Algebraic number theory

LTCC 2008

Solutions to Problem Sheet 1

(1) If α is algebraic over \mathbb{Q} then α satisfies an equation of the form

$$\alpha^{n} + c_{n-1}\alpha^{n-1} + \dots + c_{1}\alpha + c_{0} = 0$$

where $c_0, c_1, \ldots, c_{n-1} \in \mathbb{Q}$. Since $\alpha \neq 0$, we can assume that $c_0 \neq 0$. Multiplying the equation by $c_0^{-1} \alpha^{-n}$ gives

$$c_0^{-1} + c_0^{-1} c_{n-1} \alpha^{-1} + \dots + c_0^{-1} c_1 (\alpha^{-1})^{n-1} + (\alpha^{-1})^n = 0,$$

which shows that α^{-1} is algebraic over \mathbb{Q} .

(2) Since $\alpha \in K$ and K is an algebraic number field, it follows that α is algebraic over \mathbb{Q} and therefore satisfies an equation of the form

$$\alpha^{d} + c_{d-1}\alpha^{d-1} + \dots + c_{1}\alpha + c_{0} = 0$$

where $c_0, c_1, \ldots, c_{d-1} \in \mathbb{Q}$. Let $n \in \mathbb{N}$ be a common denominator of the c_i , i.e. $nc_0, nc_1, \ldots, nc_{d-1} \in \mathbb{Z}$. Multiplying the equation by n^d gives

$$(n\alpha)^d + c_{d-1}n(n\alpha)^{d-1} + \dots + c_1n^{d-1}(n\alpha) + c_0n^d = 0.$$

Since $c_{d-1}n, \ldots, c_1n^{d-1}, c_0n^d \in \mathbb{Z}$, this shows that $n\alpha$ is integral over \mathbb{Z} , i.e. $n\alpha \in R_K$.

(3) We assume that $m \neq 1$ is a square-free integer such that $m \equiv 1 \pmod{4}$. Let $K = \mathbb{Q}(\sqrt{m})$ and R_K the ring of integers of K.

If $\alpha \in \mathbb{Z} + \mathbb{Z} \frac{1+\sqrt{m}}{2}$ then $\alpha = a + b \frac{1+\sqrt{m}}{2}$ with $a, b \in \mathbb{Z}$. One easily checks that α is a root of the monic polynomial

$$X^{2} - (2a+b)X + \left(a^{2} + ab + b^{2}\frac{1-m}{4}\right),$$

and the assumption $m \equiv 1 \pmod{4}$ implies that the coefficients of this polynomial are in \mathbb{Z} . This shows that $\alpha \in R_K$.

Conversely assume that $\alpha \in R_K$. Write $\alpha = a + b\sqrt{m}$ with $a, b \in \mathbb{Q}$. Then as in the case $m \neq 1 \pmod{4}$ it follows that $2a = \alpha + \tau(\alpha) \in R_K \cap \mathbb{Q} = \mathbb{Z}$ and $a^2 - mb^2 = \alpha \tau(\alpha) \in R_K \cap \mathbb{Q} = \mathbb{Z}$.

If $a \in \mathbb{Z}$ then $mb^2 \in \mathbb{Z}$ which implies $b \in \mathbb{Z}$ because m is square-free, so $\alpha = a + b\sqrt{m} = (a - b) + 2b\frac{1+\sqrt{m}}{2} \in \mathbb{Z} + \mathbb{Z}\frac{1+\sqrt{m}}{2}$.

