
Algebraic number theory LTCC 2008

Solutions to Problem Sheet 1

(1) If α is algebraic over Q then α satisfies an equation of the form

αn + cn−1α
n−1 + · · ·+ c1α + c0 = 0

where c0, c1, . . . , cn−1 ∈ Q. Since α 6= 0, we can assume that c0 6= 0.
Multiplying the equation by c−1

0 α−n gives

c−1
0 + c−1

0 cn−1α
−1 + · · ·+ c−1

0 c1(α−1)n−1 + (α−1)n = 0,

which shows that α−1 is algebraic over Q.

(2) Since α ∈ K and K is an algebraic number field, it follows that α is algebraic
over Q and therefore satisfies an equation of the form

αd + cd−1α
d−1 + · · ·+ c1α + c0 = 0

where c0, c1, . . . , cd−1 ∈ Q. Let n ∈ N be a common denominator of the ci,
i.e. nc0, nc1, . . . , ncd−1 ∈ Z. Multiplying the equation by nd gives

(nα)d + cd−1n(nα)d−1 + · · ·+ c1n
d−1(nα) + c0n

d = 0.

Since cd−1n, . . . , c1n
d−1, c0n

d ∈ Z, this shows that nα is integral over Z, i.e.
nα ∈ RK .

(3) We assume that m 6= 1 is a square-free integer such that m ≡ 1 (mod 4).
Let K = Q(

√
m) and RK the ring of integers of K.

If α ∈ Z+Z 1+
√

m
2 then α = a + b 1+

√
m

2 with a, b ∈ Z. One easily checks
that α is a root of the monic polynomial

X2 − (2a + b)X +
(

a2 + ab + b2 1−m

4

)
,

and the assumption m ≡ 1 (mod 4) implies that the coefficients of this
polynomial are in Z. This shows that α ∈ RK .

Conversely assume that α ∈ RK . Write α = a+b
√

m with a, b ∈ Q. Then
as in the case m 6≡ 1 (mod 4) it follows that 2a = α + τ(α) ∈ RK ∩Q = Z
and a2 −mb2 = ατ(α) ∈ RK ∩Q = Z.

If a ∈ Z then mb2 ∈ Z which implies b ∈ Z because m is square-free, so
α = a + b

√
m = (a− b) + 2b 1+

√
m

2 ∈ Z+ Z 1+
√

m
2 .

If a 6∈ Z then a = c/2 with c ∈ Z odd, so c2 ≡ 1 (mod 4). From
(c/2)2−mb2 ∈ Z it follows that c2−m(2b)2 ∈ Z and moreover c2−m(2b)2 ≡
0 (mod 4). Now m(2b)2 ∈ Z implies 2b ∈ Z because m is square-free. The
congruences c2 −m(2b)2 ≡ 0 (mod 4), c2 ≡ 1 (mod 4) and m ≡ 1 (mod 4)
imply that (2b)2 ≡ 1 (mod 4), so 2b is odd. Since c and 2b are odd, it follows
that a−b = c−2b

2 is an integer. Therefore α = a+b
√

m = (a−b)+2b 1+
√

m
2 ∈

Z+ Z 1+
√

m
2 .

(4) Suppose that A is a prime ideal and that I, J are ideals such that IJ ⊆ A.
If I ⊆ A we are finished. So suppose that I 6⊆ A, i.e. there exits α ∈ I \A.
Now if β ∈ J then αβ ∈ IJ ⊆ A, hence α ∈ A or β ∈ A since A is prime.
Since α 6∈ A, it follows that β ∈ A. Hence J ⊆ A.

Conversely assume that A is an ideal that has the property that IJ ⊆ A
implies I ⊆ A or J ⊆ A. Let α, β ∈ R be such that αβ ∈ A. Then
(αβ) ⊆ A. But (αβ) = (α)(β), so (α) ⊆ A or (β) ⊆ A. Hence α ∈ A or
β ∈ A. This shows that A is a prime ideal.
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(5) Step 1: A2 = (9, 7 +
√−14).

We have
A2 =

(
3 · 3, 3 · (1 +

√−14), (1 +
√−14) · (1 +

√−14)
)

= (9, 3 + 3
√−14,−13 + 2

√−14).

From this we see that
9 = 1 · 9 + 0 · (3 + 3

√−14) + 0 · (−13 + 2
√−14) ∈ A2,

7 +
√−14 = (−1) · 9 + 1 · (3 + 3

√−14) + (−1) · (−13 + 2
√−14) ∈ A2,

hence (9, 7 +
√−14) ⊆ A2. Conversely, we have

9 = 1 · 9 + 0 · (7 +
√−14) ∈ (9, 7 +

√−14),

3 + 3
√−14 = (−2) · 9 + 3 · (7 +

√−14) ∈ (9, 7 +
√−14),

−13 + 2
√−14 = (−3) · 9 + 2 · (7 +

√−14) ∈ (9, 7 +
√−14),

hence A2 ⊆ (9, 7 +
√−14).

