Algebraic number theory

LTCC 2008

Solutions to Problem Sheet 2

(1) Let $m \neq 1$ be a square-free integer and $K = \mathbb{Q}(\sqrt{m})$. The embeddings $K \to \mathbb{C}$ are given by $\sigma_1(a+b\sqrt{m}) = a+b\sqrt{m}$ and $\sigma_2(a+b\sqrt{m}) = a-b\sqrt{m}$. If $m \neq 1 \pmod{4}$ then $B_{22} = \mathbb{Z} + \mathbb{Z}/\mathbb{Z}$ by Lemma 3.6 so $\beta_1 = 1, \beta_2 = 1$.

If $m \neq 1 \pmod{4}$ then $R_K = \mathbb{Z} + \mathbb{Z}\sqrt{m}$ by Lemma 3.6, so $\beta_1 = 1, \beta_2 = \sqrt{m}$ is a \mathbb{Z} -basis of R_K . Hence

$$d_K = \det \begin{pmatrix} \sigma_1(\beta_1) & \sigma_1(\beta_2) \\ \sigma_2(\beta_1) & \sigma_2(\beta_2) \end{pmatrix}^2 = \det \begin{pmatrix} 1 & \sqrt{m} \\ 1 & -\sqrt{m} \end{pmatrix}^2 = 4m$$

If $m \equiv 1 \pmod{4}$ then $R_K = \mathbb{Z} + \mathbb{Z} \frac{1+\sqrt{m}}{2}$ by Lemma 3.6, so $\beta_1 = 1, \beta_2 = \frac{1+\sqrt{m}}{2}$ is a \mathbb{Z} -basis of R_K . Hence

$$d_K = \det \left(\begin{array}{cc} \sigma_1(\beta_1) & \sigma_1(\beta_2) \\ \sigma_2(\beta_1) & \sigma_2(\beta_2) \end{array} \right)^2 = \det \left(\begin{array}{cc} 1 & \frac{1+\sqrt{m}}{2} \\ 1 & \frac{1-\sqrt{m}}{2} \end{array} \right)^2 = m.$$

Therefore we have shown that

$$d_{\mathbb{Q}(\sqrt{m})} = \begin{cases} 4m & \text{if } m \not\equiv 1 \pmod{4}, \\ m & \text{if } m \equiv 1 \pmod{4}. \end{cases}$$

(2) Let $a \in \mathbb{Z}$ be such that $a^2 \equiv m \pmod{p}$, and consider the ideals $P_1 = (p, \sqrt{m} + a)$ and $P_2 = (p, \sqrt{m} - a)$ of $R_{\mathbb{Q}(\sqrt{m})}$.

<u>Claim</u>: $P_1P_2 = (p)$

Proof of claim. We have

$$P_1P_2 = (p^2, p(\sqrt{m} + a), p(\sqrt{m} - a), m - a^2).$$

It is clear that p^2 , $p(\sqrt{m}+a)$, $p(\sqrt{m}-a) \in (p)$. Furthermore $m-a^2 \in (p)$ because $a^2 \equiv m \pmod{p}$. This shows that $P_1P_2 \subseteq (p)$.

To show the converse we first observe that $p^2 \in P_1P_2$ and $2pa = p(\sqrt{m} + a) - p(\sqrt{m} - a) \in P_1P_2$. Since $p \nmid m$ and $a^2 \equiv m \pmod{p}$, it follows that $p \nmid a$. Furthermore p is odd, so $p \nmid 2a$. Therefore 2a and p are coprime, so there exist $u, v \in \mathbb{Z}$ such that $u \cdot 2a + v \cdot p = 1$. Multiplying this by p gives $p = u \cdot 2pa + v \cdot p^2 \in P_1P_2$. This implies $(p) \subseteq P_1P_2$.

