Algebraic number theory LTCC 2008

(1)

Solutions to Problem Sheet 1

If « is algebraic over Q then « satisfies an equation of the form
A" 4 ep_1a" M at =0

where c¢g,c1,...,ch_1 € Q. Since a # 0, we can assume that ¢y # O.
Multiplying the equation by ¢y Lo~ gives

gt tegten ot o egte (o) 4 (o) =0,

which shows that o~ is algebraic over Q.

Since a € K and K is an algebraic number field, it follows that « is algebraic
over Q and therefore satisfies an equation of the form

ad+cd,1ad*1+~o+cla+00:0

where cg, c1,...,cq-1 € Q. Let n € N be a common denominator of the ¢;,
i.e. ncg,ncy, ..., ncq_1 € Z. Multiplying the equation by n? gives

(na)? + ca—1n(na)~" + -+ c1n?~ ! (na) + con® = 0.

Since cg_11, . ..,cin?"t con® € Z, this shows that na is integral over Z, i.e.
na € Ri.

We assume that m # 1 is a square-free integer such that m =1 (mod 4).
Let K = Q(y/m) and R the ring of integers of K.

IfaeZ+ Z% then a = a + b% with a,b € Z. One easily checks
that « is a root of the monic polynomial

X%~ (2a+b)X + (a2+ab+b21_4m> ,

and the assumption m = 1 (mod 4) implies that the coefficients of this
polynomial are in Z. This shows that o € Rg.

Conversely assume that « € Ri. Write o = a+by/m with a,b € Q. Then
as in the case m #Z 1 (mod 4) it follows that 2a = a+ 7(a) € Rk NQ =Z
and a2 — mb? = ar(a) € Rk NQ = Z.

If a € Z then mb? € Z which implies b € Z because m is square-free, so
a=a+bym=(a—b)+262" € 7+ 72"

If a ¢ Z then a = ¢/2 with ¢ € Z odd, so ¢ = 1 (mod 4). From
(¢/2)?—mb? € Z it follows that ¢ —m(2b)? € Z and moreover ¢2 —m(2b)? =
0 (mod 4). Now m(2b)? € Z implies 2b € Z because m is square-free. The
congruences ¢ —m(2b)? =0 (mod 4), ¢> =1 (mod 4) and m = 1 (mod 4)
imply that (2b)2 =1 (mod 4), so 2bis odd. Since c and 2b are odd, it follows
that a—b = <52 is an integer. Therefore a = a+by/m = (a—b)+2b% €
Z+ 7,

Suppose that A is a prime ideal and that I, J are ideals such that I.J C A.
If I C A we are finished. So suppose that I Z A, i.e. there exits a € I \ A.
Now if g € J then af € IJ C A, hence a € A or § € A since A is prime.
Since o € A, it follows that 0 € A. Hence J C A.

Conversely assume that A is an ideal that has the property that IJ C A
implies I € A or J C A. Let a,8 € R be such that o € A. Then
(aB) C A. But (af) = (a)(B), so () € A or (8) C A. Hence a € A or
0§ € A. This shows that A is a prime ideal.
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(5) Step 1: A% = (9,7 + /—14).
We have
A% = (3-3,3- (1L +V-14), (1 + V=14) - (1 + V-14))
= (9,3 +3V—14,-13 + 2y/—14).
From this we see that
9=1-9+0-(3+3V—14) +0- (—13+2v/—14) € 4%,
T+V-14=(-1)-9+1-(3+3V—14) + (1) - (-13 +2V/-14) € A%,
hence (9,7 + /—14) C A2, Conversely, we have
9=1-9+0-(7+V—14) € (9,7 + V—14),
3+3V—14d=(-2)-943-(T+vV—14) € (9,7 + V—14),
—13+2V—1d = (=3)- 9+ 2 (T+V/—14) € (9,7 + V—14),
hence A% C (9,7 + v/—14).