Step 2: A4 = (5 + 2
√−14).

We have
A4 =

(
9 · 9, 9 · (7 +

√−14), (7 +
√−14) · (7 +

√−14)
)

= (81, 63 + 9
√−14, 35 + 14

√−14).

From this we see that

5 + 2
√−14 = 3 · 81 + (−6) · (63 + 9

√−14) + 4 · (35 + 14
√−14) ∈ A4,

hence (5 + 2
√−14) ⊆ A4. Conversely, we have

81 = (5− 2
√−14) · (5 + 2

√−14) ∈ (5 + 2
√−14),

63 + 9
√−14 = (7−√−14) · (5 + 2

√−14) ∈ (5 + 2
√−14),

35 + 14
√−14 = 7 · (5 + 2

√−14) ∈ (5 + 2
√−14),

hence A4 ⊆ (5 + 2
√−14).

Step 3: A2 is not principal.

We define the norm of α = a+b
√−14 (with a, b ∈ Q) by Nα = a2+14b2.

Then N(αβ) = Nα ·Nβ (easy computation), and Nα ∈ N if α ∈ RK \ {0}.
Now suppose that A2 = (α) with α ∈ RK = Z+ Z

√−14. Then 9 ∈ (α)
implies that 9 = λα for some λ ∈ RK , hence 81 = N(9) = Nλ ·Nα which
shows that Nα | 81. Similarly 7+

√−14 ∈ (α) implies Nα | N(7+
√−14) =

63. This shows that Nα = 1, 3 or 9. Write α = a + b
√−14 with a, b ∈ Z.

Then Nα = a2 + 14b2, so clearly Nα = 3 is impossible. If Nα = 9 then
α = ±3. But clearly 7 +

√−14 6∈ (±3), so Nα = 9 is impossible. Finally
if Nα = 1 then α = ±1 and therefore 1 ∈ (±1) = A2 = (9, 7 +

√−14). So
there exist v, w, x, y ∈ Z such that

1 = (v + w
√−14) · 9 + (x + y

√−14) · (7 +
√−14)

= (9v + 7x− 14y) + (9w + x + 7y)
√−14.

Now 9v + 7x− 14y = 1 and 9w + x + 7y = 0 imply 1 = (9v + 7x− 14y) + 2 ·
(9w+x+7y) = 9 · (v +2w+x) which is impossible. Hence the case Nα = 1
is impossible. This completes the proof that there is no α ∈ RK such that
A2 = (α).

Step 4: hK is divisible by 4.
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Let [A] denote the class of the (fractional) ideal A in the class group
Cl(K). By Step 2 the ideal A4 is principal, thus [A]4 = [A4] is the identity
element in Cl(K). It follows that the order of [A] in Cl(K) divides 4. But
Step 2 shows that the ideal A2 is not principal which implies that [A] and
[A]2 = [A2] are not the identity element in Cl(K). Hence [A] has order 4 in
Cl(K), and this implies that hK = |Cl(K)| is divisible by 4.

(6) Clearly {1,−1,
√−1,−√−1} ⊆ µQ(

√−1).
Conversely assume that ζ ∈ µQ(

√−1). Then ζ ∈ RQ(
√−1) since ζ satisfies

a polynomial equation of the form Xe−1 = 0. So we can write ζ = a+b
√−1

with a, b ∈ Z. Now ζe = 1 implies |ζ|e = 1 where |ζ| = √
a2 + b2 is the usual

absolute value of the complex number ζ, therefore |ζ| = 1. So a2 + b2 = 1
and hence either a = ±1 and b = 0 which gives ζ = ±1, or a = 0 and b = ±1
which gives ζ = ±√−1. This shows µQ(

√−1) ⊆ {1,−1,
√−1,−√−1}.

(7) If K = Q(
√

m) for a square-free integer m > 1, then K is a real quadratic
field, so K has two real embeddings and no complex embeddings, and µK =
{±1}. Therefore by Dirichlet’s unit theorem R×K ∼= {±1}×Z. A unit ε ∈ R×K
is a fundamental unit if and only if it is mapped to a generator of the torsion
free quotient R×K/µK

∼= ({±1} × Z)/{±1} ∼= Z. It follows that there exist
precisely four fundamental units: if ε is one fundamental unit, then the
other three fundamental units are −ε, ε−1 and −ε−1.