<u>Claim</u>: P_1 and P_2 are prime ideals of $R_{\mathbb{Q}(\sqrt{m})}$

Proof of claim. Using Lemmas 8.5 and 8.2 we have

$$\mathbf{N}(P_1)\mathbf{N}(P_2) = \mathbf{N}(P_1P_2) = \mathbf{N}((p)) = p^{[K:\mathbb{Q}]} = p^2.$$

Furthermore it is easy to see that $\mathbf{N}(P_1) = \mathbf{N}(P_2)$ (observe that the automorphism τ of K maps P_1 onto P_2 and therefore induces an isomorphism $R_K/P_1 \cong R_K/P_2$). It follows that $\mathbf{N}(P_1) = \mathbf{N}(P_2) = p$. By Question (3)(a) this implies that P_1 and P_2 are prime ideals.

(3) (a) Assume that A is a non-zero ideal of R_K which is not a prime ideal. If $A = R_K$ then $\mathbf{N}(A) = 1$, i.e. in this case $\mathbf{N}(A)$ is not a prime number. If $A \neq R_K$ then by Theorem 4.7 we can write $A = P_1 \cdots P_n$ with $n \ge 2$ where P_1, \ldots, P_n are non-zero prime ideals of R_K . By Lemma 8.5 we obtain $\mathbf{N}(A) = \mathbf{N}(P_1) \cdots \mathbf{N}(P_n)$. Now for all i we have $\mathbf{N}(P_i) \in \mathbb{N}$ and $\mathbf{N}(P_i) \neq 1$ because $P_i \neq R_K$. This shows that in this case $\mathbf{N}(A)$ is a composite number, i.e. again $\mathbf{N}(A)$ is not a prime number. Algebraic number theory, Solutions to Problem Sheet 2, LTCC 2008 $\,$

(b) Let $K = \mathbb{Q}(\sqrt{2})$ and A = (3), i.e. A is the principal ideal of the ring R_K generated by 3. We claim that A is a prime ideal of R_K such that $\mathbf{N}(A)$ is not a prime number.

By Lemma 8.2 we have $\mathbf{N}(A) = 3^{[K:\mathbb{Q}]} = 9$, so $\mathbf{N}(A)$ is not a prime number.

To show that A is a prime ideal, we must show that if

$$(a+b\sqrt{2})\cdot(c+d\sqrt{2})\in A$$

where $a + b\sqrt{2}$, $c + d\sqrt{2} \in R_K$ then $a + b\sqrt{2} \in A$ or $c + d\sqrt{2} \in A$. Now $(a+b\sqrt{2}) \cdot (c+d\sqrt{2}) \in A$ implies $(a+b\sqrt{2}) \cdot (c+d\sqrt{2}) = 3 \cdot (u+v\sqrt{2})$ for some $u+v\sqrt{2} \in R_K$. Since $(a+b\sqrt{2}) \cdot (c+d\sqrt{2}) = (ac+2bd)+(ad+bc)\sqrt{2}$ it follows that

$$ac + 2bd = 3u,$$

 $ad + bc = 3v.$

If $b \equiv 0 \pmod{3}$ then these two equations imply $ac \equiv ad \equiv 0 \pmod{3}$. Therefore either $a \equiv 0 \pmod{3}$ and so $a + b\sqrt{2} \in A$, or $c \equiv d \equiv 0 \pmod{3}$ and so $c + d\sqrt{2} \in A$.

Now assume that $b \not\equiv 0 \pmod{3}$. From the two formulas ac+2bd = 3uand ad + bc = 3v we can deduce $bc^2 + bd^2 \equiv 0 \pmod{3}$. This implies $c^2 + d^2 \equiv 0 \pmod{3}$. Therefore $c^2 \equiv d^2 \equiv 0 \pmod{3}$ and hence $c \equiv d \equiv 0 \pmod{3}$. This shows that $c + d\sqrt{2} \in A$.