If $a \notin \mathbb{Z}$ then a = c/2 with $c \in \mathbb{Z}$ odd, so $c^2 \equiv 1 \pmod{4}$. From $(c/2)^2 - mb^2 \in \mathbb{Z}$ if follows that $c^2 - m(2b)^2 \in \mathbb{Z}$ and moreover $c^2 - m(2b)^2 \equiv 0 \pmod{4}$. Now $m(2b)^2 \in \mathbb{Z}$ implies $2b \in \mathbb{Z}$ because m is square-free. The congruences $c^2 - m(2b)^2 \equiv 0 \pmod{4}$, $c^2 \equiv 1 \pmod{4}$ and $m \equiv 1 \pmod{4}$ imply that $(2b)^2 \equiv 1 \pmod{4}$, so 2b is odd. Since c and 2b are odd, it follows that $a - b = \frac{c-2b}{2}$ is an integer. Therefore $\alpha = a + b\sqrt{m} = (a-b) + 2b\frac{1+\sqrt{m}}{2} \in \mathbb{Z} + \mathbb{Z} \frac{1+\sqrt{m}}{2}$.

(4) Suppose that A is a prime ideal and that I, J are ideals such that $IJ \subseteq A$. If $I \subseteq A$ we are finished. So suppose that $I \not\subseteq A$, i.e. there exits $\alpha \in I \setminus A$. Now if $\beta \in J$ then $\alpha\beta \in IJ \subseteq A$, hence $\alpha \in A$ or $\beta \in A$ since A is prime. Since $\alpha \notin A$, it follows that $\beta \in A$. Hence $J \subseteq A$.

Conversely assume that A is an ideal that has the property that $IJ \subseteq A$ implies $I \subseteq A$ or $J \subseteq A$. Let $\alpha, \beta \in R$ be such that $\alpha\beta \in A$. Then $(\alpha\beta) \subseteq A$. But $(\alpha\beta) = (\alpha)(\beta)$, so $(\alpha) \subseteq A$ or $(\beta) \subseteq A$. Hence $\alpha \in A$ or $\beta \in A$. This shows that A is a prime ideal. (5) Step 1: $A^2 = (9, 7 + \sqrt{-14}).$

We have

$$A^{2} = (3 \cdot 3, 3 \cdot (1 + \sqrt{-14}), (1 + \sqrt{-14}) \cdot (1 + \sqrt{-14}))$$

= (9, 3 + 3\sqrt{-14}, -13 + 2\sqrt{-14}).

From this we see that

$$9 = 1 \cdot 9 + 0 \cdot (3 + 3\sqrt{-14}) + 0 \cdot (-13 + 2\sqrt{-14}) \in A^2,$$

$$7 + \sqrt{-14} = (-1) \cdot 9 + 1 \cdot (3 + 3\sqrt{-14}) + (-1) \cdot (-13 + 2\sqrt{-14}) \in A^2.$$

hence $(9, 7 + \sqrt{-14}) \subseteq A^2$. Conversely, we have

$$\begin{split} 9 &= 1 \cdot 9 + 0 \cdot (7 + \sqrt{-14}) \in (9, 7 + \sqrt{-14}), \\ 3 + 3\sqrt{-14} &= (-2) \cdot 9 + 3 \cdot (7 + \sqrt{-14}) \in (9, 7 + \sqrt{-14}), \\ -13 + 2\sqrt{-14} &= (-3) \cdot 9 + 2 \cdot (7 + \sqrt{-14}) \in (9, 7 + \sqrt{-14}), \end{split}$$

hence $A^2 \subseteq (9, 7 + \sqrt{-14}).$

Step 2: $A^4 = (5 + 2\sqrt{-14}).$

We have

$$\begin{split} A^4 &= \left(9 \cdot 9, 9 \cdot (7 + \sqrt{-14}), (7 + \sqrt{-14}) \cdot (7 + \sqrt{-14})\right) \\ &= (81, 63 + 9\sqrt{-14}, 35 + 14\sqrt{-14}). \end{split}$$

From this we see that

 $5 + 2\sqrt{-14} = 3 \cdot 81 + (-6) \cdot (63 + 9\sqrt{-14}) + 4 \cdot (35 + 14\sqrt{-14}) \in A^4,$ hence $(5 + 2\sqrt{-14}) \subseteq A^4$. Conversely, we have

$$81 = (5 - 2\sqrt{-14}) \cdot (5 + 2\sqrt{-14}) \in (5 + 2\sqrt{-14}),$$

$$63 + 9\sqrt{-14} = (7 - \sqrt{-14}) \cdot (5 + 2\sqrt{-14}) \in (5 + 2\sqrt{-14}),$$

$$35 + 14\sqrt{-14} = 7 \cdot (5 + 2\sqrt{-14}) \in (5 + 2\sqrt{-14}),$$

hence $A^4 \subseteq (5 + 2\sqrt{-14})$.