Now let ε = x+y
√

m with x, y ∈ Q be a fundamental unit of R×K . Clearly
we must have x 6= 0 and y 6= 0. By Lemma 6.9 we know that N(ε) = (x +
y
√

m)(x−y
√

m) = ±1, so ε−1 = (x+y
√

m)−1 = (±x)+(∓y)
√

m. But it is
clear that of the four fundamental unit ε = x+y

√
m, −ε = (−x)+(−y)

√
m,

ε−1 = (±x) + (∓y)
√

m and −ε−1 = (∓x) + (±y)
√

m precisely one is of the
form a + b

√
m with a > 0 and b > 0.

If ε = a+b
√

m is a fundamental unit with a, b > 0 and εi = x+y
√

m with
i ≥ 2, then obviously x > a and y > b. Hence the fundamental unit ε can
be characterised as the element with minimal a among all units a+b

√
m for

which a and b are positive. Therefore we can find ε by systematically trying
a = 1, 2, 3, . . . (if m 6≡ 1 (mod 4)) or a = 1

2 , 2
2 , 3

2 , . . . (if m ≡ 1 (mod 4))
until we find an a for which there exists an b such that a + b

√
m ∈ R×Q(

√
m)

.

Note that a + b
√

m ∈ R×Q(
√

m)
implies N(a + b

√
m) = a2 −mb2 = ±1, so it

is easy to test whether such a b exists.
In the case m = 7 6≡ 1 (mod 4) we have RQ(

√
7) = Z + Z

√
7. We try

a = 1, 2, 3, . . . , and for each a we then test whether a2 − 7b2 = ±1 has a
solution b ∈ N, i.e. whether (a2∓ 1)/7 is a square of a positive integer. The
first time this is the case is for a = 8 where we find (82 − 1)/7 = 32. Hence
ε = 8 + 3

√
7 is a fundamental unit of Q(

√
7).

Remark: There exists a much more efficient algorithm to find fundamen-
tal units of real quadratic fields by using continued fractions. For details see
for example §5.7 in H. Cohen: A course in computational algebraic number
theory, Springer, 1993.

(8) Choice of (r + s− 1)× (r + s− 1)-minor:
Let v1, . . . , vr+s denote the rows of the matrix in Definition 6.12. We must
show that the absolute value of the determinant of the matrix which is
obtained by omitting the i-th row is independent of i. Recall from the
proof of Lemma 6.10 that for every unit α we have

log|σ1(α)|+ · · ·+ log|σr(α)|+ 2 log|σr+1(α)|+ · · ·+ 2 log|σr+s(α)| = 0.
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Hence v1 + · · ·+ vr+s = (0, . . . , 0). Therefore for every i = 1, . . . , r + s− 1
we have

det




v1

...
vi−1

vi+1

...
vr+s−1

vr+s




= det




v1

...
vi−1

vi+1

...
vr+s−1

−v1 − · · · − vr+s−1




= det




v1

...
vi−1

vi+1

...
vr+s−1

−vi




= ± det




v1

...
vr+s−1


 .

This shows that the absolute value of this determinant is independent of
i. Hence the definition of the regulator does not depend on the choice of
(r + s− 1)× (r + s− 1)-minor.

Choice of order of the embeddings:
Changing the order of the embeddings only permutes the rows of the matrix,
therefore the absolute value of the determinant of an (r+s−1)×(r+s−1)-
submatrix does not change.

Choice (and order) of fundamental units:
Suppose that β1, . . . , βr+s−1 is another system of fundamental units for R×K .
Then λ(α1), . . . , λ(αr+s−1) and λ(β1), . . . , λ(βr+s−1) are both Z-bases of the
free abelian group λ(R×K). Therefore we have λ(βj) =

∑r+s−1
i=1 λ(αi)cij with

cij ∈ Z. If C denotes the matrix (cij)1≤i,j≤r+s−1 then

(λ(β1), . . . , λ(βr+s−1)) = (λ(α1), . . . , λ(αr+s−1)) · C.

Similarly

(λ(α1), . . . , λ(αr+s−1)) = (λ(β1), . . . , λ(βr+s−1)) ·D
for an (r + s− 1)× (r + s− 1)-matrix D with entries in Z. It follows that
CD is equal to the (r + s − 1) × (r + s − 1) unit matrix. In particular
det(C) det(D) = 1, so det(C) = ±1 since these determinants are integers.
Now the equation

(λ(β1), . . . , λ(βr+s−1)) = (λ(α1), . . . , λ(αr+s−1)) · C.

shows that an (r + s − 1) × (r + s − 1)-minor of the matrix with columns
λ(β1), . . . , λ(βr+s−1) is equal to det(C) times an (r+s−1)×(r+s−1)-minor
of the matrix with columns λ(α1), . . . λ(αr+s−1). Hence the absolute values
of these minors are equal. This shows that the definition of the regulator
does not depend on the choice of system of fundamental units.