(4) If z > 1 is a real number then

$$\zeta(z) = \sum_{n=1}^{\infty} n^{-z} < 1 + \frac{1}{z-1}$$

(compare the computation in the notes after Definition 7.1). Also

$$\zeta(z) = \sum_{n=1}^{\infty} n^{-z} > \int_{1}^{\infty} x^{-z} dx = \frac{1}{z-1}.$$

These two inequalities imply $1 < (z-1)\zeta(z) < z$ for all z > 1. Letting $z \to 1+$ gives

$$1\leq \lim_{z\to 1+}(z-1)\zeta(z)\leq \lim_{z\to 1+}z=1,$$

hence $\lim_{z \to 1+} (z - 1)\zeta(z) = 1.$

(5) Let m > 1. The polynomial $X^m - 1$ has roots ζ_m^i for $i = 0, 1, \ldots, m - 1$, therefore $X^m - 1 = \prod_{i=0}^{m-1} (X - \zeta_m^i)$. Dividing this equation by X - 1 gives

$$X^{m-1} + X^{m-2} + \dots + X + 1 = \prod_{i=1}^{m-1} (X - \zeta_m^i).$$

Letting X = 1 shows that

$$m = \prod_{i=1}^{m-1} (1 - \zeta_m^i).$$

Write $n = p_1^{a_1} \cdots p_r^{a_r}$ where p_1, \ldots, p_r are distinct prime numbers and $a_k \in \mathbb{N}$. Applying the above formula to m = n gives

$$n = \prod_{i=1}^{n-1} (1 - \zeta_n^i).$$

 $\mathbf{2}$

Applying the above formula to $m = p_k^{a_k}$ and using that $\zeta_{p_k^{a_k}} = \zeta_n^{n/p_k^{a_k}}$ gives

$$p_k^{a_k} = \prod_{i=1}^{p_k^{a_k} - 1} \left(1 - \zeta_n^{n/p_k^{a_k} \cdot i} \right) = \prod_j (1 - \zeta_n^j)$$

where the product is over those $j \in \{1, ..., n-1\}$ for which ζ_n^j has order a power of p_k . Hence

$$n = p_1^{a_1} \cdots p_r^{a_r} = \prod_j (1 - \zeta_n^j)$$

where the product is over those $j \in \{1, ..., n-1\}$ for which ζ_n^j has prime power order.

It follows that

$$1 = \prod_{j} (1 - \zeta_n^j)$$

where the product is over those $j \in \{1, ..., n-1\}$ for which ζ_n^j is not of prime power order. Since n has at least two distinct prime factors this product contains the factor $1 - \zeta_n$. Hence $(1 - \zeta_n)^{-1} = \prod_{i \neq 1} (1 - \zeta_n^i)$ where the product is over those $j \in \{2, \ldots, n-1\}$ for which ζ_n^j has not prime power order. Since $1 - \zeta_n \in R_{\mathbb{Q}(\zeta_n)}$ and $(1 - \zeta_n)^{-1} = \prod_{j \neq 1} (1 - \zeta_n^j) \in R_{\mathbb{Q}(\zeta_n)}$, it follows that $1 - \zeta_n$ is a unit in $R_{\mathbb{Q}(\zeta_n)}$.

(6) Let $n \in \mathbb{N}$. We recall that $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \phi(n)$ where ϕ is Euler's ϕ -function. Indeed, for n = 1 this is clear, for n > 1 and $n \not\equiv 2 \pmod{4}$ this is Theorem 10.1.(1), and for $n \equiv 2 \pmod{4}$ it follows from the other cases because we have (using that n/2 is odd) $[\mathbb{Q}(\zeta_n):\mathbb{Q}] = [\mathbb{Q}(\zeta_{n/2}):\mathbb{Q}] = \phi(n/2) = \phi(n)$.

<u>Claim</u>: If n > 1 is an even integer then ŀ

$$\iota_{\mathbb{Q}(\zeta_n)} = \{\zeta_n^i : 0 \le i \le n-1\}.$$

Proof. The inclusion $\{\zeta_n^i : 0 \le i \le n-1\} \subseteq \mu_{\mathbb{Q}(\zeta_n)}$ is clear.

