
Algebraic number theory LTCC 2008

Solutions to Problem Sheet 2

(1) Let m 6= 1 be a square-free integer and K = Q(
√

m). The embeddings
K → C are given by σ1(a+ b

√
m) = a+ b

√
m and σ2(a+ b

√
m) = a− b

√
m.

If m 6≡ 1 (mod 4) then RK = Z+ Z
√

m by Lemma 3.6, so β1 = 1, β2 =√
m is a Z-basis of RK . Hence

dK = det
(

σ1(β1) σ1(β2)
σ2(β1) σ2(β2)

)2

= det
(

1
√

m
1 −√m

)2

= 4m.

If m ≡ 1 (mod 4) then RK = Z+Z 1+
√

m
2 by Lemma 3.6, so β1 = 1, β2 =

1+
√

m
2 is a Z-basis of RK . Hence

dK = det
(

σ1(β1) σ1(β2)
σ2(β1) σ2(β2)

)2

= det

(
1 1+

√
m

2

1 1−√m
2

)2

= m.

Therefore we have shown that

dQ(
√

m) =

{
4m if m 6≡ 1 (mod 4),
m if m ≡ 1 (mod 4).

(2) Let a ∈ Z be such that a2 ≡ m (mod p), and consider the ideals P1 =
(p,
√

m + a) and P2 = (p,
√

m− a) of RQ(
√

m).

Claim: P1P2 = (p)

Proof of claim. We have

P1P2 =
(
p2, p(

√
m + a), p(

√
m− a),m− a2

)
.

It is clear that p2, p(
√

m+a), p(
√

m−a) ∈ (p). Furthermore m−a2 ∈ (p)
because a2 ≡ m (mod p). This shows that P1P2 ⊆ (p).

To show the converse we first observe that p2 ∈ P1P2 and 2pa = p(
√

m+
a) − p(

√
m − a) ∈ P1P2. Since p - m and a2 ≡ m (mod p), it follows that

p - a. Furthermore p is odd, so p - 2a. Therefore 2a and p are coprime, so
there exist u, v ∈ Z such that u · 2a + v · p = 1. Multiplying this by p gives
p = u · 2pa + v · p2 ∈ P1P2. This implies (p) ⊆ P1P2. ¤
Claim: P1 and P2 are prime ideals of RQ(

√
m)

Proof of claim. Using Lemmas 8.5 and 8.2 we have

N(P1)N(P2) = N(P1P2) = N((p)) = p[K:Q] = p2.

Furthermore it is easy to see that N(P1) = N(P2) (observe that the auto-
morphism τ of K maps P1 onto P2 and therefore induces an isomorphism
RK/P1

∼= RK/P2). It follows that N(P1) = N(P2) = p. By Question (3)(a)
this implies that P1 and P2 are prime ideals. ¤

(3) (a) Assume that A is a non-zero ideal of RK which is not a prime ideal. If
A = RK then N(A) = 1, i.e. in this case N(A) is not a prime number.
If A 6= RK then by Theorem 4.7 we can write A = P1 · · ·Pn with n ≥ 2
where P1, . . . , Pn are non-zero prime ideals of RK . By Lemma 8.5 we
obtain N(A) = N(P1) · · ·N(Pn). Now for all i we have N(Pi) ∈ N and
N(Pi) 6= 1 because Pi 6= RK . This shows that in this case N(A) is a
composite number, i.e. again N(A) is not a prime number.
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(b) Let K = Q(
√

2) and A = (3), i.e. A is the principal ideal of the ring
RK generated by 3. We claim that A is a prime ideal of RK such that
N(A) is not a prime number.
By Lemma 8.2 we have N(A) = 3[K:Q] = 9, so N(A) is not a prime
number.
To show that A is a prime ideal, we must show that if

(a + b
√

2) · (c + d
√

2) ∈ A

where a + b
√

2, c + d
√

2 ∈ RK then a + b
√

2 ∈ A or c + d
√

2 ∈ A. Now
(a+b

√
2) ·(c+d

√
2) ∈ A implies (a+b

√
2) ·(c+d

√
2) = 3 ·(u+v

√
2) for

some u+v
√

2 ∈ RK . Since (a+b
√

2)·(c+d
√

2) = (ac+2bd)+(ad+bc)
√

2
it follows that

ac + 2bd = 3u,

ad + bc = 3v.

