Algebraic number theory

Problem Sheet 2

- (1) Let $m \neq 1$ be a square-free integer. Compute the discriminant $d_{\mathbb{Q}(\sqrt{m})}$.
- (2) Let $m \not\equiv 1 \pmod{4}$ be a square-free integer and let p be an odd integer that does not divide m. Let (p) denote the principal ideal of $R_{\mathbb{Q}(\sqrt{m})}$ generated by p. Show that if the congruence $X^2 \equiv m \pmod{p}$ is solvable then $(p) = P_1P_2$ for two distinct prime ideals P_1 and P_2 of $R_{\mathbb{Q}(\sqrt{m})}$. [Hint: Consider $P_1 = (p, \sqrt{m} + a)$ and $P_2 = (p, \sqrt{m} - a)$ where $a \in \mathbb{Z}$ is a solution of $X^2 \equiv m \pmod{p}$.]
- (3) (a) Let K be an algebraic number field and A a non-zero ideal of R_K . Show that if $\mathbf{N}(A)$ is a prime number then A is a prime ideal.
 - (b) Give an example of an algebraic number field K and non-zero prime ideal A of R_K such that $\mathbf{N}(A)$ is not a prime number.
- (4) Prove that $\lim_{z \to 1+} (z-1)\zeta(z) = 1$ where $z \to 1+$ means that the limit $z \to 1$ is taken over real numbers z > 1.
- (5) Let n > 1 be an integer such that $n \not\equiv 2 \pmod{4}$. Show that if n has at least two distinct prime factors then $1 \zeta_n$ is a unit in $R_{\mathbb{Q}(\zeta_n)}$ [Hint: For every m > 1 show that $m = \prod_{i=1}^{m-1} (1 \zeta_m^i)$. Apply this to m = n and to $m = p^a$ for every prime $p \mid n$ where p^a is the highest power of p dividing n.]
- (6) Let n > 1 be an integer such that $n \not\equiv 2 \pmod{4}$. Show that

$$\mu_{\mathbb{Q}(\zeta_n)} = \begin{cases} \{\pm \zeta_n^i : 0 \le i \le n-1\} & \text{if } n \text{ is odd,} \\ \{\zeta_n^i : 0 \le i \le n-1\} & \text{if } n \text{ is divisible by 4.} \end{cases}$$

- (7) (a) Show that $\mathbb{Q}(\zeta_5)^+ = \mathbb{Q}(\sqrt{5})$.
 - (b) Compute $R^{\times}_{\mathbb{Q}(\zeta_5)^+}$, i.e. the group of units of the ring of integers of $\mathbb{Q}(\zeta_5)^+$. [Hint: Use question (7) on Problem Sheet 1 to compute a fundamental unit of $\mathbb{Q}(\sqrt{5})$.]
 - (c) Compute C^+ , i.e. the group of cyclotomic units of $\mathbb{Q}(\zeta_5)^+$.
 - (d) Use Theorem 11.4 to compute the class number $h_{\mathbb{Q}(\zeta_5)^+}$.
- (8) Show that the equation $X^{p-1} = 1$ has p-1 solutions in \mathbb{Q}_p .
- (9) Prove the following generalisation of Hensel's lemma: Let p be a prime number and $f(X) \in \mathbb{Z}_p[X]$. Suppose that $a_0 \in \mathbb{Z}_p$ satisfies

$$\begin{aligned} f'(a_0) &\equiv 0 \pmod{p^M}, \\ f'(a_0) &\not\equiv 0 \pmod{p^{M+1}}, \\ f(a_0) &\equiv 0 \pmod{p^{2M+1}}, \end{aligned}$$

for some $M \ge 0$. Show that there exists a unique $a \in \mathbb{Z}_p$ such that f(a) = 0and $a \equiv a_0 \pmod{p^{M+1}}$.

(10) Let $f(X) = (X^2 - 2)(X^2 - 17)(X^2 - 34)$. Show that the equation f(X) = 0 has solutions in \mathbb{R} and in \mathbb{Q}_p for every p, but has no solutions in \mathbb{Q} .