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Solutions to Problem Sheet 2

Let m # 1 be a square-free integer and K = Q(y/m). The embeddings
K — C are given by o1(a+by/m) = a+by/m and o2(a+by/m) = a—by/m.

If m #1 (mod 4) then Rx = Z + Z+/m by Lemma 3.6, so /1 = 1,02 =
v/m is a Z-basis of Ri. Hence
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Ifm =1 (mod 4) then Rg = Z+ZH+m by Lemma 3.6, s0 81 = 1, 82 =

1%‘/% is a Z-basis of Rg. Hence
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Therefore we have shown that

d _J4m ifm#1 (mod 4),
VM T A ifm=1 (mod 4).

(V)

Let a € Z be such that a> = m (mod p), and consider the ideals P; =
(p,v/m+a) and Py = (p,/m — a) of Ry /m).-
Claim: PP, = (p)
Proof of claim. We have
P1P2 = (anp(\/E—’— a‘)7p(m - a)7m - a2)'

It is clear that p?, p(y/m+a), p(v/m—a) € (p). Furthermore m —a? € (p)
because a? = m (mod p). This shows that P, P, C (p).

To show the converse we first observe that p? € Py Py and 2pa = p(y/m +
a) —p(v/m —a) € PiP,. Since p{m and a®> = m (mod p), it follows that
p t a. Furthermore p is odd, so p t 2a. Therefore 2a and p are coprime, so

there exist u,v € Z such that u - 2a + v - p = 1. Multiplying this by p gives
p=u-2pa+v-p?> € PP, This implies (p) C P P,. |

Claim: P; and P, are prime ideals of Ro(ym)

Proof of claim. Using Lemmas 8.5 and 8.2 we have
N(P)N(P,) = N(P1Py) = N((p)) = p!"@ = p*.

Furthermore it is easy to see that N(P;) = N(P,) (observe that the auto-
morphism 7 of K maps P, onto P, and therefore induces an isomorphism
Ry /Py = Ri/Ps). It follows that N(P;) = N(P2) = p. By Question (3)(a)
this implies that P; and P, are prime ideals. O

(a) Assume that A is a non-zero ideal of R which is not a prime ideal. If
A = Rk then N(A) =1, i.e. in this case N(A) is not a prime number.
If A # Rk then by Theorem 4.7 we can write A = Py --- P, withn > 2
where Pi,..., P, are non-zero prime ideals of Rx. By Lemma 8.5 we
obtain N(A4) = N(P;)---N(P,). Now for all i we have N(P;) € N and
N(P;) # 1 because P; # Rk . This shows that in this case N(4) is a
composite number, i.e. again N(A) is not a prime number.
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(b) Let K = Q(v/2) and A = (3), i.e. A is the principal ideal of the ring
Ry generated by 3. We claim that A is a prime ideal of Rg such that
N(A) is not a prime number.

By Lemma 8.2 we have N(A4) = 3K = 9 50 N(A) is not a prime
number.
To show that A is a prime ideal, we must show that if

(a+0vV2)-(c+dV2) € A

where a—l—bﬂ,c—i—d\/ie Ry then a+byv/2 € Aor c+dv2 € A. Now
(a+bv2)-(c+dv/2) € Aimplies (a+bv2)-(c+dv2) =3 (u+vV2) for
some u+vv/2 € Ry Since (a+bv/2)-(c+dv/?2) = (ac+2bd)+(ad+be)v/2
it follows that

ac + 2bd = 3u,

ad + be = 3w.

If b=0 (mod 3) then these two equations imply ac = ad = 0 (mod 3).
Therefore either @ = 0 (mod 3) and so a +bv/2 € A, or c =d = 0
(mod 3) and so ¢ +dv/2 € A.

Now assume that b Z 0 (mod 3). From the two formulas ac+2bd = 3u
and ad + be = 3v we can deduce bc? + bd?> = 0 (mod 3). This implies
¢ +d?> = 0 (mod 3). Therefore ¢> = d*> = 0 (mod 3) and hence
c=d=0 (mod 3). This shows that ¢+ dv/2 € A.