If b ≡ 0 (mod 3) then these two equations imply ac ≡ ad ≡ 0 (mod 3).
Therefore either a ≡ 0 (mod 3) and so a + b

√
2 ∈ A, or c ≡ d ≡ 0

(mod 3) and so c + d
√

2 ∈ A.
Now assume that b 6≡ 0 (mod 3). From the two formulas ac+2bd = 3u
and ad + bc = 3v we can deduce bc2 + bd2 ≡ 0 (mod 3). This implies
c2 + d2 ≡ 0 (mod 3). Therefore c2 ≡ d2 ≡ 0 (mod 3) and hence
c ≡ d ≡ 0 (mod 3). This shows that c + d

√
2 ∈ A.

(4) If z > 1 is a real number then

ζ(z) =
∞∑

n=1

n−z < 1 +
1

z − 1

(compare the computation in the notes after Definition 7.1). Also

ζ(z) =
∞∑

n=1

n−z >

∫ ∞

1

x−zdx =
1

z − 1
.

These two inequalities imply 1 < (z − 1)ζ(z) < z for all z > 1. Letting
z → 1+ gives

1 ≤ lim
z→1+

(z − 1)ζ(z) ≤ lim
z→1+

z = 1,

hence lim
z→1+

(z − 1)ζ(z) = 1.

(5) Let m > 1. The polynomial Xm − 1 has roots ζi
m for i = 0, 1, . . . , m − 1,

therefore Xm− 1 =
∏m−1

i=0 (X − ζi
m). Dividing this equation by X − 1 gives

Xm−1 + Xm−2 + · · ·+ X + 1 =
m−1∏

i=1

(X − ζi
m).

Letting X = 1 shows that

m =
m−1∏

i=1

(1− ζi
m).

Write n = pa1
1 · · · par

r where p1, . . . , pr are distinct prime numbers and
ak ∈ N. Applying the above formula to m = n gives

n =
n−1∏

i=1

(1− ζi
n).
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Applying the above formula to m = pak

k and using that ζp
ak
k

= ζ
n/p

ak
k

n gives

pak

k =
p

ak
k −1∏

i=1

(
1− ζ

n/p
ak
k ·i

n

)
=

∏

j

(1− ζj
n)

where the product is over those j ∈ {1, . . . , n− 1} for which ζj
n has order a

power of pk. Hence

n = pa1
1 · · · par

r =
∏

j

(1− ζj
n)

where the product is over those j ∈ {1, . . . , n − 1} for which ζj
n has prime

power order.
It follows that

1 =
∏

j

(1− ζj
n)

where the product is over those j ∈ {1, . . . , n − 1} for which ζj
n is not of

prime power order. Since n has at least two distinct prime factors this
product contains the factor 1− ζn. Hence (1− ζn)−1 =

∏
j 6=1(1− ζj

n) where
the product is over those j ∈ {2, . . . , n−1} for which ζj

n has not prime power
order. Since 1 − ζn ∈ RQ(ζn) and (1 − ζn)−1 =

∏
j 6=1(1 − ζj

n) ∈ RQ(ζn), it
follows that 1− ζn is a unit in RQ(ζn).

(6) Let n ∈ N. We recall that [Q(ζn) : Q] = φ(n) where φ is Euler’s φ-function.
Indeed, for n = 1 this is clear, for n > 1 and n 6≡ 2 (mod 4) this is Theorem
10.1.(1), and for n ≡ 2 (mod 4) it follows from the other cases because we
have (using that n/2 is odd) [Q(ζn) : Q] = [Q(ζn/2) : Q] = φ(n/2) = φ(n).

Claim: If n > 1 is an even integer then

µQ(ζn) = {ζi
n : 0 ≤ i ≤ n− 1}.

