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Lecture notes, Part 5

12. Absolute values on fields

We write R≥0 for the set of non-negative real numbers.

Definition 12.1. Let K be a field. An absolute value on K is a function

| | : K → R≥0

that satisfies the following conditions.
(1) |x| = 0 if and only if x = 0.
(2) |xy| = |x| · |y| for all x, y ∈ K.
(3) |x + y| ≤ |x|+ |y| for all x, y ∈ K.

We say that an absolute value | | on K is non-archimedean if it satisfies the
following strengthening of (3).

(3’) |x + y| ≤ max{|x|, |y|} for all x, y ∈ K.
We say that an absolute value | | on K is archimedean if it is not non-archimedean.

Some authors use the word norm instead of absolute value. If | | is an absolute
value on K then one easily sees that |1| = 1 and |−x| = |x| for all x ∈ K.

For any field K the function |x| = 0 if x = 0 and |x| = 1 if x 6= 0 is a non-
archimedean absolute value. We call this the trivial absolute value and will in
general exclude it in the following.

Note that if the field K contains Z (i.e. K has characteristic 0) and | | is a non-
archimedean absolute value on K, then for every n ∈ N ⊂ K we have |n| ≤ 1 (this
follows by induction using |n| = |(n− 1) + 1| ≤ max{|n− 1|, |1|}).

The usual absolute value |x+ iy| =
√

x2 + y2 is an example of an absolute value
on the field C. This absolute value is archimedean (because |2| = 2 > 1 shows that
it cannot be non-archimedean).

Lemma 12.2. Let K be a field and | | an absolute value on K. Then the function
d : K × K → R≥0 defined by d(x, y) = |x − y| is a metric on K. We call d the
metric induced by the absolute value | |.
Proof. Clear. ¤

If | | is a non-archimedean absolute value, then the induced metric satisfies the
ultrametric inequality

d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈ K.

A Cauchy sequence in K is a sequence a1, a2, a3, · · · ∈ K with the property that
for every ε > 0 there exists an N ∈ N such that d(ai, aj) ≤ ε for all i, j ≥ N . A
subset S ⊆ K is called dense if every non-empty open set in K contains an element
from S.

Definition 12.3. Let K be a field with an absolute value | |. We call K complete
if every Cauchy sequence in K converges.

Theorem 12.4. Let K be a field with an absolute value | | : K → R≥0. Then there
exists a completion K̂ of K, i.e. a field extension K̂/K together with an absolute
value | | : K̂ → R≥0 which extends the absolute value on K such that

(1) K̂ is complete,
(2) K is dense in K̂.
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This completion K̂ is unique up to unique isomorphism.

The idea of the proof is to construct the completion K̂ as the quotient of the
ring of Cauchy sequences in K modulo the ideal consisting of Cauchy sequences
that converge to 0. For details see for example [2, §3.2] and [3, I.4] (in the special
case K = Q) and [1, II.3] (in the general case).

Definition 12.5. Two absolute values | |1 and | |2 on a field K are called equivalent
if there exists a positive real number α such that |x|1 = |x|α2 for all x ∈ K.

We note that two equivalent absolute values on a field K induce equivalent met-
rics (i.e. a sequence is Cauchy with respect to one metric if and only if it is Cauchy
with respect to the other metric). It follows that two equivalent absolute values
give rise to the same completion of K.

13. Absolute values on number fields

Now let K be an algebraic number field. In this case it is possible to give
a complete classification of all absolute values on K. We begin by constructing
certain archimedean and non-archimedean absolute values on K.

Let σ : K → C be an embedding of K (i.e. an injective ring homomorphism
from K to C). We define an absolute value | |σ on K by |x|σ = |σ(x)| where
|σ(x)| is the usual absolute value of the complex number σ(x). The absolute value
| |σ is archimedean. Note that | |σ = | |σ where σ denotes the complex conjugate
embedding. Using this construction we obtain r + s archimedean absolute values
on K where r is the number of real embeddings and 2s is the number of complex
embeddings of K.