Step 3: A^2 is not principal.

We define the norm of $\alpha = a + b\sqrt{-14}$ (with $a, b \in \mathbb{Q}$) by $N\alpha = a^2 + 14b^2$. Then $N(\alpha\beta) = N\alpha \cdot N\beta$ (easy computation), and $N\alpha \in \mathbb{N}$ if $\alpha \in R_K \setminus \{0\}$.

Now suppose that $A^2 = (\alpha)$ with $\alpha \in R_K = \mathbb{Z} + \mathbb{Z}\sqrt{-14}$. Then $9 \in (\alpha)$ implies that $9 = \lambda \alpha$ for some $\lambda \in R_K$, hence $81 = N(9) = N\lambda \cdot N\alpha$ which shows that $N\alpha \mid 81$. Similarly $7 + \sqrt{-14} \in (\alpha)$ implies $N\alpha \mid N(7 + \sqrt{-14}) =$ 63. This shows that $N\alpha = 1, 3$ or 9. Write $\alpha = a + b\sqrt{-14}$ with $a, b \in \mathbb{Z}$. Then $N\alpha = a^2 + 14b^2$, so clearly $N\alpha = 3$ is impossible. If $N\alpha = 9$ then $\alpha = \pm 3$. But clearly $7 + \sqrt{-14} \notin (\pm 3)$, so $N\alpha = 9$ is impossible. Finally if $N\alpha = 1$ then $\alpha = \pm 1$ and therefore $1 \in (\pm 1) = A^2 = (9, 7 + \sqrt{-14})$. So there exist $v, w, x, y \in \mathbb{Z}$ such that

$$1 = (v + w\sqrt{-14}) \cdot 9 + (x + y\sqrt{-14}) \cdot (7 + \sqrt{-14})$$

= $(9v + 7x - 14y) + (9w + x + 7y)\sqrt{-14}.$

Now 9v + 7x - 14y = 1 and 9w + x + 7y = 0 imply $1 = (9v + 7x - 14y) + 2 \cdot (9w + x + 7y) = 9 \cdot (v + 2w + x)$ which is impossible. Hence the case $N\alpha = 1$ is impossible. This completes the proof that there is no $\alpha \in R_K$ such that $A^2 = (\alpha)$.

Step 4: h_K is divisible by 4.

 $\mathbf{2}$

Let [A] denote the class of the (fractional) ideal A in the class group Cl(K). By Step 2 the ideal A^4 is principal, thus $[A]^4 = [A^4]$ is the identity element in Cl(K). It follows that the order of [A] in Cl(K) divides 4. But Step 2 shows that the ideal A^2 is not principal which implies that [A] and $[A]^2 = [A^2]$ are not the identity element in Cl(K). Hence [A] has order 4 in Cl(K), and this implies that $h_K = |Cl(K)|$ is divisible by 4.

(6) Clearly $\{1, -1, \sqrt{-1}, -\sqrt{-1}\} \subseteq \mu_{\mathbb{Q}(\sqrt{-1})}$. Conversely assume that $\zeta \in \mu_{\mathbb{Q}(\sqrt{-1})}$. Then $\zeta \in R_{\mathbb{Q}(\sqrt{-1})}$ since ζ satisfies a polynomial equation of the form $X^e - 1 = 0$. So we can write $\zeta = a + b\sqrt{-1}$ with $a, b \in \mathbb{Z}$. Now $\zeta^e = 1$ implies $|\zeta|^e = 1$ where $|\zeta| = \sqrt{a^2 + b^2}$ is the usual absolute value of the complex number ζ , therefore $|\zeta| = 1$. So $a^2 + b^2 = 1$ and hence either $a = \pm 1$ and b = 0 which gives $\zeta = \pm 1$, or a = 0 and $b = \pm 1$ which gives $\zeta = \pm \sqrt{-1}$. This shows $\mu_{\mathbb{Q}(\sqrt{-1})} \subseteq \{1, -1, \sqrt{-1}, -\sqrt{-1}\}$.