Conversely let $\varepsilon \in \mu_{\mathbb{Q}(\zeta_n)}$. Let $m \in \mathbb{N}$ be the order of ε . Then $\varepsilon = \zeta_m^i$ for some integer i with (i, m) = 1. It follows that $\zeta_m \in \mu_{\mathbb{Q}(\zeta_n)}$ (because if $u \cdot i + v \cdot m = 1$ for $u, v \in \mathbb{Z}$ then $\zeta_m = \zeta_m^1 = (\zeta_m^i)^u \cdot (\zeta_m^m)^v = \varepsilon^u$). Now let $l = \operatorname{lcm}(m, n)$. Then (l/m, l/n) = 1, so there exist $x, y \in \mathbb{Z}$ such that $1 = x \cdot l/m + y \cdot l/n$. It follows that

$$\zeta_l = \zeta_l^1 = (\zeta_l^{l/m})^x \cdot (\zeta_l^{l/n})^y = \zeta_m^x \cdot \zeta_n^y \in \mathbb{Q}(\zeta_n).$$

Thus $\mathbb{Q}(\zeta_l) \subseteq \mathbb{Q}(\zeta_n)$. The inclusion $\mathbb{Q}(\zeta_n) \subseteq \mathbb{Q}(\zeta_l)$ is obvious because $n \mid l$, hence $\mathbb{Q}(\zeta_n) = \mathbb{Q}(\zeta_l)$ and therefore $\phi(n) = \phi(l)$. Since $n \mid l$ and *n* is even, this implies that n = l and thus $m \mid n$. Hence $\zeta_m = \zeta_n^j$ for some $j \in \mathbb{Z}$. It follows that $\varepsilon = \zeta_m^i = \zeta_n^{ij}$. Thus we have shown that $\mu_{\mathbb{O}(\zeta_n)} \subseteq \{\zeta_n^i : 0 \le i \le n-1\}.$

Now let n > 1 be an integer such that $n \not\equiv 2 \pmod{4}$. If n is divisible by 4 then $\mu_{\mathbb{Q}(\zeta_n)} = \{\zeta_n^i : 0 \le i \le n-1\}$ by the claim. If n is odd then

$$\mu_{\mathbb{Q}(\zeta_n)} = \mu_{\mathbb{Q}(\zeta_{2n})} = \{\zeta_{2n}^i : 0 \le i \le 2n - 1\} = \{\pm \zeta_n^i : 0 \le i \le n - 1\}$$

where for the second equality we use the claim and for the first and third equalities we use that $\dot{\zeta}_{2n} = -(\zeta_n)^{(n+1)/2}$. Thus we have shown that

$$\mu_{\mathbb{Q}(\zeta_n)} = \begin{cases} \{\pm \zeta_n^i : 0 \le i \le n-1\} & \text{if } n \text{ is odd,} \\ \{\zeta_n^i : 0 \le i \le n-1\} & \text{if } n \text{ is divisible by } 4 \end{cases}$$

as required.

(7) (a) By Theorem 10.2 we know that $\mathbb{Q}(\zeta_5)^+ = \mathbb{Q}(\zeta_5 + \zeta_5^{-1})$. Note that

$$\zeta_5 = \frac{\sqrt{5} - 1}{4} + \sqrt{\frac{\sqrt{5} + 5}{8}}i.$$

Since $\zeta_5^{-1} = \overline{\zeta_5}$ it follows that

$$\zeta_5 + \zeta_5^{-1} = \frac{\sqrt{5} - 1}{2}.$$

From this it is obvious that $\mathbb{Q}(\zeta_5)^+ = \mathbb{Q}(\sqrt{5})$.

(b) The group of units $R_{\mathbb{Q}(\sqrt{5})}^{\times}$ is generated by $\{\pm 1\}$ and a fundamental unit. To find a fundamental unit $\varepsilon = a + b\sqrt{5}$ of $\mathbb{Q}(\sqrt{5})$ we can use the method from Question (7) on Problem Sheet 1. Since $5 \equiv 1 \pmod{4}$, we must try $a = \frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \ldots$ until we find an a for which there exists a b such that $a + b\sqrt{5} \in R_{\mathbb{Q}(\sqrt{5})}^{\times}$, i.e. $a + b\sqrt{5} \in R_{\mathbb{Q}(\sqrt{5})}$ and $N(a + b\sqrt{5}) = \pm 1$. For $a = \frac{1}{2}$ we find $N(\frac{1}{2} + b\sqrt{5}) = \frac{1}{4} - 5b^2$ and this is equal to -1 for $b = \frac{1}{2}$. Therefore $\varepsilon = \frac{1 + \sqrt{5}}{2}$ is a fundamental unit of $\mathbb{Q}(\sqrt{5})$. It follows that

$$R_{\mathbb{Q}(\zeta_5)^+}^{\times} = R_{\mathbb{Q}(\sqrt{5})}^{\times} = \{\pm 1\} \times \varepsilon^{\mathbb{Z}} = \{\pm 1\} \times \left(\frac{1+\sqrt{5}}{2}\right)^{\mathbb{Z}}.$$