Now let P be a non-zero prime ideal of the ring of integers RK . We want
to define an absolute value | |P on K. First let x ∈ K×. By Theorem 5.2 the
principal fractional ideal (x) of RK can be written as (x) = P eQe1

1 · · ·Qer
r where

Q1, . . . , Qr are non-zero prime ideals different from P and e, e1, . . . , er ∈ Z. We
define |x|P = N(P )−e. For x = 0 we define |0|P = 0.

Lemma 13.1. | |P is a non-archimedean absolute value on K.

Proof. Conditions (1) and (2) of an absolute value are clearly satisfied. It remains
to prove condition (3’). We first observe that if x = 0 or y = 0 or x + y = 0 then
condition (3’) is clearly true, so we can assume that x, y, x + y ∈ K×. We write
(x) = P eQe1

1 · · ·Qer
r , (y) = P fQf1

1 · · ·Qfr
r and (x + y) = P gQg1

1 · · ·Qgr
r . Then

x ∈ (x) ⊆ Pmin{e,f}Qmin{e1,f1}
1 · · ·Qmin{er,fr}

r ,

y ∈ (y) ⊆ Pmin{e,f}Qmin{e1,f1}
1 · · ·Qmin{er,fr}

r .

It follows that
x + y ∈ Pmin{e,f}Qmin{e1,f1}

1 · · ·Qmin{er,fr}
r ,

hence P gQg1
1 · · ·Qgr

r ⊆ Pmin{e,f}Qmin{e1,f1}
1 · · ·Qmin{er,fr}

r . From this we can de-
duce that g ≥ min{e, f}, g1 ≥ min{e1, f1}, . . . , gr ≥ min{er, fr}. It follows that

|x + y|P = N(P )−g ≤ N(P )−min{e,f}

= N(P )max{−e,−f}

= max{N(P )−e,N(P )−f} = max{|x|P , |y|P }.
This completes the proof of condition (3’). ¤

Hence for each non-zero prime ideal P of RK we obtain a non-archimedean
absolute value | |P on K.
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Theorem 13.2. Let K be an algebraic number field. Then every non-trivial ab-
solute value on K is equivalent to precisely one of either the archimedean absolute
values | |σ or the non-archimedean absolute values | |P .

Proof. See [1, Theorem 9] for the case K = Q and [1, p. 112] for the general case. ¤

It is often useful to consider the archimedean and non-archimedean absolute
values of a number field together. We let S(K) denote the set consisting of the
non-zero prime ideals of RK , the real embeddings σ : K → R, and one embedding
from each pair of complex conjugate embeddings σ, σ : K → C. If v ∈ S(K) we
write | |v for the corresponding absolute value of K. By Theorem 13.2 there exists
a bijection between S(K) and equivalence classes of non-trivial absolute values on
K.

If v ∈ S(K) then we let Kv denote the completion of K with respect to | |v. The
extension of | |v to an absolute value on Kv will be denoted by the same symbol
| |v. One can show that if the absolute value | |v is non-archimedean then the image
of the absolute value on K is equal to the image of the absolute value on K̂, i.e.
|K|v = |Kv|v ⊆ R≥0.

For the field K = Q the non-zero prime ideals of RK = Z correspond to the prime
numbers and we write | |p instead of | |(p). The completion Qp = Q(p) is called
the field of p-adic numbers. We often use the symbol ∞ to denote the archimedean
absolute value on Q, i.e. | |∞ is the usual absolute value on Q. The completion Q∞
is the field of real numbers R.

Theorem 13.3 (Product formula). For all x ∈ Q× we have
∏

v∈S(Q)

|x|v = 1.

Proof. Let x ∈ Q× and consider the prime factorisation x = ±pe1
1 · · · pen

n where
p1, . . . , pn are distinct prime numbers and e1, . . . , en ∈ Z. Then

|x|p =





1 if p 6= pi

p−ei
i if p = pi for i = 1, . . . , n

pe1
1 · · · pen

n if p = ∞.

Hence
∏

v∈S(Q)

|x|v =

(
n∏

i=1

p−ei
i

)
· pe1

1 · · · pen
n = 1. ¤

We remark that there exists a similar product formula for any number field K,
however one has to use a different normalisation for | |v if v is a complex embedding
of K. See [1, III.1].