(7) If $K = \mathbb{Q}(\sqrt{m})$ for a square-free integer m > 1, then K is a real quadratic field, so K has two real embeddings and no complex embeddings, and $\mu_K =$ $\{\pm 1\}$. Therefore by Dirichlet's unit theorem $R_K^{\times} \cong \{\pm 1\} \times \mathbb{Z}$. A unit $\varepsilon \in R_K^{\times}$ is a fundamental unit if and only if it is mapped to a generator of the torsion free quotient $R_K^{\times}/\mu_K \cong (\{\pm 1\} \times \mathbb{Z})/\{\pm 1\} \cong \mathbb{Z}$. It follows that there exist precisely four fundamental units: if ε is one fundamental unit, then the other three fundamental units are $-\varepsilon$, ε^{-1} and $-\varepsilon^{-1}$.

Now let $\varepsilon = x + y\sqrt{m}$ with $x, y \in \mathbb{Q}$ be a fundamental unit of R_K^{\times} . Clearly we must have $x \neq 0$ and $y \neq 0$. By Lemma 6.9 we know that $N(\varepsilon) = (x + \varepsilon)$ $y\sqrt{m}(x-y\sqrt{m}) = \pm 1$, so $\varepsilon^{-1} = (x+y\sqrt{m})^{-1} = (\pm x) + (\mp y)\sqrt{m}$. But it is clear that of the four fundamental unit $\varepsilon = x + y\sqrt{m}, -\varepsilon = (-x) + (-y)\sqrt{m},$ $\varepsilon^{-1} = (\pm x) + (\mp y)\sqrt{m}$ and $-\varepsilon^{-1} = (\mp x) + (\pm y)\sqrt{m}$ precisely one is of the form $a + b\sqrt{m}$ with a > 0 and b > 0.

If $\varepsilon = a + b\sqrt{m}$ is a fundamental unit with a, b > 0 and $\varepsilon^i = x + y\sqrt{m}$ with $i \geq 2$, then obviously x > a and y > b. Hence the fundamental unit ε can be characterised as the element with minimal a among all units $a + b\sqrt{m}$ for which a and b are positive. Therefore we can find ε by systematically trying $a = 1, 2, 3, \ldots$ (if $m \not\equiv 1 \pmod{4}$) or $a = \frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \ldots$ (if $m \equiv 1 \pmod{4}$) until we find an a for which there exists an b such that $a + b\sqrt{m} \in R^{\times}_{\mathbb{Q}(\sqrt{m})}$. Note that $a + b\sqrt{m} \in R^{\times}_{\mathbb{Q}(\sqrt{m})}$ implies $N(a + b\sqrt{m}) = a^2 - mb^2 = \pm 1$, so it is easy to test whether such a b exists.

In the case $m = 7 \not\equiv 1 \pmod{4}$ we have $R_{\mathbb{Q}(\sqrt{7})} = \mathbb{Z} + \mathbb{Z}\sqrt{7}$. We try $a = 1, 2, 3, \ldots$, and for each a we then test whether $a^2 - 7b^2 = \pm 1$ has a solution $b \in \mathbb{N}$, i.e. whether $(a^2 \mp 1)/7$ is a square of a positive integer. The first time this is the case is for a = 8 where we find $(8^2 - 1)/7 = 3^2$. Hence $\varepsilon = 8 + 3\sqrt{7}$ is a fundamental unit of $\mathbb{Q}(\sqrt{7})$.

Remark: There exists a much more efficient algorithm to find fundamental units of real quadratic fields by using continued fractions. For details see for example §5.7 in H. Cohen: A course in computational algebraic number theory, Springer, 1993.