Step 2: A* = (54 2v/—14).
We have
A =(9-9,9 (7T+V—14),(T+ V—14) - (T + V~14))
= (81,63 + 9v/—14, 35 + 14/—14).
From this we see that
5+4+2vV—14=3-81+ (—6)- (63 +9v—14) +4- (35 + 14/—14) € A%,
hence (5 + 2y/—14) C A*. Conversely, we have
81 = (5 —2v—14) - (5+2v/—14) € (5 + 2V/—14),
63 +9vV—14 = (7T— /—14) - (5+2V~14) € (5 + 2V —14),
35+ 14V 14 =7- (5 +2v/—14) € (5 + 2/—14),
hence A* C (5 + 2v/—14).
Step 3: A? is not principal.

We define the norm of & = a+by/—14 (with a,b € Q) by Na = a4 14b?.
Then N(af) = Na- Nj (easy computation), and Na € Nif a € R \ {0}.

Now suppose that A? = (a) with a € R = Z + Z+/—14. Then 9 € ()
implies that 9 = Aa for some A € Rk, hence 81 = N(9) = NA - Na which
shows that N | 81. Similarly 7++/—14 € («) implies Na | N(74++v/—14) =
63. This shows that Na = 1,3 or 9. Write a = a + by/—14 with a,b € Z.
Then Na = a? + 14b2, so clearly Na = 3 is impossible. If Na = 9 then
a = +3. But clearly 7+ v/—14 ¢ (£3), so Na = 9 is impossible. Finally
if Na = 1 then o = 41 and therefore 1 € (1) = A% = (9,7 ++v/—14). So
there exist v, w,x,y € Z such that

l=(w+wv-14) -9+ (z +yv—14) - (T+ V—14)
= (9 + T2 — 14y) + (Yw + = + Ty)V—14.

Now Qv+ 7z — 14y =1 and Q9w+ + 7y = 0 imply 1 = (v + Tz — 14y) +2-
Qw+2x+7y) =9 (v+ 2w+ ) which is impossible. Hence the case Na =1

is impossible. This completes the proof that there is no o € Rg such that
A? = (a).

Step 4: hg is divisible by 4.
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Let [A] denote the class of the (fractional) ideal A in the class group
CI(K). By Step 2 the ideal A* is principal, thus [A]* = [A%] is the identity
element in C1(K). It follows that the order of [A4] in Cl(K) divides 4. But
Step 2 shows that the ideal A? is not principal which implies that [A] and
[A]? = [A?] are not the identity element in C1(K). Hence [A] has order 4 in
Cl(K), and this implies that hx = |C1(K)| is divisible by 4.

Clearly {1’ 717 \/ja 7\/771} - :U‘(@(\/jl)

Conversely assume that ¢ € pg/=1)- Then ¢ € Ry, /=) since ¢ satisfies
a polynomial equation of the form X¢—1 = 0. So we can write { = a+by/—1
with a,b € Z. Now (¢ = 1 implies |(|® = 1 where |{| = va? + b? is the usual
absolute value of the complex number ¢, therefore |¢| = 1. So a? +b? =1
and hence either ¢ = £1 and b = 0 which gives ( = +1,or a = 0 and b = +1
which gives ¢ = £+v/—1. This shows fg(y=1) S {1, -1, V—1,—v/~1}.

If K = Q(y/m) for a square-free integer m > 1, then K is a real quadratic
field, so K has two real embeddings and no complex embeddings, and pg =
{£1}. Therefore by Dirichlet’s unit theorem Ry = {£1}xZ. A unite € Ry
is a fundamental unit if and only if it is mapped to a generator of the torsion
free quotient Ry /pux = ({£1} x Z)/{£1} = Z. It follows that there exist
precisely four fundamental units: if € is one fundamental unit, then the
other three fundamental units are —¢, e+ and —e~ 1.

Now let ¢ = z+yy/m with z,y € Q be a fundamental unit of Rj;. Clearly
we must have ¢ # 0 and y # 0. By Lemma 6.9 we know that N(e) = (z +
yvm)(z—yy/m) = £1,s0 e = (z+yy/m)~! = (£z)+ (Fy)v/m. But it is
clear that of the four fundamental unit € = z+y/m, —¢ = (—z)+(—y)/m,
el = (x2) + (Fy)v/m and —e~! = (Fx) + (+y)/m precisely one is of the
form a + by/m with a > 0 and b > 0.