14. Hensel’s lemma

Hensel’s lemma allows us to prove the existence of roots of polynomials in fields
which are complete with respect to a non-archimedean absolute value. However to
simplify the presentation we will only consider the fields Qp for some prime number
p. We define

Zp = {x ∈ Qp : |x|p ≤ 1}.
It is easy to see that Zp is a ring. It is called the ring of p-adic integers. An
element x ∈ Zp \ {0} is a unit in Zp if and only if x−1 ∈ Zp, i.e. |x−1|p ≤ 1. Since
|x|p · |x−1|p = 1 this implies that x ∈ Zp is a unit if and only if |x|p = 1. The set of
all non-units in Zp is

Zp \ Z×p = {x ∈ Qp : |x|p < 1}.
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This set is the unique maximal ideal in the ring Zp. It is a principal ideal with
generator p, because if x ∈ Zp \ Z×p then |x|p ≤ p−1 which implies x = (xp−1) · p
with xp−1 ∈ Zp. In the following we will write a ≡ b (mod pi) for a, b ∈ Zp if
a − b ∈ (pi). So in particular a 6≡ 0 (mod p) means a 6∈ (p) = Zp \ Z×p , i.e. a is a
unit in Zp.

Theorem 14.1 (Hensel’s lemma). Let f(X) = cnXn+· · ·+c1X+c0 be a polynomial
with coefficients in Zp, and let f ′(X) = ncnXn−1+· · ·+c1 be the derivative of f(X).
Let a1 ∈ Zp be such that f(a1) ≡ 0 (mod p) and f ′(a1) 6≡ 0 (mod p). Then there
exists a unique a ∈ Zp such that f(a) = 0 and a ≡ a1 (mod p).

Proof. We will construct a sequence a1, a2, a3, . . . in Zp such that for all i ∈ N we
have

(i) f(ai) ≡ 0 (mod pi),
(ii) ai ≡ ai−1 (mod pi−1) if i ≥ 2.

Clearly a1 satisfies (i) and (ii).
Now assume that we have constructed a1, a2, . . . , ai satisfying (i) and (ii). We

want to find ai+1 in the form ai+1 = ai + λpi for some λ ∈ Zp. Note that

f(ai + λpi) =
n∑

k=0

ck(ai + λpi)k

=
n∑

k=0

ck(ak
i + kak−1

i λpi + terms divisible by pi+1)

≡
n∑

k=0

ckak
i +

(
n∑

k=0

kckak−1
i

)
λpi (mod pi+1)

= f(ai) + f ′(ai)λpi.

Hence we will have f(ai + λpi) ≡ 0 (mod pi+1) if and only if

(1) f(ai) + f ′(ai)λpi ≡ 0 (mod pi+1).

By assumption f(ai) ≡ 0 (mod pi), hence (1) is equivalent to

(2)
f(ai)

pi
+ f ′(ai)λ ≡ 0 (mod p).

Now ai ≡ a1 (mod p) implies that f ′(ai) ≡ f ′(a1) (mod p) and hence f ′(ai) 6≡ 0
(mod p). Therefore f ′(ai) is a unit in Zp, so if we set

λ = −f(ai)
pi

· f ′(ai)−1

then λ ∈ Zp satisfies (2). Therefore ai+1 = ai + λpi satisfies (i) and (ii).
Now by (ii) the sequence a1, a2, a3, . . . is a Cauchy sequence in Zp. Hence we

can define a = limi→∞ ai ∈ Zp. Then (again by (ii)) we have a ≡ a1 (mod p).
Furthermore f(a) = f(limi→∞ ai) = limi→∞ f(ai) = 0 where the last equality
comes from (i).

The uniqueness of a follows by observing that if a′ ∈ Zp satisfies f(a′) = 0 and
a′ ≡ a1 (mod p) then a′ must satisfy a′ ≡ ai (mod pi) for all i ∈ N, and hence
a′ = limi→∞ ai = a. The details are left to the reader. ¤

15. Local-global principles

Let K be an algebraic number field. It is often easier to solve problems in the
completions Kv of K. So if we are given a question about K then we can first try
to answer the question in Kv for all v ∈ S(K) and then try to deduce the answer
for the original question in K. In this context we call a problem for K a global
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problem and the corresponding problems in Kv local problems. We first consider
an easy example.