If z > 1 is a real number then

1
z—1

C(z) = Zn*” <1+
n=1
(compare the computation in the notes after Definition 7.1). Also
((2) = in_z > /OO z %dx = !
B 1 1 n z—1 '

These two inequalities imply 1 < (z — 1)((2) < z for all z > 1. Letting
z — 14 gives

< i - < lim z=
1< Jim (5= 1)¢(2) < lim 2 =1,

hence lim (z —1){(z) = 1.

z—1+

Let m > 1. The polynomial X™ — 1 has roots ¢}, for i = 0,1,...,m — 1,
therefore X™ — 1 = H;’;Bl (X —¢!)). Dividing this equation by X — 1 gives
m—1

i=1
Letting X = 1 shows that

m—1

m=[[1-¢)

i=1
Write n = p{*---p% where p1,...,p, are distinct prime numbers and
ar, € N. Applying the above formula to m = n gives

n—1

n=[[0a-c.

i=1
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Ok
Applying the above formula to m = p{* and using that szk =(n /Py gives
P -1 oy
n/p, "1 1
=TT - ) =TI -¢)
i=1 j
where the product is over those j € {1,...,n — 1} for which ¢/ has order a

power of pi. Hence

n=pipir =10 -¢)

J
where the product is over those j € {1,...,n — 1} for which ¢/ has prime
power order.

It follows that ‘
1=T[a-¢)
J

where the product is over those j € {1,...,n — 1} for which ¢/ is not of
prime power order. Since m has at least two distinct prime factors this
product contains the factor 1 —¢,. Hence (1 —¢,)" ! = [1;,(- ¢J) where
the product is over those j € {2,...,n—1} for which ¢ has not prime power
order. Since 1 — ¢, € Rg(c,) and (1—-¢) L = Hj;él(l —-() e Ro¢,y, 1t
follows that 1 — ¢, is a unit in Rg¢,,)-

Let n € N. We recall that [Q((,) : Q] = ¢(n) where ¢ is Euler’s ¢-function.
Indeed, for n = 1 this is clear, for n > 1 and n # 2 (mod 4) this is Theorem
10.1.(1), and for n = 2 (mod 4) it follows from the other cases because we

have (using that n/2 is odd) [Q(¢,) : Q] = [Q((n/2) : Q] = ¢(n/2) = ¢(n).

Claim: If n > 1 is an even integer then
poe = {6, 0<i<n—1}

Proof. The inclusion {¢}, : 0 <i <n—1} C pgy,) is clear.

Conversely let € € ug,)- Let m € N be the order of e. Then e = ¢t
for some integer ¢ with (i,m) = 1. It follows that (,, € ug(,) (because if
w-i+v-m=1for u,v € Z then ¢, = ¢}, = (&) (¢M)° = &*). Now
let I = lem(m,n). Then (I/m,l/n) = 1, so there exist x,y € Z such that
l=x-l/m+y-l/n It follows that

Q= =@ (G =G G e Q).
Thus Q(¢;) € Q(¢n). The inclusion Q(¢,) € Q(¢) is obvious because
n | I, hence Q(¢,) = Q(¢;) and therefore ¢(n) = ¢(I). Since n | I and
n is even, this implies that n = [ and thus m | n. Hence (,, = ¢} for

some j € Z. It follows that ¢ = (¢, = (. Thus we have shown that
o) S{¢:0<i<n—1}. .

Now let n > 1 be an integer such that n # 2 (mod 4). If n is divisible
by 4 then pg(c,) = {¢. : 0 < i <n— 1} by the claim. If n is odd then

HQ(Ca) = HO(Con) = 1C3n 10 <0 <20 =1} = {#(,: 0 < i <n—1}
where for the second equality we use the claim and for the first and third
equalities we use that (o, = —(¢,)™ /2. Thus we have shown that

{0 <i<n—1} ifnisodd,
HOUG) = (¢ i0<i<n—1}  ifnis divisible by 4

as required.
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(7) (a) By Theorem 10.2 we know that Q((s)* = Q(¢s + ¢5'). Note that

(s = \/54_1 +\/\/58+5z'.