Proof. The inclusion {ζi
n : 0 ≤ i ≤ n− 1} ⊆ µQ(ζn) is clear.

Conversely let ε ∈ µQ(ζn). Let m ∈ N be the order of ε. Then ε = ζi
m

for some integer i with (i,m) = 1. It follows that ζm ∈ µQ(ζn) (because if
u · i + v · m = 1 for u, v ∈ Z then ζm = ζ1

m = (ζi
m)u · (ζm

m )v = εu). Now
let l = lcm(m, n). Then (l/m, l/n) = 1, so there exist x, y ∈ Z such that
1 = x · l/m + y · l/n. It follows that

ζl = ζ1
l = (ζl/m

l )x · (ζl/n
l )y = ζx

m · ζy
n ∈ Q(ζn).

Thus Q(ζl) ⊆ Q(ζn). The inclusion Q(ζn) ⊆ Q(ζl) is obvious because
n | l, hence Q(ζn) = Q(ζl) and therefore φ(n) = φ(l). Since n | l and
n is even, this implies that n = l and thus m | n. Hence ζm = ζj

n for
some j ∈ Z. It follows that ε = ζi

m = ζij
n . Thus we have shown that

µQ(ζn) ⊆ {ζi
n : 0 ≤ i ≤ n− 1}. ¤

Now let n > 1 be an integer such that n 6≡ 2 (mod 4). If n is divisible
by 4 then µQ(ζn) = {ζi

n : 0 ≤ i ≤ n− 1} by the claim. If n is odd then

µQ(ζn) = µQ(ζ2n) = {ζi
2n : 0 ≤ i ≤ 2n− 1} = {±ζi

n : 0 ≤ i ≤ n− 1}
where for the second equality we use the claim and for the first and third
equalities we use that ζ2n = −(ζn)(n+1)/2. Thus we have shown that

µQ(ζn) =

{
{±ζi

n : 0 ≤ i ≤ n− 1} if n is odd,

{ζi
n : 0 ≤ i ≤ n− 1} if n is divisible by 4

as required.
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(7) (a) By Theorem 10.2 we know that Q(ζ5)+ = Q(ζ5 + ζ−1
5 ). Note that

ζ5 =
√

5− 1
4

+

√√
5 + 5
8

i.

Since ζ−1
5 = ζ5 it follows that

ζ5 + ζ−1
5 =

√
5− 1
2

.

From this it is obvious that Q(ζ5)+ = Q(
√

5).

(b) The group of units R×Q(
√

5)
is generated by {±1} and a fundamental

unit. To find a fundamental unit ε = a+ b
√

5 of Q(
√

5) we can use the
method from Question (7) on Problem Sheet 1. Since 5 ≡ 1 (mod 4),
we must try a = 1

2 , 2
2 , 3

2 , . . . until we find an a for which there exists a
b such that a+b

√
5 ∈ R×Q(

√
5)

, i.e. a+b
√

5 ∈ RQ(
√

5) and N(a+b
√

5) =

±1. For a = 1
2 we find N( 1

2 + b
√

5) = 1
4 − 5b2 and this is equal to −1

for b = 1
2 . Therefore ε = 1+

√
5

2 is a fundamental unit of Q(
√

5).
It follows that

R×Q(ζ5)+
= R×Q(

√
5)

= {±1} × εZ = {±1} ×
(

1 +
√

5
2

)Z
.

(c) By definition the group C+ of cyclotomic units of Q(ζ5)+ is generated
by −1 and by the units ξa for all a ∈ Z with (a, 5) = 1. An easy
computation shows that ξa+5 = −ξa and ξ−a = −ξa. Furthermore
ξ1 = 1. It follows that C+ is generated by −1 and ξ2. We have

ξ2 = ζ
(1−2)/2
5 · ζ2

5 − 1
ζ5 − 1

= −ζ2
5 · (ζ5 + 1) = −(ζ−2

5 + ζ2
5 ) = . . .

=
1 +

√
5

2
.