(8) Choice of $(r+s-1) \times (r+s-1)$ -minor:

Let v_1, \ldots, v_{r+s} denote the rows of the matrix in Definition 6.12. We must show that the absolute value of the determinant of the matrix which is obtained by omitting the i-th row is independent of i. Recall from the proof of Lemma 6.10 that for every unit α we have

$$\log|\sigma_1(\alpha)| + \dots + \log|\sigma_r(\alpha)| + 2\log|\sigma_{r+1}(\alpha)| + \dots + 2\log|\sigma_{r+s}(\alpha)| = 0.$$

Hence $v_1 + \cdots + v_{r+s} = (0, \ldots, 0)$. Therefore for every $i = 1, \ldots, r+s-1$ we have

$$\det \begin{pmatrix} v_1 \\ \vdots \\ v_{i-1} \\ v_{i+1} \\ \vdots \\ v_{r+s-1} \\ v_{r+s} \end{pmatrix} = \det \begin{pmatrix} v_1 \\ \vdots \\ v_{i-1} \\ v_{i+1} \\ \vdots \\ v_{r+s-1} \\ -v_1 - \cdots - v_{r+s-1} \end{pmatrix}$$
$$= \det \begin{pmatrix} v_1 \\ \vdots \\ v_{i-1} \\ v_{i+1} \\ \vdots \\ v_{r+s-1} \\ -v_i \end{pmatrix}$$
$$= \pm \det \begin{pmatrix} v_1 \\ \vdots \\ v_{r+s-1} \\ -v_i \end{pmatrix}.$$

This shows that the absolute value of this determinant is independent of i. Hence the definition of the regulator does not depend on the choice of $(r + s - 1) \times (r + s - 1)$ -minor.

Choice of order of the embeddings:

Changing the order of the embeddings only permutes the rows of the matrix, therefore the absolute value of the determinant of an $(r+s-1) \times (r+s-1)$ -submatrix does not change.

Choice (and order) of fundamental units:

Suppose that $\beta_1, \ldots, \beta_{r+s-1}$ is another system of fundamental units for R_K^{\times} . Then $\lambda(\alpha_1), \ldots, \lambda(\alpha_{r+s-1})$ and $\lambda(\beta_1), \ldots, \lambda(\beta_{r+s-1})$ are both \mathbb{Z} -bases of the free abelian group $\lambda(R_K^{\times})$. Therefore we have $\lambda(\beta_j) = \sum_{i=1}^{r+s-1} \lambda(\alpha_i)c_{ij}$ with $c_{ij} \in \mathbb{Z}$. If C denotes the matrix $(c_{ij})_{1 \le i,j \le r+s-1}$ then

$$(\lambda(\beta_1),\ldots,\lambda(\beta_{r+s-1})) = (\lambda(\alpha_1),\ldots,\lambda(\alpha_{r+s-1})) \cdot C.$$

Similarly

$$(\lambda(\alpha_1),\ldots,\lambda(\alpha_{r+s-1})) = (\lambda(\beta_1),\ldots,\lambda(\beta_{r+s-1})) \cdot D$$

for an $(r + s - 1) \times (r + s - 1)$ -matrix D with entries in \mathbb{Z} . It follows that CD is equal to the $(r + s - 1) \times (r + s - 1)$ unit matrix. In particular $\det(C) \det(D) = 1$, so $\det(C) = \pm 1$ since these determinants are integers. Now the equation

$$(\lambda(\beta_1),\ldots,\lambda(\beta_{r+s-1})) = (\lambda(\alpha_1),\ldots,\lambda(\alpha_{r+s-1})) \cdot C.$$

shows that an $(r + s - 1) \times (r + s - 1)$ -minor of the matrix with columns $\lambda(\beta_1), \ldots, \lambda(\beta_{r+s-1})$ is equal to det(C) times an $(r+s-1) \times (r+s-1)$ -minor of the matrix with columns $\lambda(\alpha_1), \ldots, \lambda(\alpha_{r+s-1})$. Hence the absolute values of these minors are equal. This shows that the definition of the regulator does not depend on the choice of system of fundamental units.