Since (5 1= ¢ it follows that

GHGl= \/52_1~

From this it is obvious that Q(¢5)* = Q(V/5).

(b) The group of units RS( v5) is generated by {+1} and a fundamental
unit. To find a fundamental unit € = a + bv/5 of Q(\/g) we can use the
method from Question (7) on Problem Sheet 1. Since 5 =1 (mod 4),
we must try a = %, %, %, ... until we find an a for which there exists a

b such that a+bv/5 € RS(\/E), ie.at+bVb e Ry 5 and N(a+bV5) =

+1. For a = § we find N( + b/5) = 1 — 5b% and this is equal to —1

for b = 4. Therefore £ = 1+2\/5 is a fundamental unit of Q(1/5).
It follows that

1 \/5 .
X _ pX _ 7 _ +
Ry = RQ(\/E) = {£1} x ” = {£1} x < 5 ) .

(c) By definition the group CT of cyclotomic units of Q((5)™ is generated
by —1 and by the units &, for all a € Z with (a,5) = 1. An easy
computation shows that {,45 = —¢, and £, = —&,. Furthermore
&1 = 1. Tt follows that CT is generated by —1 and &. We have

1-2)/2 Cg_l

§2=Cé )/ L1
=G G+ =—(G"+E) = ..

1++5
2
Hence

Z
CF = {41} x & = {+1} x <1+2¢5> .

(d) By parts (b) and (c) we have RS( )t = C™, therefore it follows from
Theorem 11.4 that

h@(<5)+ = [Ra(C5)+ : C+] =1

(8) Let p be a prime number and f(X) = XP~! —1 € Z,[X]. We will use

Hensel’s lemma to show that the equation f(X) = 0 has p — 1 solutions in
Zy,. Note that f'(X) = (p—1)XP~2

For every a € Z,, there exists an a € Z such that a = a (mod p). It easily
follows that Z,/pZ, = Z/pZ, so Z,/pZ, is a field with p elements. Now
let o € Z,,/pZ, be a non-zero element. Choose a1 € Z C Z, such that a;
reduces to « in Z,/pZ,. Since o # 0 it follows that p { a1 and therefore by
Euler’s theorem ™' =1 (mod p). Hence a; satisfies f(a1) = 0 (mod p).
Furthermore f'(a1) = (p — 1)a"% # 0 (mod p) since p — 1 # 0 (mod p)
and a1 # 0 (mod p). Therefore by Hensel’s lemma (Theorem 14.1) there
exists a unique a € Z, such that f(a) = 0 and @ = a1 (mod p). The last
condition implies that a reduces to « in Z,/pZ, because a; reduces to a.
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We have shown that for every non-zero o € Z,/pZ,, there exists a unique
solution a € Z, of f(X) = 0 which reduces to a. As there are p — 1 choices
for «, we have therefore found p — 1 solutions of the equation f(X) = 0.

Existence of a: We will construct a sequence ag, a1, az, ... in Z, such that
for all 7 > 0 we have

(i) f(as) =0 (mod p2M+1+),

(i) a; = a;—; (mod pM+i)ifi > 1.

Clearly the given ag € Z, satisfies (i) and (ii).

Now suppose that we have constructed ag,as,...,a; satisfying (i) and
(ii). We want to find a;41 € Z, for which (i) and (ii) hold. In order for (ii)
to be satisfied we must have a; 11 = a; + Ap™ 1+ for some A € Z,,. We will
show that there exists A such that f(a; + Ap™ 179 = 0 (mod p?M+2+7).
Note that

Flas + MM = F£a) + F(a) MM (mod p2M ),
Hence we will have f(a; + ApM+1%%) =0 (mod p?M+2+%) if and only if
flai) + f(a) ™ =0 (mod p*M+2H).
By assumption f(a;) = 0 (mod p*™*1*%). Since a; = ag (mod pM*') we
have f'(a;) = f'(ag) (mod pM*1), so in particular f'(a;) = 0 (mod pM).
It follows that the previous congruence is equivalent to

flai) f;?(]\ii)/\z() (mod p).