Lemma 15.1. A number x ∈ Q is a square if and only if it is a square in all
completions Qv with v ∈ S(Q).

Proof. It is clear that if x is a square in Q then x is also a square in all Qv.
Conversely assume that x is a square in all Qv. We consider the prime factori-

sation
x = ±

∏
p

pep

where ep ∈ Z and all but finitely many ep are zero. Now if x is a square in Q∞ = R
then x is positive. If p is a prime number and x is a square in Qp then x = y2 with
y ∈ Qp. Let |y|p = p−f with f ∈ Z. Then p−ep = |x|p = |y|2p = p−2f which shows
that ep is even. It follows that

x =

(∏
p

pep/2

)2

. ¤

Let f(X1, . . . , Xn) ∈ K[X1, . . . , Xn] be a polynomial with coefficients in K. If the
equation f(X1, . . . , Xn) = 0 has a solution in K then clearly it also has a solution in
every completion Kv. The converse is in general not true as the following example
shows.

Example 15.2. Let f(X) = (X2−2)(X2−17)(X2−34) ∈ Q[X]. Then the equation
f(X) = 0 has no solutions in Q (because

√
2,
√

17 and
√

34 are irrational). But one
can show that the equation f(X) = 0 has solutions in Q∞ = R (this is clear) and
in Qp for all prime numbers p (this follows from Hensel’s lemma, the details are left
as an exercise).

A quadratic form f(X1, . . . , Xn) ∈ Q[X1, . . . , Xn] is a homogeneous polynomial
of degree 2 with coefficients in Q, i.e. a polynomial of the form

f(X1, . . . , Xn) =
n∑

i=1

ciX
2
i +

∑

1≤i<j≤n

cijXiXj

with ci, cij ∈ Q.

Theorem 15.3 (Hasse-Minkowski). Let f(X1, . . . , Xn) ∈ Q[X1, . . . , Xn] be a qua-
dratic form. The equation

f(X1, . . . , Xn) = 0
has a non-trivial solution in Q if and only if it has a non-trivial solution in Qv for
every v ∈ S(Q).

A proof of Theorem 15.3 can be found in [5, Chapter IV, Theorem 8]. The
Hasse-Minkowski theorem holds not only for Q but for arbitrary number fields (see
[4, Chapter VI] for a proof).

As a final example of a local-global principle we consider the Dedekind zeta
function. Let K be an algebraic number field. Recall the Euler product for the
Dedekind zeta function

ζK(z) =
∏

P⊆RK

P 6={0}

1
1−N(P )−z

where the product runs over all non-zero prime ideals P of RK (see Theorem 9.2).
Now each Euler factor 1

1−N(P )−z depends only on the completion KP and not on
K itself. Indeed, if RP = {x ∈ KP : |x|P ≤ 1} and MP = {x ∈ KP : |x|P < 1} then
one has an isomorphism RK/P ∼= RP /MP and hence N(P ) = |RK/P | = |RP /MP |.
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Therefore the Dedekind zeta function can be considered as an object which encodes
local information from all completions KP . But the analytic class number formula

lim
z→1

(z − 1)ζK(z) =
2r(2π)shKRegK

|µK |
√
|dK |

shows that from ζK(z) one can then obtain some interesting global information
about the number field K.

The function
ZK(z) =

(
π−z/2Γ(z/2)

)r · (2(2π)−zΓ(z)
)s · ζK(z)

=
(
π−z/2Γ(z/2)

)r · (2(2π)−zΓ(z)
)s ·

∏

P⊆RK

P 6={0}

1
1−N(P )−z

which we used to formulate the functional equation (see Theorem 9.4.(2)) can also
be interpreted in terms of completions: for every non-archimedean completion KP

of K we have the Euler factor 1
1−N(P )−z , and for every archimedean completion Kv

of K we have the Euler factor π−z/2Γ(z/2) or 2(2π)−zΓ(z) depending on whether
Kv is real or complex.
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