢m) € Q(¢)- Note that if n is odd, then (o, = —(C,)™TD/2 € Q(¢,) and hence
Q(¢2n) = Q(¢n). We can therefore assume that n is either odd or divisible by 4, i.e.
that n # 2 (mod 4). To avoid the trivial case Q(¢1) = Q we will also assume that

n # 1.
Theorem 10.1. Let n > 1 be an integer and assume that n # 2 (mod 4).
(1) [Q(&) : Q) = ¢(n) where ¢ is Euler’s ¢-function.
(2) The field Q(¢n) is totally complex, i.e. the image of every embedding o :

Q(¢n) — C is not contained in R.
(3) The group of roots of unity in Q(¢,) is

{0 <i<n—1} ifnis odd,
) = {¢¢:0<i<n-—1} if n is divisible by 4.
(4) 1,60, 3., 21 s an integral basis of the ring of integers of Q((,).
Proof. (1) See [1, Theorem 2.5].

(2) If 0 : Q(¢,) — C is any embedding then o(¢,) ¢ R because o({,) is an
element of order n in C* but the only elements of finite order in R* are
+1.

(3) Exercise.

(4) See [1, Theorem 2.6]. O

Iface Q(¢n) C C then the complex conjugate @ also lies in Q({,) because
Co = ¢;' € Q(¢n). Therefore complex conjugation induces an automorphism of
the field Q(¢,). We define Q(¢,)" to be the fixed field of Q(¢,) under complex
conjugation, i.e.

Q¢)" ={a € Q(¢n) : T =0}
The field Q(¢,)™ is called the mazimal real subfield of Q((y)-

Theorem 10.2. Let n > 1 be an integer and assume that n £ 2 (mod 4).
(1) [Q(Gn) : Q)] =2 and [QG)" : Q] = 9(n)/2.
(2) The field Q(Cn)T is totally real, i.e. the image of every embedding o :
Q(¢n)™ — C is contained in R.
(3) The group of roots of unity of Q(¢n)™ is pgc,y+ = {£1}.
(4) 1,0 + G (G + G2 (Go + NP2 s an integral basis of the
rings of integers of Q(¢,)™T.

Proof. (1) Complex conjugation generates a subgroup of order 2 of the Galois

group Gal(Q(¢,)/Q), therefore [Q(¢,,) : Q(¢n)T] = 2 by Galois theory. From
this [Q(¢,) T : Q] = ¢(n)/2 follows because

[Q¢n) : QG) ]+ [QG) T : Q= [QG) : Q) = b(n).
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(2) Let 0 : Q({y)T — C be an embedding. Then o can be extended to an
embedding ¢’ : Q(¢,) — C. Since ¢’(¢,) is a primitive n-th root of unity
in C, it follows that ¢’(¢,) = (% for some integer a with (a,n) = 1. Hence
0'(Cn) =C2 =" =0'(¢; ") = 0/((n). This implies that o/ (a) = o' (@) for
all & € Q(¢,) because ¢, generates Q((,). Therefore o(a) = o(a) for all
a € Q(¢,)T. This shows that o(Q(¢,)T) C R, so o is a real embedding.

(3) This is obvious since Q(¢,,)" is a subfield of R and {£1} are the only roots
of unity in R.

(4) See [1, Proposition 2.16]. O

As before let n > 1 be an integer with n £ 2 (mod 4). To simplify the notation
we now write K = Q(¢,,) and K™ = Q({,)". We want to study the relation between
the unit groups of Ry + and of Rg. It is clear that R, is a subgroup of Ry because
R+ C Rk The field K has no real embeddings and ¢(n) complex embeddings, so
by Dirichlet’s unit theorem we have

R;(( o LK X Z¢(n)/2_l.
The field K+ has ¢(n)/2 real embeddings and no complex embeddings, so by Dirich-
let’s unit theorem we have
RY, = {£1} x z¢M/271,

Hence the groups Ry, and Ry have the same rank. This implies that R}, has
finite index in Rj. More precisely we have the following result.