Hence

C+ = {±1} × ξZ2 = {±1} ×
(

1 +
√

5
2

)Z
.

(d) By parts (b) and (c) we have R×Q(ζ5)+
= C+, therefore it follows from

Theorem 11.4 that

hQ(ζ5)+ = [R×Q(ζ5)+
: C+] = 1.

(8) Let p be a prime number and f(X) = Xp−1 − 1 ∈ Zp[X]. We will use
Hensel’s lemma to show that the equation f(X) = 0 has p− 1 solutions in
Zp. Note that f ′(X) = (p− 1)Xp−2.

For every a ∈ Zp there exists an ã ∈ Z such that a ≡ ã (mod p). It easily
follows that Zp/pZp

∼= Z/pZ, so Zp/pZp is a field with p elements. Now
let α ∈ Zp/pZp be a non-zero element. Choose a1 ∈ Z ⊆ Zp such that a1

reduces to α in Zp/pZp. Since α 6= 0 it follows that p - a1 and therefore by
Euler’s theorem ap−1

1 ≡ 1 (mod p). Hence a1 satisfies f(a1) ≡ 0 (mod p).
Furthermore f ′(a1) = (p − 1)ap−2

1 6≡ 0 (mod p) since p − 1 6≡ 0 (mod p)
and a1 6≡ 0 (mod p). Therefore by Hensel’s lemma (Theorem 14.1) there
exists a unique a ∈ Zp such that f(a) = 0 and a ≡ a1 (mod p). The last
condition implies that a reduces to α in Zp/pZp because a1 reduces to α.
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We have shown that for every non-zero α ∈ Zp/pZp there exists a unique
solution a ∈ Zp of f(X) = 0 which reduces to α. As there are p− 1 choices
for α, we have therefore found p− 1 solutions of the equation f(X) = 0.

(9) Existence of a: We will construct a sequence a0, a1, a2, . . . in Zp such that
for all i ≥ 0 we have
(i) f(ai) ≡ 0 (mod p2M+1+i),
(ii) ai ≡ ai−1 (mod pM+i) if i ≥ 1.

Clearly the given a0 ∈ Zp satisfies (i) and (ii).
Now suppose that we have constructed a0, a1, . . . , ai satisfying (i) and

(ii). We want to find ai+1 ∈ Zp for which (i) and (ii) hold. In order for (ii)
to be satisfied we must have ai+1 = ai +λpM+1+i for some λ ∈ Zp. We will
show that there exists λ such that f(ai + λpM+1+i) ≡ 0 (mod p2M+2+i).
Note that

f(ai + λpM+1+i) ≡ f(ai) + f ′(ai)λpM+1+i (mod p2M+2+i).

Hence we will have f(ai + λpM+1+i) ≡ 0 (mod p2M+2+i) if and only if

f(ai) + f ′(ai)λpM+1+i ≡ 0 (mod p2M+2+i).

By assumption f(ai) ≡ 0 (mod p2M+1+i). Since ai ≡ a0 (mod pM+1) we
have f ′(ai) ≡ f ′(a0) (mod pM+1), so in particular f ′(ai) ≡ 0 (mod pM ).
It follows that the previous congruence is equivalent to

f(ai)
p2M+1+i

+
f ′(ai)
pM

λ ≡ 0 (mod p).

Now f ′(ai) 6≡ 0 (mod pM+1), hence f ′(ai)
pM 6≡ 0 (mod p). Therefore f ′(ai)

pM is
a unit in Zp, so there exists a λ ∈ Zp such that the previous congruence is
satisfied. It follows that ai+1 = ai + λpM+1+i satisfies condition (i).

By (ii) the sequence a0, a1, a2, . . . is a Cauchy sequence in Zp. Hence
we can define a = limi→∞ ai ∈ Zp. Then (again by (ii)) we have a ≡ a0

(mod pM+1). Furthermore f(a) = f(limi→∞ ai) = limi→∞ f(ai) = 0 where
the last equality comes from (i). This shows the existence of a ∈ Zp with
the required properties.