(c) By definition the group C^+ of cyclotomic units of $\mathbb{Q}(\zeta_5)^+$ is generated by -1 and by the units ξ_a for all $a \in \mathbb{Z}$ with (a, 5) = 1. An easy computation shows that $\xi_{a+5} = -\xi_a$ and $\xi_{-a} = -\xi_a$. Furthermore $\xi_1 = 1$. It follows that C^+ is generated by -1 and ξ_2 . We have

$$\xi_2 = \zeta_5^{(1-2)/2} \cdot \frac{\zeta_5^2 - 1}{\zeta_5 - 1}$$

= $-\zeta_5^2 \cdot (\zeta_5 + 1) = -(\zeta_5^{-2} + \zeta_5^2) = \dots$
= $\frac{1 + \sqrt{5}}{2}$.

Hence

$$C^+ = \{\pm 1\} \times \xi_2^{\mathbb{Z}} = \{\pm 1\} \times \left(\frac{1+\sqrt{5}}{2}\right)^{\mathbb{Z}}$$

(d) By parts (b) and (c) we have $R^{\times}_{\mathbb{Q}(\zeta_5)^+} = C^+$, therefore it follows from Theorem 11.4 that

$$h_{\mathbb{Q}(\zeta_5)^+} = [R_{\mathbb{Q}(\zeta_5)^+}^{\times} : C^+] = 1.$$

(8) Let p be a prime number and $f(X) = X^{p-1} - 1 \in \mathbb{Z}_p[X]$. We will use Hensel's lemma to show that the equation f(X) = 0 has p - 1 solutions in \mathbb{Z}_p . Note that $f'(X) = (p-1)X^{p-2}$.

For every $a \in \mathbb{Z}_p$ there exists an $\tilde{a} \in \mathbb{Z}$ such that $a \equiv \tilde{a} \pmod{p}$. It easily follows that $\mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{Z}/p\mathbb{Z}$, so $\mathbb{Z}_p/p\mathbb{Z}_p$ is a field with p elements. Now let $\alpha \in \mathbb{Z}_p/p\mathbb{Z}_p$ be a non-zero element. Choose $a_1 \in \mathbb{Z} \subseteq \mathbb{Z}_p$ such that a_1 reduces to α in $\mathbb{Z}_p/p\mathbb{Z}_p$. Since $\alpha \neq 0$ it follows that $p \nmid a_1$ and therefore by Euler's theorem $a_1^{p-1} \equiv 1 \pmod{p}$. Hence a_1 satisfies $f(a_1) \equiv 0 \pmod{p}$. Furthermore $f'(a_1) = (p-1)a_1^{p-2} \neq 0 \pmod{p}$ since $p-1 \neq 0 \pmod{p}$ and $a_1 \neq 0 \pmod{p}$. Therefore by Hensel's lemma (Theorem 14.1) there exists a unique $a \in \mathbb{Z}_p$ such that f(a) = 0 and $a \equiv a_1 \pmod{p}$. The last condition implies that a reduces to α in $\mathbb{Z}_p/p\mathbb{Z}_p$ because a_1 reduces to α . We have shown that for every non-zero $\alpha \in \mathbb{Z}_p/p\mathbb{Z}_p$ there exists a unique solution $a \in \mathbb{Z}_p$ of f(X) = 0 which reduces to α . As there are p - 1 choices for α , we have therefore found p - 1 solutions of the equation f(X) = 0.