Theorem 10.3. Let K = Q((,) and KT = Q((,)T where n > 1 and n # 2
(mod 4). Then

1 ifn is a prime power,

RY uxRY. ] =
[ KK K+] {2 otherwise.

Proof. See [1, Theorem 4.12 and Corollary 4.13]. O

Next we consider the relation between the ideal class groups and class numbers of
K™ and K. There exists a canonical map I(K*) — I(K) which sends a fractional
ideal A € I(K™) to the fractional ideal A - Rx € I(K), i.e. to the fractional
ideal of K generated by A. A principal fractional ideal of KT is mapped to a
principal fractional ideal of K, hence we obtain an induced map of ideal class
groups CI(K*) — CI(K).

Theorem 10.4. Let K = Q((,) and KT = Q(¢,)" where n > 1 and n # 2
(mod 4). Then the canonical map Cl(K1) — CI(K) is injective. In particular the
class number of Kt divides the class number of K.

Proof. See [1, Theorem 4.14]. O

11. CYCLOTOMIC UNITS
Let n > 1 be an integer which satisfies n # 2 (mod 4). Let ¢ = ¢, = exp(2mi/n).

For an integer a which is prime to n we define

g = S € Q).

¢ —
Lemma 11.1. For every a € Z with (a,n) = 1, the element g, is a unit in the ring
of integers Rgc)-

Proof. Let a’ is any positive integer such that a = a’ (mod n). Then
¢ -1

S g,

Ja = Yo' =
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This shows that g, € Rg(¢). Since (a,n) = 1 there exists b € N such that ab =1
(mod n). Hence ¢ = (¢*)® and so

-1 C —1 (Ca)b -1 a\b—1 a\b—2 a
_ _ _ 1.
9o =1~ a1 (C)+ () "+ "+
This shows that g, ! € Ry g

Next we construct units of the ring of integers of the maximal real subfield Q(¢)*.
For a € Z with (a,n) = 1 we define
28" 1

_ ~(1—a)
= (0,

Note that ¢(!=%/2 lies in the field Q(¢) because if n is odd then ¢/2 € Q(¢) and if n
is divisible by 4 then the assumption (a,n) = 1 implies that the exponent (1 —a)/2
is even. Now ¢(1=®)/2 ¢ B S RQ(C and L ¢ RX . by Lemma 11.1, thus &, is

Q(¢)
a unit of Rg(). Since
= _ —(-ay2 1
ga C C_l _ 1
_ (a2 ¢ (1-¢%)
- (1-90)
=&a

it follows that &, lies in the maximal real subfield Q(¢)™, hence &, € R Q)+

To simplify the presentation we now restrict to the case where n = p is an odd
prime number. We define the group of cyclotomic units of Q((,) to be the subgroup
of RQ(C generated by the roots of unity pg(c,) and by the units g, for all a € Z

with (a, p) = 1. We denote this group by C. We define the group of cyclotomic
units of Q(¢,)™ to be the subgroup of R(XD(C )+ generated by —1 and by the units &,

for all a € Z with (a,p) = 1. We denote this group by C™.
Lemma 11.2. Let p be an odd prime number. Then

X X

Foyr o Fawy
c+ c
For the proof of Lemma 11.2 we will need the following result.