Uniqueness of a: Suppose that a′ ∈ Zp satisfies f(a′) = 0 and a′ ≡ a0

(mod pM+1). We must show that a′ = a.
First we make the following observation. We showed above that for every

i ≥ 0 there exists ai+1 ∈ Zp such that conditions (i) and (ii) are satisfied. It
follows from the above that ai+1 must be of the form ai+1 = ai + λpM+1+i

and that λ is unique modulo p. Therefore ai+1 is unique modulo pM+2+i.
Now we claim that for all i ≥ 0 we have a′ ≡ ai (mod pM+1+i). For

i = 0 this is true by assumption. Suppose that we have shown a′ ≡ ai

(mod pM+1+i) for some i ∈ N ∪ {0}. Since f(a′) ≡ 0 (mod p2M+2+i),
it follows that a′ satisfies conditions (i) and (ii) for i + 1, hence by the
uniqueness result stated in the previous paragraph it follows that a′ ≡ ai+1

(mod pM+2+i).
From a′ ≡ ai (mod pM+1+i) for all i it follows that a′ = limi→∞ ai = a,

as required.

(10) Let f(X) = (X2 − 2)(X2 − 17)(X2 − 34).

Claim 1: The equation f(X) = 0 has solutions in R.

Proof. Clearly the solutions of f(X) = 0 in R are X = ±√2,±√17,±√34.
¤

Claim 2: The equation f(X) = 0 has solutions in Q17.
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Proof. Let g(X) = X2− 2. Then a1 = 6 ∈ Z ⊂ Z17 satisfies g(a1) = 34 ≡ 0
(mod 17) and g′(a1) = 12 6≡ 0 (mod 17). Therefore by Hensel’s lemma
(Theorem 14.1) there exists a ∈ Z17 such that g(a) = 0. This implies that
f(a) = (a2 − 2)(a2 − 17)(a2 − 34) = 0, i.e. f(X) = 0 has a solution in
Z17 ⊂ Q17. ¤
Claim 3: The equation f(X) = 0 has solutions in Qp for every prime number
p with p 6= 2 and p 6= 17.

Proof. We have
(

34
p

)
=

(
2
p

)(
17
p

)
, therefore at least one of the Legendre

symbols
(

2
p

)
,
(

17
p

)
,
(

34
p

)
is equal to 1. Let c ∈ {2, 17, 34} be such that(

c
p

)
= 1 and let g(X) = X2 − c. Then by the definition of the Legendre

symbol there exists a1 ∈ Z ⊂ Zp such that g(a1) = a2
1 − c ≡ 0 (mod p).

Furthermore g′(a1) = 2a1 6≡ 0 (mod p) because c 6≡ 0 (mod p) implies a1 6≡
0 (mod p). Therefore by Hensel’s lemma (Theorem 14.1) there exists a ∈ Zp

such that g(a) = 0. This implies that f(a) = (a2−2)(a2−17)(a2−34) = 0,
i.e. f(X) = 0 has a solution in Zp ⊂ Qp. ¤
Claim 4: The equation f(X) = 0 has solutions in Q2.

Proof. Let g(X) = X2 − 17. Let a0 = 1 ∈ Z ⊂ Z2 and M = 1 ∈ N ∪
{0}. Then g(a0) = −16 ≡ 0 (mod 22M+1), g′(a0) = 2 ≡ 0 (mod 2M ) and
g′(a0) = 2 6≡ 0 (mod 2M+1). Therefore by the generalisation of Hensel’s
lemma stated in Question (9) there exists a ∈ Z2 such that g(a) = 0. This
implies that f(a) = (a2 − 2)(a2 − 17)(a2 − 34) = 0, i.e. f(X) = 0 has a
solution in Z2 ⊂ Q2. ¤
Claim 5: The equation f(X) = 0 has no solutions in Q.

Proof. In the proof of Claim 1 we listed all solutions of f(X) = 0 in R.
Clearly all of these solutions are irrational, therefore f(X) = 0 has no
solutions in Q. ¤