- (9) <u>Existence of a:</u> We will construct a sequence a_0, a_1, a_2, \ldots in \mathbb{Z}_p such that for all $i \geq 0$ we have
 - (i) $f(a_i) \equiv 0 \pmod{p^{2M+1+i}},$
 - (ii) $a_i \equiv a_{i-1} \pmod{p^{M+i}}$ if $i \ge 1$.

Clearly the given $a_0 \in \mathbb{Z}_p$ satisfies (i) and (ii).

Now suppose that we have constructed a_0, a_1, \ldots, a_i satisfying (i) and (ii). We want to find $a_{i+1} \in \mathbb{Z}_p$ for which (i) and (ii) hold. In order for (ii) to be satisfied we must have $a_{i+1} = a_i + \lambda p^{M+1+i}$ for some $\lambda \in \mathbb{Z}_p$. We will show that there exists λ such that $f(a_i + \lambda p^{M+1+i}) \equiv 0 \pmod{p^{2M+2+i}}$. Note that

$$f(a_i + \lambda p^{M+1+i}) \equiv f(a_i) + f'(a_i)\lambda p^{M+1+i} \pmod{p^{2M+2+i}}.$$

Hence we will have $f(a_i + \lambda p^{M+1+i}) \equiv 0 \pmod{p^{2M+2+i}}$ if and only if

$$f(a_i) + f'(a_i)\lambda p^{M+1+i} \equiv 0 \pmod{p^{2M+2+i}}.$$

By assumption $f(a_i) \equiv 0 \pmod{p^{2M+1+i}}$. Since $a_i \equiv a_0 \pmod{p^{M+1}}$ we have $f'(a_i) \equiv f'(a_0) \pmod{p^{M+1}}$, so in particular $f'(a_i) \equiv 0 \pmod{p^M}$. It follows that the previous congruence is equivalent to

$$\frac{f(a_i)}{p^{2M+1+i}} + \frac{f'(a_i)}{p^M} \lambda \equiv 0 \pmod{p}.$$

Now $f'(a_i) \neq 0 \pmod{p^{M+1}}$, hence $\frac{f'(a_i)}{p^M} \neq 0 \pmod{p}$. Therefore $\frac{f'(a_i)}{p^M}$ is a unit in \mathbb{Z}_p , so there exists a $\lambda \in \mathbb{Z}_p$ such that the previous congruence is satisfied. It follows that $a_{i+1} = a_i + \lambda p^{M+1+i}$ satisfies condition (i).

By (ii) the sequence a_0, a_1, a_2, \ldots is a Cauchy sequence in \mathbb{Z}_p . Hence we can define $a = \lim_{i \to \infty} a_i \in \mathbb{Z}_p$. Then (again by (ii)) we have $a \equiv a_0$ (mod p^{M+1}). Furthermore $f(a) = f(\lim_{i \to \infty} a_i) = \lim_{i \to \infty} f(a_i) = 0$ where the last equality comes from (i). This shows the existence of $a \in \mathbb{Z}_p$ with the required properties.

Uniqueness of a: Suppose that $a' \in \mathbb{Z}_p$ satisfies f(a') = 0 and $a' \equiv a_0$ (mod p^{M+1}). We must show that a' = a.

First we make the following observation. We showed above that for every $i \ge 0$ there exists $a_{i+1} \in \mathbb{Z}_p$ such that conditions (i) and (ii) are satisfied. It follows from the above that a_{i+1} must be of the form $a_{i+1} = a_i + \lambda p^{M+1+i}$ and that λ is unique modulo p. Therefore a_{i+1} is unique modulo p^{M+2+i} .

Now we claim that for all $i \geq 0$ we have $a' \equiv a_i \pmod{p^{M+1+i}}$. For i = 0 this is true by assumption. Suppose that we have shown $a' \equiv a_i \pmod{p^{M+1+i}}$ for some $i \in \mathbb{N} \cup \{0\}$. Since $f(a') \equiv 0 \pmod{p^{2M+2+i}}$, it follows that a' satisfies conditions (i) and (ii) for i + 1, hence by the uniqueness result stated in the previous paragraph it follows that $a' \equiv a_{i+1} \pmod{p^{M+2+i}}$.