Lemma 11.3. The ideal (1 — () is a prime ideal of Rg(c,) and (1 — )P~ = (p).
Proof of Lemma 11.3. The polynomial X”—1 has the roots ¢, fora =0,1,...,p—1,
hence XP —1 = Hg;é(X — ¢%). Dividing this equation by X — ¢ gives

p—1
Xp—1+Xp—2+...+X—|—1:H(X—Cg)-

a=1

Letting X = 1 shows that p = HZ;}(l —¢3). Now for every a = 1,2,...,p — 1 we
know from Lemma 11.1 that 1 — (7 = unit- (1 — (), therefore p = unit - (1 — )Pt
From this we obtain the equation of principal ideals (p) = (1 — (,)?~! which proves
the second statement of the lemma. Taking the norm of these ideals gives p?P~! =
N((p)) =N((1—¢)P ') =N((1 - (p))p_l. Hence N((1 — ¢,)) = p which implies
that (1 — () is a prime ideal. O

Proof of Lemma 11.2. Let f : RQ(C o R@(C )/C’ be the canonical homomor-
phism. We will show that f is surjective and has kernel CT.

First we show that ker(f) = CT. It is clear that C*T C ker(f). Conversely let
a € RQ(C )+ be in the kernel of f. Then a € C, ie. a = ¢ - gFlgt! gffrl for

a1 Jay -
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some € € NQ(( ) and integers aj,as,...,a, which are prime to p. It follows that

f f fil for some €’ € pug(c,). Now a € RQ(C n andf 5 e
RQ(C )+ implies that S RQ(C )+ hence ¢’ € {£1}. This shows that « € C+ as
claimed.

Next we prove the surjectivity of f. Let a € R>< &) Define € € R by €=
a/@. Then for every embedding o : Q((,) — C we have lo(e)] = |o(a )\/|0( ) =1
because o(@) = o(a) (compare the proof of Theorem 10.2.(2)). Now the same
argument as in the proof of Lemma 6.8 shows that ¢ must have finite order, i.e.
€ € ug(c,)- Hence e = £ for some a € Z.

Suppose that a/a =& = —(7. Since 1,(, ..., 4117372 is an integral basis of Rg,),
we can write & = ag +a1(, + -+ - + ap,gcg_? Modulo the ideal (1 — (,) we have

» = Gp for all i € Z, hence

a = ap + ale 4+ ap_2<1();0—2)
ap +ag +- -+ ap—2
ao +algl N +ap_2g(p*2)

=«

So 2a = 0 modulo (1 — (), i.e. 2a € (1 — (). Since (1 — () is a prime ideal and
2 ¢ (1—¢,) (because otherwise 2P~! € (1 —(,)P~! = (p) and thus p | 2P~ which is
impossible since p is odd) this implies & € (1 — (). This is a contradiction because
« is a unit and therefore cannot be contained in the prime ideal (1 — ().

Hence a/a = ¢ = +(;. Let b € Z be such that 2b = a (mod p). Let 3 = C;ba.

Then 8 = gba =0, ie B € R@(C )+ and since (71’ € C we have f(f) =a-C €
Q(C / C. This completes the proof of the surjectivity of f. |

Theorem 11.4. Let p be an odd prime number. The cyclotomic units CT of Q(¢,)™
have finite index in the full group of units RS(C;;)*’ and

[Rge,y+ €1 = hoe,)+
where hoc,)+ is the class number of Q(¢,)"

Remark 11.5. One can define a group of cyclotomic units for any cyclotomic field
Q(¢,) and its maximal real subfield Q(¢,)™, and suitable versions of Theorem 11.4
hold for all cyclotomic fields. See [1, §8.1].

Sketch of proof of Theorem 11.4. To simplify the notation we write ¢ = (,. Recall
that [Q(¢)" : Q] = (p—1)/2 and RX o+ = ~ (11} x ZP=3)/2,
In §6 we defined a homomorphism A RX(O+ — R(P=1/2 1y

M) = (loglo1 ()], loglo-1)/2(2)]),

where 01,...,00_1y/2 : Q(¢)* — R are the embeddings of Q(¢)*. The kernel of A
is pg(c)+ = {£1} and the image is a free abelian group of rank (p —3)/2.
It is not difficult to see that A induces an isomorphism

O Boor o Mgr)
Cr o ACT)