Now f(a;) 0 (mod pM+1), hence f;)(ltl,i) # 0 (mod p). Therefore f;)(ﬁi) is
a unit in Z,, so there exists a A € Z, such that the previous congruence is
satisfied. It follows that a; 1 = a; + ApM T+ satisfies condition (i).

By (ii) the sequence ag,a1,as,... is a Cauchy sequence in Z,. Hence
we can define @ = lim;_,o a; € Z,. Then (again by (ii)) we have a = ag
(mod pM*1). Furthermore f(a) = f(lim; oo a;) = lim; o f(a;) = 0 where
the last equality comes from (i). This shows the existence of a € Z, with
the required properties.

Uniqueness of a: Suppose that o' € Z, satisfies f(a’) = 0 and ¢’ = ao
(mod pM*1). We must show that a’ = a.

First we make the following observation. We showed above that for every
i > 0 there exists a,11 € Z,, such that conditions (i) and (ii) are satisfied. It
follows from the above that a;; must be of the form a;.; = a; + ApM T+
and that \ is unique modulo p. Therefore a;, 1 is unique modulo p™+2+%,

Now we claim that for all i > 0 we have a’ = a; (mod pM*!*+%). For
7 = 0 this is true by assumption. Suppose that we have shown o' = a;
(mod pM+1+%) for some i € NU {0}. Since f(a’) = 0 (mod p?M+2+i),
it follows that o’ satisfies conditions (i) and (ii) for ¢ + 1, hence by the
uniqueness result stated in the previous paragraph it follows that a’ = a;41
(mod pM+2+7).

From a' = a; (mod pM+1%%) for all 7 it follows that @’ = lim; .. a; = a,
as required.

Let f(X) = (X% —2)(X?—17)(X? - 34).

Claim 1: The equation f(X) = 0 has solutions in R.

Proof. Clearly the solutions of f(X) =0in R are X = ++/2, +/17, £1/34.
|

Claim 2: The equation f(X) = 0 has solutions in Q7.
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Proof. Let g(X) = X?—2. Then a; =6 € Z C Zy7 satisfies g(a;) =34 =0
(mod 17) and ¢'(a;) = 12 # 0 (mod 17). Therefore by Hensel’s lemma
(Theorem 14.1) there exists a € Z;7 such that g(a) = 0. This implies that
fla) = (a® — 2)(a® — 17)(a® — 34) = 0, i.e. f(X) = 0 has a solution in
Zn7 C Qur. O

Claim 3: The equation f(X) = 0 has solutions in Q, for every prime number
p with p # 2 and p # 17.
Proof. We have (%) = (%) (%), therefore at least one of the Legendre

symbols (2) , (H> , (ﬁ> is equal to 1. Let ¢ € {2,17,34} be such that

p p p

(1%) =1 and let g(X) = X2 — ¢. Then by the definition of the Legendre

symbol there exists a; € Z C Z, such that g(a;) = a? — ¢ = 0 (mod p).

Furthermore ¢'(a1) = 2a; Z 0 (mod p) because ¢ Z 0 (mod p) implies a; #
0 (mod p). Therefore by Hensel’s lemma (Theorem 14.1) there exists a € Z,,
such that g(a) = 0. This implies that f(a) = (a® —2)(a® —17)(a®—34) = 0,
i.e. f(X) =0 has a solution in Z, C Q,. O

Claim 4: The equation f(X) = 0 has solutions in Qs.

Proof. Let g(X) = X2 —17. Letag =1 € Z C Zy and M =1 € NU
{0}. Then g(ag) = —16 = 0 (mod 22M+1)  ¢'(ap) = 2 =0 (mod 2M) and
g'(ag) = 2 # 0 (mod 2M+1). Therefore by the generalisation of Hensel’s
lemma stated in Question (9) there exists a € Zy such that g(a) = 0. This
implies that f(a) = (a® — 2)(a® — 17)(a® — 34) = 0, i.e. f(X) = 0 has a
solution in Zs C Qs. O

Claim 5: The equation f(X) = 0 has no solutions in Q.

Proof. In the proof of Claim 1 we listed all solutions of f(X) = 0 in R.
Clearly all of these solutions are irrational, therefore f(X) = 0 has no
solutions in Q. O