From $a' \equiv a_i \pmod{p^{M+1+i}}$ for all *i* it follows that $a' = \lim_{i \to \infty} a_i = a$, as required.

(10) Let $f(X) = (X^2 - 2)(X^2 - 17)(X^2 - 34)$.

<u>Claim 1:</u> The equation f(X) = 0 has solutions in \mathbb{R} .

Proof. Clearly the solutions of
$$f(X) = 0$$
 in \mathbb{R} are $X = \pm\sqrt{2}, \pm\sqrt{17}, \pm\sqrt{34}$.

<u>Claim 2:</u> The equation f(X) = 0 has solutions in \mathbb{Q}_{17} .

Algebraic number theory, Solutions to Problem Sheet 2, LTCC 2008

Proof. Let $g(X) = X^2 - 2$. Then $a_1 = 6 \in \mathbb{Z} \subset \mathbb{Z}_{17}$ satisfies $g(a_1) = 34 \equiv 0 \pmod{17}$ and $g'(a_1) = 12 \neq 0 \pmod{17}$. Therefore by Hensel's lemma (Theorem 14.1) there exists $a \in \mathbb{Z}_{17}$ such that g(a) = 0. This implies that $f(a) = (a^2 - 2)(a^2 - 17)(a^2 - 34) = 0$, i.e. f(X) = 0 has a solution in $\mathbb{Z}_{17} \subset \mathbb{Q}_{17}$.

<u>Claim 3:</u> The equation f(X) = 0 has solutions in \mathbb{Q}_p for every prime number p with $p \neq 2$ and $p \neq 17$.

Proof. We have $\left(\frac{34}{p}\right) = \left(\frac{2}{p}\right) \left(\frac{17}{p}\right)$, therefore at least one of the Legendre symbols $\left(\frac{2}{p}\right), \left(\frac{17}{p}\right), \left(\frac{34}{p}\right)$ is equal to 1. Let $c \in \{2, 17, 34\}$ be such that $\left(\frac{c}{p}\right) = 1$ and let $g(X) = X^2 - c$. Then by the definition of the Legendre symbol there exists $a_1 \in \mathbb{Z} \subset \mathbb{Z}_p$ such that $g(a_1) = a_1^2 - c \equiv 0 \pmod{p}$. Furthermore $g'(a_1) = 2a_1 \neq 0 \pmod{p}$ because $c \neq 0 \pmod{p}$ implies $a_1 \neq 0 \pmod{p}$. Therefore by Hensel's lemma (Theorem 14.1) there exists $a \in \mathbb{Z}_p$ such that g(a) = 0. This implies that $f(a) = (a^2 - 2)(a^2 - 17)(a^2 - 34) = 0$, i.e. f(X) = 0 has a solution in $\mathbb{Z}_p \subset \mathbb{Q}_p$.

<u>Claim 4:</u> The equation f(X) = 0 has solutions in \mathbb{Q}_2 .

Proof. Let $g(X) = X^2 - 17$. Let $a_0 = 1 \in \mathbb{Z} \subset \mathbb{Z}_2$ and $M = 1 \in \mathbb{N} \cup \{0\}$. Then $g(a_0) = -16 \equiv 0 \pmod{2^{2M+1}}$, $g'(a_0) = 2 \equiv 0 \pmod{2^M}$ and $g'(a_0) = 2 \not\equiv 0 \pmod{2^{M+1}}$. Therefore by the generalisation of Hensel's lemma stated in Question (9) there exists $a \in \mathbb{Z}_2$ such that g(a) = 0. This implies that $f(a) = (a^2 - 2)(a^2 - 17)(a^2 - 34) = 0$, i.e. f(X) = 0 has a solution in $\mathbb{Z}_2 \subset \mathbb{Q}_2$.

<u>Claim 5:</u> The equation f(X) = 0 has no solutions in \mathbb{Q} .

Proof. In the proof of Claim 1 we listed all solutions of f(X) = 0 in \mathbb{R} . Clearly all of these solutions are irrational, therefore f(X) = 0 has no solutions in \mathbb{Q} .