Since C'* is generated by +1 and &a,&s,...,§(p—1)/2, it follows that A(CT) is gen-
erated by )‘(52)’ )‘(53)7 ERE) )‘(g(p—l)/Q)’
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We define the regulator Reg({&,}) of the units £2,&3,...,£;—1)/2 to be the abso-
lute value of the determinant of any (p —3)/2 x (p — 3)/2-minor of the matrix with
columns A(§2), ..., AM(§p—1)/2). We will show that
(2) Reg({€a}) = ho)+Regge)+
Equation (2) implies that Reg({£,}) # 0 and therefore that A\(C*) has rank (p —
3)/2. This implies that A(C") has finite index in A(R6(<)+). From the definitions of

Regg )+ and Reg({&.}) it is not difficult to see that the index [)\(R(S(O+) s A(CT)]
can then be computed as a quotient of regulators
IR 1) : MC)] = Reg({€0})/Regg o+
The isomorphism (1) and equation (2) imply that
[R(E(prr 107 = [A(R(S(C)‘F) MO = haeo)+
which completes the proof of Theorem 11.4.

Let G be the group (Z/pZ)* /{#1}. We write G for the group of characters of
G, i.e. the group of homomorphisms G — C*. If y € G and n € N is prime to p
then (the coset of) n is an element of (Z/pZ)* /{£1} = G, thus x(n) is defined. If
n € N is divisible by p then we define x(n) = 0. In this way we can consider y as a
function x : N — C.

Lemma 11.6. We have

p—1
Reg({ea}) = + [T 5 3 x(a)loglt — "]
ng; a=1
X

Proof. This follows from a tricky computation of the determinant defining Reg({£,}).
See [1, Proof of Theorem 8.2]. O

Let x € G. We define the Dirichlet L-function L(s,x) by
0 x(n) if 1
R b
¢(2) if x =1,

where z € C with Re(z) > 1. Here ((z) is the Riemann zeta function. We define
the Gauss sum 7(x) by

) = {1 oy x(a)exp(2mia/p) if x # 1,

if x =1.

The following theorem summarises the relevant properties of the Dirichlet L-functions
and Gauss sums.

Theorem 11.7. (1) Let Gg(ey+(2) be the Dedekind zeta function of Q(¢)™.

Then
G+ (2) = ] LGz
x€G
(2) If x € G\ {1} then the series L(z,x) converges at z =1 and
(0
L(1,x) = Ty ZY(G) log|1 —¢“|.
a=1
(3) We have
11 700 = /ldg)+]

xe@
where docy+ is the discriminant of Q(¢)".
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(4) If x € G\ {1} then 7(x)7(X) = p-
Proof. (1) See [1, Theorem 4.3].
(2) See [1, Theorem 4.9].
(3) See [1, Corollary 4.6].
(4) This follows from [1, Lemmas 4.7 and 4.8]. O

From Theorem 11.7.(1), the analytic class number formula (Theorem 9.4.(3))
and the fact that at z = 1 the Riemann zeta function has a simple pole with residue
1, we deduce that

(3) 20=D/2hg )+ Reggqe)+

=[] £,x).
24/ldoco)+ | e
x#1
If x € G\ {1} then by parts (2) and (4) of Theorem 11.7 we have

p—1
U S TR -
@ 2 @) loglt =€) = 5 L(1,X) = =GO LX)
Hence
122
Reg({a}) =+ H 5 ZX(G) log|1 — ¢ by Lemma 11.6
x€G a=1
x#1 1
==[[ 5L by (4)
xEG‘
x#1
=272 [T 00 [T L%
XGG xeé‘
x#1 x#1

o(r—1)/2p, Re
=427 =3/2 fldg .| QOTTEAOT 1y (3) & Th. 11.7.(3)

24/ldoce)+]

Since Reg({£q}) and hq¢)+Regg(c)+ are positive, it follows that

Reg({€a}) = hg(o)+Reggg)+
as required. -

= Fho(¢)+ Regg(g)+-
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