If e = a+by/m is a fundamental unit with a,b > 0 and &' = z+y+/m with
1 > 2, then obviously = > a and y > b. Hence the fundamental unit € can
be characterised as the element with minimal a among all units a+b+/m for
which a and b are positive. Therefore we can find ¢ by systematically trying
a=1,23... (ifm#1 (mod4)ora=1=1223 . (ifm=1 (mod4))

279292
until we find an a for which there exists an b such that a +by/m € R& S
Note that a + by/m € R&m) implies N(a + by/m) = a? — mb? = £1, so it

is easy to test whether such a b exists.

In the case m = 7 # 1 (mod 4) we have Ry 7 = Z + ZV7. We try
a=1,2,3,..., and for each a we then test whether a®> — 7b®> = %1 has a
solution b € N, i.e. whether (a? F1)/7 is a square of a positive integer. The
first time this is the case is for a = 8 where we find (82 —1)/7 = 32. Hence
€ = 8 4+ 31/7 is a fundamental unit of Q(v/7).

Remark: There exists a much more efficient algorithm to find fundamen-
tal units of real quadratic fields by using continued fractions. For details see
for example §5.7 in H. Cohen: A course in computational algebraic number
theory, Springer, 1993.

Choice of (r +s—1) x (r + s — 1)-minor:

Let vy, ..., 0,1 denote the rows of the matrix in Definition 6.12. We must
show that the absolute value of the determinant of the matrix which is
obtained by omitting the i-th row is independent of i. Recall from the
proof of Lemma 6.10 that for every unit o we have

logloi ()| + -+ - + log|oy ()| + 21og|oy1 ()] + - - 4+ 2log|oy4s(a)] = 0.
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Hence v1 + -+ 4+ vrqs = (0,...,0). Therefore for every i =1,...,7r+s—1
we have

U1 U1
Vi—1 Vi—1
det Vi41 = det Vi+1
Up4s—1 Ur4+s—1
VUr4s —U1 — = Upgs—1
U1
Vi—1
= det Vi41
UrJrsfl
—;
U1
=+t det :
Ur-l-s—l

This shows that the absolute value of this determinant is independent of
1. Hence the definition of the regulator does not depend on the choice of
(r+s—1) x (r +s— 1)-minor.

Choice of order of the embeddings:

Changing the order of the embeddings only permutes the rows of the matrix,
therefore the absolute value of the determinant of an (r+s—1) X (r+s—1)-
submatrix does not change.

Choice (and order) of fundamental units:

Suppose that 31, ..., Br4s—1 is another system of fundamental units for Rj;.
Then A1), ..., Mapys—1) and A(B1), ..., A(Brys—1) are both Z-bases of the
free abelian group A(R). Therefore we have A(5;) = 327477 M(ay)eij with
¢ij € Z. If C denotes the matrix (¢;;)1<i j<r+s—1 then

ABL)s s A(Brrs1)) = (M@)o, Alargs1) - C.

Similarly

(M), Margs—1)) = ABL), -, ABrys-1)) - D
for an (r + s —1) x (r + s — 1)-matrix D with entries in Z. It follows that
CD is equal to the (r + s — 1) x (r + s — 1) unit matrix. In particular
det(C)det(D) = 1, so det(C') = %1 since these determinants are integers.
Now the equation

(A(ﬁl), ey )\(6,«_;,_3_1)) = ()\(041), ey )\(ar+3_1)) -C.
shows that an (r + s — 1) x (r + s — 1)-minor of the matrix with columns
AB1)s s A(Brys—1) is equal to det(C) times an (r+s—1) x (r+s—1)-minor
of the matrix with columns A(ay), ... Aa,4s—1). Hence the absolute values
of these minors are equal. This shows that the definition of the regulator
does not depend on the choice of system of fundamental units.



